Tl Information - Selective Disclosure

Application Note
EEPROM Emulation for Generation 3 C2000 Real-Time

Controllers

i3 TEXAS INSTRUMENTS

Vamsikrishna Gudivada, Skyler Baumer, Charles Roberson
ABSTRACT

Many applications require storing small quantities of system related data (calibration values, device
configuration) in non-volatile memory so that it can be used or modified and reused even after power cycling the
system. Electrically erasable programmable read-only memory, or EEPROM, is primarily used for this purpose.
EEPROMs have the ability to erase and write individual bytes of memory many times over and the programmed
locations retain the data over a long period even when the system is powered down. This application report

and the associated code help to define a sector(s) of on-chip Flash memory as the emulated EEPROM and is
transparently used by the application program for writing, reading, and modifying the data.

Project collateral and source code discussed in this application report can be found in C2000Ware
v5.02.00.00 (or higher) at the following path(s): C2000Ware_5_02_00_00/driverlib/f28p65x/examples/c28x/
flash/ , C2000Ware_5 02_00_00/driverlib/f28003x/examples/flash/

Table of Contents

I T4 e Yo [T T 4o o TSP 2
2 Difference Between EEPROM and On-Chip FIash...............ooooiiii et 2
B0 =Y VT OSSR 3
BT I = T TS (o3 7o o To =Y o | E TR USROS PPPRRRRRIINt 3
FC 02T o | L= 8 o 1 1Y 1143 T o SRS 3
IR o To B o o Yo TN 1Y 1= i T Yo F RS SPP 4
3.4 Creating EEPROM Sections (Pages) and Page Identification.............cccoooiiir oo 4
4 SOFtWArE DESCIIPLION........oo et e e ettt e e e e ettt e e e e e e eaateeeeeesaateeeeeeaasasaeaeeeaassteeeeeesasssnseeeaaasseneaaesanes 6
4.1 Software FUNCHONAlItY AN FIOW........ooiiiiiiii ettt e et e e st e e s et e e e ante e e eneeeesneeeeasseeeanseeeanseeeeaneeeennnes 6
S PING-PONG EMUIALION...... ... ettt oottt e e e e oot bttt e e e e e ettt eae e e aaneeeeeeeaansbeeeeeeaansseeeaesaannsneeaeeannnnes 8
LR IO LT =Y @7 0] oo 0 = T o OSSR 8
5.2 EEPROM FUNCHONS. ...ttt ettt sttt et e e e st e e st eess et e e ameeeesaneee e s teeeamseeesnseeaeamteeeemsaeeenseeeanseeeanneeesanseeeansenenns 9
Lo I 1= i o =T g o] RSP PRRPTN 26
6 Single-Unit EMUIAION....... ... ettt e st e e s et e e s ate e e s neeeeeseeeeanseeesneeeeanseeeanseeesnneeeanneeenn 29
(ST O LYY 70T oo 0 =1 T o SRR 29
L2 =y oy @ 1 I T 0T e o T3 T SR 30
(O =T g o =T o o] SRS URRPN 45
T APPLICAtioN INtEGratioN...... ... e ettt oottt e e e e e ettt e e e e e ae et e e e e e s nte e e e e e e e naeeeeaeaannsreeaeeeanrneeens 47
8 Adapting to Other Gen 3 C2000 MCUS..............ooiiiiie et et e e et e e s teeeaasteeesseeesaeeeesneeeeaneeeeasseeeanseeesneeeeanneeeas 47
L F T I TP PP RO USORRYI 48
9.1 FIASh APT CRECKIIST......ceeiieieiet ettt h ekt b e bt e bt ea e e h e e bt e s b et et e e nae e e b e e eat e e b e e s abeenneenans 48
VIR T U oY T I T T PSSR 49
O E e T0] o] L=T] g Lo T T T PSSP OUPRPRN 50
TRt T 7= 0T PR 50
L7220 o T3 Uo7 [T ' o TSRSt 50
B 203 (=T (= o =Y 2SSOSR 50
T4 REVISION HISEOTY ... ettt oottt e e e oo eee e e e e e e e a e et eee e e e s beeeeeesansnteeeeeeantseeeeesaannnneaaeaanns 51

Figure 3-1. SiNGIE-UNit BENAVIOT........co ittt e et e ettt e e eae e e e amte e e e seeeeamseeeamseeeeanaeeeamneeeesneeeanseeesnneeenneeeenn 3
Figure 3-2. PING PONG BENAVIOT ..ottt ettt e e s ettt e e e e e a bt e e e e e e e abb et e e e e anbeeeeeeeanneeeeeeeaan 4
SPRADESA — NOVEMBER 2023 — REVISED APRIL 2024 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers 1

Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

TI Information - Selective Disclosure I3 TEXAS

INSTRUMENTS
Trademarks www.ti.com
Figure 3-3. BanK PartitiOnNiNg...........uuueiieieiiiiiiiiie oot e e et e e e e e e e e e e e ee e e e e e e aeatatat—te ettt et eaeaaaaaaeaeeaeaeaaaaaanannnnnrnes 5
FIQUIE 3-4. Pag@ LAYOUL........ciiiiiiiiiiiiiiiiiei ittt ettt et e eeeaaaeaeeeeaeaeaaaaa s snsaestatsaeeeeeeeeeaeeaeaaaeaeeeeeesensaanannnnnnsnen 6
FIQUIE 4-1. SOTWAIE FIOW.....iiii it e et e e e ettt e e e e s aeteee e e e s staeeeeeeassaeeeaeeaasbeeeeeesntseeeaesasseseaaeeannnsenaaneans 7
Figure 5-1. GetValidBanK FIOW............uuiiiiiiiiiiiie et e et e e e e ettt e e e et e e e e e e esaataeeaeesaasbeeeaeesantaaeeaesaassssesaeeasnsseneaeesanses 17
FIQUIE 5-2. BreaK POINTS.....coeiiiiiiiiiiiiie ettt ettt e e e e e e e e e e e e e e e s e s e s aaabe b eeteeeee et eeeeeaeaaaaaeaeeeeaeaesesanaaasnnsnsssnsnsnnnnnnnns 26
Figure 5-3. Write t0 EEPROM URNIL........oooiiiiiiiiii ettt e ettt e e e ettt e e e e et s e e e e e e sasbeeaeeesssaaeeaeeaassseeaeeesnsseeeeesansres 27
Lo 0TI A=Y= Lo [7= - USRS 27
Figure 5-5. Write t0 NeW EEPROM URIL.........ooiiiiiiiiiii ettt ettt e e e ettt e e e e st e e e e e s esb e e e eaeeensaeeaeeeansseeaeessnreeeas 27
Figure 5-6. Erase full EEPROM UNiL.........cooiiiiiii ettt e e e ettt e e e e et e e e e e s aatbeeeeeesasbaseeaesasnnsaeeaeesansraneaasaanes 28
Figure 5-7. Write to original EEPROM UNIL..........cooiiiiiii ettt e e et e e e e e et e e e e s saba e e e e e s ssaseeaeeesnsseeeeeaanees 28
Figure 5-8. Erase full EEPROM URNiL.........coiiiiiiiiiiiiiii ettt e e e et e e e e e aata e e e e e saataeeeeeeeassaaeeeesasnnsaeeaeesansseneaasannns 28
Figure 6-1. GetValidBanK FIOW............uuiiiiiiiiiiiee ettt et e e e et e e e ettt e e e e e asataeeaeaaaasbeeeeeesastaaeeaesaasssaeeaeeannsseneaeesanses 37
FIQUIE B-2. BreaK POINTS......ooiiiiiiiiiiiiie ettt et e et e e e e e e e e e e e e e e s aa s e aetebeeteaeeeeeee e et aeeaaaaeaeaeeaeaesaaaaaaasnnsnsssnnnsnnnnnnnes 45
Figure 6-3. WIite 10 EEPROIM..........uiiiiii ittt e et e e e ettt e e e e e saa et e e e e e assteeeeeesaastaeeee s e sssaeeeesasssaeaaeeanssbanaeessnnseeeas 46
FIQUIE B-4. REAM Data.ttt ettt ettt eeeeeaeaaaeaaaeaeaeaaaaa s snssantnssteeeeeeeeeeeaeeaeaaaeeeeeeeeeaeanannnnnnes 46
Figure 6-5. Erase full EEPROM URNIL.........ooiiiiiiiiiiciii ettt e e e ettt e e e e e s ba e e e e e s aatbeeeeeeeasssaeeeesasnnsaeaaeesansseneaasannns 46
Figure 6-6. WIite 10 EEPROIM..........uuiiiii ettt et e e e e ettt e e e e e taa et e e e e e assteeeaeesassbaeeeesaasssaeaaesaasssaeaeesannsbeneeessnnseeeas 47

Trademarks
All trademarks are the property of their respective owners.

1 Introduction

Generation 3 C2000 MCUs come with different configurations of Flash memory that is arranged in multiple
sectors. Unfortunately, the technology used for the on-chip Flash memory does not allow adding a traditional
EEPROM on the chip. Some designers use an external EEPROM part for such non-volatile storage. The good
news is that Flash memory is a specific type of EEPROM and all Generation 3 C2000 MCUs have in-circuit
programming ability for the Flash memory. This application report makes use of this facility and allows using
sectors of on-chip Flash as EEPROM by emulating the EEPROM functionality within the limitations of the Flash
memory. Note that at least one Flash sector is entirely used as an emulated EEPROM,; therefore, it is not
available for the application code.

Note
Generation 3 C2000 MCUs include: TMS320F2837x, TMS320F2838x, TMS320F28004x,
TMS320F28002x, TMS320F28003x, TMS320F280013x, TMS320F280015%x, TMS320F28P65x.

2 Difference Between EEPROM and On-Chip Flash

EEPROMSs are available in different capacities and connect with the host microcontrollers via a serial and
sometimes parallel interface. The serial inter-integrated circuit (12C) and serial peripheral interface (SPI) are
quite popular due to the minimal number of pins/traces. EEPROMSs can be programmed and erased electrically
and most of the serial EEPROMSs allow byte-by-byte program or erase operations.

The major difference between EEPROM and Flash operations is seen in the erase operation. The EEPROM
does not require a sector erase operation. One can erase a particular byte requiring the specified time. However,
the smallest unit of an erase operation in Flash is one sector.

Flash erase and write cycles are performed by applying time-controlled voltages to each cell. In the erase
condition, each cell (bit) reads logical 1. Therefore, every Flash location of a C2000 Real-Time Controller reads
OxFFFF when erased. Through programming, the cell can be changed to logical 0. Any word can be overwritten
to change a bit from logical 1 to 0 (assuming corresponding ECC has not been programmed); but not the

other way around. The on-chip Flash memory on Generation 3 C2000 MCUs parts require Tl-supplied specific
algorithms (Flash API) for erase and write operations.

Note
For the Flash erase/program/read times, see the Flash Parameters section in Electrical
Characteristics of the device-specific data manual.

2 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers SPRADES8A — NOVEMBER 2023 — REVISED APRIL 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

13 TEXAS TI Information - Selective Disclosure
INSTRUMENTS

www.ti.com Overview

3 Overview

The implementation described in this document supports both Single-Unit and Ping-Pong EEPROM
Emulation. Single-Unit and Ping-Pong implementations both support two modes, Page-Programming and 64-Bit
Programming mode. Ping-Pong Emulation will be described first, and Single-Unit will be described subsequently.

There are multiple user-configurable EEPROM variables supported by this implementation. These variables are
detailed in Section 5.1.

3.1 Basic Concept

In this implementation, the emulated EEPROM is comprised of at least one Flash Sector. Due to the block erase
requirement of Flash, a Flash sector has to be entirely reserved for the EEPROM Emulation. Based on the
C2000 part number, the size of the Flash sector will vary. The area of the Flash sector is divided into a number of
smaller sections and is referred to as a Page. For example, a 2K x 16 flash sector can be divided into 32 pages,
each with a size of 64 x 16.

The data to be saved is first written in a buffer in RAM. Then, using the in-circuit programming facility of
Generation 3 C2000 MCUs, the data is written to the first page in the selected sector(s) for EEPROM Emulation.
The next time data is written to Flash, it will be written to the next page. This process continues until the last
page in the selected sector is written. Upon reaching the last page, there are two ways to continue. If using
Single-Unit EEPROM emulation, see the Single-Unit Emulation behavior to see how this is handled. If using Ping
Pong EEPROM Emulation, see Ping-Pong Method to see how this is handled.

In addition to the Page Programming concept described above, there is also support for 64-Bit Programming. In
this mode, the sector(s) is not broken into EEPROM banks and pages. 64-Bit Programming is discussed further
in Section 5.2.10 and Section 5.2.11 .

3.2 Single-Unit Method
If using Single-Unit EEPROM Emulation, Figure 3-1 shows the implemented behavior.

EEPROM Unit 1 EEPROM Unit 1 EEPROM Unit 1
e o o
EEPROM Unit 1 EEPROM Unit 1
—

Figure 3-1. Single-Unit Behavior

If the EEPROM unit is full and there is more data to be written, the EEPROM unit is erased and the new data is
programmed to Flash. This process can be repeated as necessary.

SPRADESA — NOVEMBER 2023 — REVISED APRIL 2024 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers 3
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

Tl Information - Selective Disclosure 13 TEXAS
INSTRUMENTS

Overview www.ti.com

3.3 Ping-Pong Method

If using the Ping Pong method, the following diagram shows the implemented behavior. As shown in Figure 3-2,
there are two EEPROM units made up of selected Flash Sectors. One is marked as an Active Unit, and the other
is marked as the Inactive Unit. To begin, data is written to the Active Unit.

EEPROM Unit 1 EEPROM Unit 1 EEPROM Unit 1
Active Unit> Active Unit> Active Unit>
EEPROM Unit 2 EEPROM Unit 2 ® O o EEPROM Unit 2

Inactive Inactive
Unit Unit

EEPROM Unit 1 EEPROM Unit 1 EEPROM Unit 1
. b Inactive Inactive
@ Unit Unit

S— EEPROM Unit 2 EEPROM Unit 2 EEPROM Unit 2

@ Active Unit Active Unit
Unit

Figure 3-2. Ping Pong Behavior

If the Active Unit is full and there is more data to be written, the Active and Inactive EEPROM units will switch.
Therefore, the previously Active Unit (full Unit) will be marked as Inactive, and the previously Inactive Unit
(empty Unit) will be marked as Active. Subsequently, the data will be written to the newly Active EEPROM Unit.
After the data is successfully programmed to the Active EEPROM Unit, the Inactive EEPROM Unit is erased.
This method ensures that there is a fall-back options for the last successfully written data in case of any failure
during the erase or program operation when the currently active EEPROM Unit is full.

This process can be repeated as necessary.
3.4 Creating EEPROM Sections (Pages) and Page Identification

In order to support EEPROM emulation with varying data sizes (other than 64-bits), the Flash Sectors selected
for emulation are divided into a format referred to as EEPROM Banks (not to be confused with Flash Banks) and
Pages. First, the Flash sector (or set of chosen Flash Sectors) is divided into EEPROM banks. Each EEPROM
bank is further divided into Pages. This partitioning is shown in Bank Partitioning. The partitioning of EEPROM
Banks and Pages is the same for Single-Unit and Ping-Pong emulation.

Using this format allows the application to:

* Read back the data from the page written during the previous save
» Write the latest data to a new page
» Read from any previously stored data, if required by the application

4 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers SPRADES8A — NOVEMBER 2023 — REVISED APRIL 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

13 TEXAS TI Information - Selective Disclosure

INSTRUMENTS
www.ti.com Overview
Mp = Number of EEPROM Pages
Mb = Number of EEPROM Banks
Flash Memory EEPROM Bank
EE_BO PO | P1 P2 P3 P4 | PS P6 Php-1
Flash Banke EEBL |PO|PL|P2|P3|P4a|P5|P6 Prpt
EEB2 |Po|PL| P2 | P3| PalePs|ope Prp1
EEB3 |PO|PL|P2|P3|Pa|Ps|ePe Prg-1
e o @
Flash Sectors chosen||| | FE B4 polprilp2lpP3s|paloes!pe Prpt
for Emulation -
EEBS |PoO|PL| P2 | P3| Pal6Ps|ope Prp1
EEB6 | PO| PL | P2| P3| PAa]|Ps| PG Prg-L
. *
» L]
. .

EE_BNb-1f PO| PL | P2 | P3 | P4 | PS|P6 | @ @ @ |py.

Figure 3-3. Bank Partitioning

The first eight 16-bit words of each EEPROM bank are reserved for EEPROM bank status information and the
first eight words of each page are reserved for page status information. Every time a new set of data is written to
a page, the status location of the last page and the next page are modified. When a new EEPROM bank is used
the Bank Status of the last and current EEPROM banks are updated. Both the EEPROM Bank and Page status
words differentiate between the current EEPROM Bank/Page and a used EEPROM Bank/Page in the same way.
To mark an EEPROM Bank or Page as current, the first 64-bits are written with the appropriate status code. To
mark an EEPROM Bank or Page as full, the latter 64-bits are written with the appropriate status code. More
details about the status codes can be found in the EEPROM_GetValidBank.

As seen in Page Layout, all pages contain an eight-word page status and a configurable amount of data space.
Page 0 is slightly different as it contains the EEPROM bank status as well. Only Pages 0 and 1 are shown, but it
should be noted that Page 2 through Page (N-1) are identical to Page 1.

SPRADESA — NOVEMBER 2023 — REVISED APRIL 2024 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers 5
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

Tl Information - Selective Disclosure 13 TEXAS

INSTRUMENTS
Software Description www.ti.com

Bank Status= 128-bits
Page Status = 128-bits
Words = 16-hits

Nw = Number of Words in each Page

Bank Status Page Status Word 0 Word 1

Page 0 Word 2 ‘ Word3 | Word4 | Word5 | Word6 | Word7
.
L J L L] L L J L]
L] L] . L] L] .

| Word Nw-6 ‘ Word Nw-5 | Word Nw-4 | Word Nw-3 | Word Nw-2 ‘ Word Nw-1 |

Page Status Word 0 Word 1 Word 2 Word 3

Page 1 Word 2 ‘ Word 3 Word 4 Word 5 Word 6 Word 7
L J L L] L L J ®
L] L L] L L] L]
. . L] . . L]

| Word Nw-6 ‘ Word Nw-5 | Word Nw-4 | Word Nw-3 | Word Nw-2 ‘ Word Nw-1 |

Figure 3-4. Page Layout

4 Software Description

The software provided with this application report includes EEPROM Emulation source code for the F28P65x
Generation 3 C2000 Real-Time Controller with an example project demonstrating how to utilize the source code.
Some aspects of the code may differ based on the device being used. For an example, see the Adapting to
Other Gen 3 C2000 MCUs. The rest of the guide is designed for the F28P650DK9 devices, with highlighted
comparisons to the F280039C devices where applicable.

This software provides basic EEPROM functionality: write, read, and erase. At least one sector of Flash memory
is used to emulate EEPROM. This sector(s) is broken into several EEPROM banks and pages, each containing
status words to determine the validity of the data as described above.

This code uses the Header Files and Flash API libraries provided for the F28P65x. The example code can
be found within the C2000Ware Directory. The full path is: C2000Ware_5_02_00_00/driverlib/f28p65x/examples/
c28x/flash

For comparisons to the F28003x devices, the example code can be found within the C2000Ware Directory. The
full path is: C2000Ware_5 02_00_00/driverlib/f28003x/examples/flash

4.1 Software Functionality and Flow

The device must first go through its initialization code to initialize clocks, peripherals, and so forth. The
initialization functions used are the functions provided with the header library files included in the project. Further
information regarding this sequence can be read in the documentation provided with the header files.

Once this is complete, the Flash APl initialization and parameters are set to prepare for Flash programming.
The Flash API library requires a few files and certain initialization/setup to function properly. The complete list of
required steps can be found in the F28P65x Flash APl Reference Guide.

Next, the EEPROM Configuration specified by the user in EEPROM_Config.h will be checked for validity and
certain variables used by the Flash API will be configured. More details can be found in User-Configuration and
Section 5.2.1.

At this point, programming can begin. First, data needs to be captured to program. After programming this data,
the read functionality reads the last set of data that was programmed into the Flash. This software flow should be

6 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers SPRADES8A — NOVEMBER 2023 — REVISED APRIL 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

13 TEXAS

INSTRUMENTS

www.ti.com

Tl Information - Selective Disclosure

Software Description

followed by most applications, especially the initialization portion as some Flash API functions need to be copied
to internal RAM before programming can begin.

The example project provided follows this software flow shown in Software Flow. To learn more about the
functions shown in the diagram, navigate to their appropriate section in the document.

Start

|

Set EEPROM
Configuration Variables

EEPROM _Config.h

Initialize Device and
FAPI

Device_lInit(),
Fapi_InitializeAPI(), etc.

Verify EEPROM
Configuration

EEPROM_Config()

I

No fF——

Valid Configuration?

— Yes

Error

I

Load Write_Buffer with

data

|

Find Address to write

data

I

EEPROM_GetValidBank()

No f—— Addressavailable? —— Yes
1 1 EEPROM_Write()
Switch Active EEPROM Write to active EEPROM | EEPROM_UpdatePageStatus()
Units Unit EEPROM_UpdateBankStatus()
EEPROM_Write() J/ \L EEPROM UpdatePageData()
EEPROM_UpdatePageStatus() | Write to newly active 5
EEPROM_UpdateBankStatus() EEPROM Unit No Read? | Yes
EEPROM_UpdatePageData() J/
EEPROM_Erase() | Erase full EEPROM Unit Read " m
ead most recently
written data to Buffer EEPROM _Read()
No ¥F— Done Reading? Yes
No F— Done? Yes
Exit
Figure 4-1. Software Flow
SPRADESA — NOVEMBER 2023 — REVISED APRIL 2024 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers 7

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

Tl Information - Selective Disclosure 13 TEXAS

INSTRUMENTS
Ping-Pong Emulation www.ti.com

5 Ping-Pong Emulation

In this section, the Ping-Pong implementation is discussed. To review the behavior of this implementation, see
Ping Pong Behavior.

5.1 User-Configuration

The implementation detailed in this document allows the user to configure several variables for EEPROM
Emulation. These variables are mainly found within EEPROM_PingPong_Config.h, but two are contained in
F28P65x_EEPROM_PingPong.c. The configurable variables will be discussed below in the section dedicated to
the appropriate file.

5.1.1 EEPROM_PingPong_Config.h

EEPROM_PingPong_Config.h contains definitions that allow the user to change various aspects of EEPROM
configuration. These aspects include:

» Define which device variant is being used. This allows EEPROM emulation in Flash Banks not common to all
devices.

// Un-comment appropriate definition if one of the following variants is being used
#define F28P65xDKx 1

//#define F28P65xSKx 1

//#define F28P65xSHx 1

Choose between Page Mode and 64-Bit Mode.

//#define _64_BIT_MODE 1
#define PAGE_MODE 1

* Choose which Flash Bank to use for emulation. The Flash APl and program are stored/run from Flash
Bank 0 by default, so it cannot be used for EEPROM Emulation. In general, the Flash APl and program
should be stored/run from a different Flash bank than the ones used for EEPROM emulation.

‘#define FLASH_BANK_SELECT FlashBanklStartAddress ‘

» Define the Flash Sector size (unit is 16-bit words). This will vary based on the device being used, reference
the appropriate data sheet for details.

‘#def‘ine FLASH_SECTOR_SIZE F28P65X_FLASH_SECTOR_SIZE ‘

» Define how many Flash sectors are in a Flash Bank. This will vary based on the device being used, reference
the appropriate data sheet for details.

‘#def'i ne NUM_FLASH_SECTORS F28P65x_NUM_FLASH_SECTORS ‘

* Choose how many EEPROM Banks to emulate.

‘#deﬁ' ne NUM_EEPROM_BANKS 4 ‘

* Choose how many EEPROM Pages within each EEPROM Bank

‘#deﬁ'ne NUM_EEPROM_PAGES 3 ‘

* Choose the size of the data space contained within each EEPROM Page (unit is 16-bit words). Although any
size can be specified, the size will be adjusted to the closest multiple of four that is greater than or equal to
the size specified. For example, a specified size of six 16-bit words per page will be programmed as eight
16-bit words per page, with the last two being treated as OxFFFF. This is to comply with Flash requirements
(8-bit ECC is programmed for every 64-bit aligned Flash memory address).

#define DATA_SIZE 64

8 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers SPRADES8A — NOVEMBER 2023 — REVISED APRIL 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

13 TEXAS TI Information - Selective Disclosure

INSTRUMENTS
www.ti.com Ping-Pong Emulation

5.1.2 F28P65x_EEPROM_PingPong.c

Within F28P65x_EEPROM_PingPong.c, users can choose which Flash Sectors to use for EEPROM emulation.
The sectors chosen (if multiple) should be contiguous and in order from least to greatest. Insert only the First
and Last sectors to be used for EEPROM. For example, to use sectors 1-10, insert {1,10}. To only use sector 1,
insert {1,1}. A valid configuration has the following properties.

* Imply a valid and consistent amount of sectors between the two EEPROM units
* Only include a sector(s) that exist on the device
* Not create an overlap in the Write/Erase Protection Masks between the two units
— The F28P65x Flash API requires Write/Erase Protection Masks to be configured before programming
Flash Memory. Details about the proper configuration of these masks can be found in the F28P65x Flash
API Reference Guide.

More details about invalid or dangerous configurations can be found in Section 5.2.1.

‘uinth FIRST_AND_LAST_SECTOR[2][2] = {{1,1},{39,39}}; ‘

Additionally, you can choose which set of Flash Sectors to begin emulation in.

‘ uintlé EEPROM_ACTIVE_UNIT = 0; ‘

If set to 0, the first set of Flash Sectors in FIRST_AND_LAST_SECTOR will be the Active EEPROM Unit first,
and the second set will be Inactive EEPROM unit at first. If set to 1, the opposite will be true.

5.2 EEPROM Functions

To implement this functionality, 12 functions are required to configure, program, read, and erase in Page
programming. Two additional functions are needed for 64-bit programming. All functions are included in the
F28P65x_EEPROM.c or F28P65x_EEPROM_PingPong.c file.

« EEPROM_Config_Check()

» Configure_Protection_Masks(Uint16* Sector_Numbers, Uint16 Num_EEPROM_Sectors)
« EEPROM_Write(Uint16* Write_Buffer)

« EEPROM_Read(Uint16* Read_Buffer)

« EEPROM Erase()

» Erase Bank()

« EEPROM_GetValidBank(Uint16 Read_Flag)

« EEPROM_UpdateBankStatus()

+ EEPROM_UpdatePageStatus()

« EEPROM_UpdatePageData(Uint16* Write_Buffer)

« EEPROM_Get 64 Bit Data_Address()

« EEPROM_Program_64_Bits(Uint16 Num_Words)

+ EEPROM_CheckStatus(Fapi_StatusType* oReturnCheck);
* ClearFSMStatus()

The description of each of these functions is discussed in detail in the subsequent sections.
5.2.1 EEPROM_Config_Check

The EEPROM_Config_Check() function provides general error-checking and configures Write/Erase protection
masks required by the Flash API. This function should be called before programming or reading from the
emulated EEPROM Unit(s).

First, the function verifies that the Flash Bank selected for EEPROM Emulation is valid. A valid Flash Bank
selection must not select Bank 0 for emulation and must be supported by the specific device variant. For
example, only some F28p65x variants have Flash Banks 2-4, while others do not. To verify this information, see
the device-specific data sheet.

SPRADESA — NOVEMBER 2023 — REVISED APRIL 2024 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers 9
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://dev.ti.com/tirex/explore/node?node=A__AD.W0E1mY2ck8q7NS8q5Hw__c2000ware_software_package__gYkahfz__LATEST
https://dev.ti.com/tirex/explore/node?node=A__AD.W0E1mY2ck8q7NS8q5Hw__c2000ware_software_package__gYkahfz__LATEST
https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

Tl Information - Selective Disclosure 13 TEXAS

INSTRUMENTS
Ping-Pong Emulation www.ti.com

if (FLASH_BANK_SELECT == FlashBankOStartAddress)

return OXFFFF;

if (FLASH_BANK_SELECT == FlashBank2StartAddress)

{

#if !defined(F28P65xDKx) && !defined(F28P65xSKkx) && !defined(F28P65xSHX)
return OXFFFF;

#endif

} else if (FLASH_BANK_SELECT == FlashBank3startAddress) // If using Bank 3

{
#if !defined(F28P65xDKx) && !defined(F28P65xSKX)
return OXFFFF;
#endif
} else if (FLASH_BANK_SELECT == FlashBank4StartAddress)

{

#if !defined(F28P65xDKx) && !defined(F28P65xSKkx) && !defined(F28P65xSHX)
return OXFFFF;

#endif

}

Second, the validity of Flash Sectors selected for emulation is examined. This function checks for:
* FIRST_AND_LAST_SECTOR indicating two different numbers of Flash Sectors between the two units

uintl6é NUM_EEPROM_SECTORS_1
uintlé NUM_EEPROM_SECTORS_2

FIRST_AND_LAST_SECTOR[0][1] - FIRST_AND_LAST_SECTOR[0][0] + 1;
FIRST_AND_LAST_SECTOR[1][1] - FIRST_AND_LAST_SECTOR[1][0] + 1;

if (NUM_EEPROM_SECTORS_1 != NUM_EEPROM_SECTORS_2)
{

return OXEEEE;

« More Flash Sectors selected for emulation than available within the Flash Bank

if (NUM_EEPROM_SECTORS > NUM_FLASH_SECTORS || NUM_EEPROM_SECTORS == 0)
{

return OXEEEE;

¢ |nvalid combinations for First and Last Sectors selected for emulation

if (NUM_EEPROM_SECTORS > 1)
{

// Check if FIRST_AND_LAST_SECTOR is sorted in increasing order
// and doesn't have duplicates

if (FIRST_AND_LAST_SECTOR[0][1] <= FIRST_AND_LAST_SECTOR[0][0])
{

return OXEEEE;
}
if (FIRST_AND_LAST_SECTOR[1][1] <= FIRST_AND_LAST_SECTOR[1][0])
{

return OXEEEE;

// Check if FIRST_AND_LAST_SECTOR contains invalid sector
if (FIRST_AND_LAST_SECTOR[O][1] > NUM_FLASH_SECTORS - 1 || FIRST_AND_LAST_SECTOR[0][1] < 1)
{

return OXEEEE;

}
if (FIRST_AND_LAST_SECTOR[1][1] > NUM_FLASH_SECTORS - 1 || FIRST_AND_LAST_SECTOR[1][1] < 1)
{

return OXEEEE;
} else // If only using 1 sector
{

// Verify that only sector is valid
if (FIRST_AND_LAST_SECTOR[0][0] > NUM_FLASH_SECTORS - 1 ||
FIRST_AND_LAST_SECTOR[1][0] > NUM_FLASH_SECTORS - 1) {
return OXEEEE;

10 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers SPRADES8A — NOVEMBER 2023 — REVISED APRIL 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

13 TEXAS TI Information - Selective Disclosure
INSTRUMENTS

www.ti.com Ping-Pong Emulation

* Overlapping Sectors between the two units
+ if (FIRST_AND_LAST_SECTOR|0][0] <= FIRST_AND_LAST_SECTOR[1][1] &&
FIRST_AND_LAST_SECTOR[1][0] <= FIRST_AND_LAST_SECTOR[0][1]) { return OXEEEE; }

If using Page Mode, the following will also be checked for
» Check if total size of EEPROM Banks + Pages will fit in the Flash Sectors selected.

// Calculate size of each EEPROM Bank (16 bit words)
Bank_Size = 8 + ((EEPROM_PAGE_DATA_SIZE + 8) * NUM_EEPROM_PAGES);

// Calculate amount of available space (16 bit words)
uint32 Available_Words = NUM_EEPROM_SECTORS * FLASH_SECTOR_SIZE;

// Check if size of EEPROM Banks and Pages will fit in EEPROM sectors
if (Bank_Size * NUM_EEPROM_BANKS > Available_words)

return OxCCCC;

» Verify that the two EEPROM units do not have overlapping protection masks

// Verify that the two EEPROM units do not have overlapping protection

// masks

// First, get sectors for both units

uint64 WE_Protection_AB_Sectors_uUnit_0 = Configure_Protection_Masks(FIRST_AND_LAST_SECTOR[0],
NUM_EEPROM_SECTORS) ;

uint64 WE_Protection_AB_Sectors_unit_1l = Configure_Protection_Masks(FIRST_AND_LAST_SECTOR[1],
NUM_EEPROM_SECTORS) ;

if (WE_Protection_AB_Sectors_uUnit_0 & WE_Protection_AB_Sectors_unit_1)

return OXEEEE;

It also warns you with the appropriate return code if one of the following conditions is detected:

» Space for one or more EEPROM Banks is left in Flash after configuring EEPROM Bank and Page size

// Notify for extra space (more than one EEPROM bank Teftover)
if (Available_words - (Bank_Size * NUM_EEPROM_BANKS) >= Bank_Size)
{

warning_Flags += 1;

+ If each page consists of less than 5 16-bit words (this wastes space as the 64-Bit Mode could be used
without the need for Status Codes)

if (EEPROM_PAGE_DATA_SIZE < 5)
{

warning_Flags += 2;

SPRADESA — NOVEMBER 2023 — REVISED APRIL 2024 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

1"

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

Tl Information - Selective Disclosure 13 TEXAS
INSTRUMENTS
Ping-Pong Emulation www.ti.com

If using sectors in the 32-127 range (for F28P65x devices) and not using all eight sectors allocated to a single
bit in the Write/Erase Protection Mask, a warning is issued. Any unused sectors within the eight designed by a
single bit cannot be properly be protected from erase. For more information on how the Write/Erase Protection
Masks correspond to sectors, see the TMS320F28P65x Flash API Version 3.02.00.00 Reference Guide.

uintlé i;
for (i =0; i < 2; i++)

// If using any sectors from 32-127
if (FIRST_AND_LAST_SECTOR[i][1] > 31) {

// If all sectors use protection mask B
if (FIRST_AND_LAST_SECTOR[i][0] > 31)

// If using less than 8 sectors
if (NUM_EEPROM_SECTORS < 8)
{

warning_Flags += 4;
break;

} else {
// If sectors are multiples of 8
if ((FIRST_AND_LAST_SECTOR[i][0] % 8) != 0 ||
c ((FIRST_AND_LAST_SECTOR[i][1] + 1) % 8 != 0))

warning_Flags += 4;
break;
}

} else { // 1If only last sector 1is using protection mask B

// If not a multiple of 8
if ((FIRST_AND_LAST_SECTOR[i][1] + 1) % 8 != 0) {

warning_Flags += 4;
break;

This function also prepares Flash for Emulation by erasing the Sectors to be used for programming.

// Combine sectors from both units and separate them by which
// protection register they use (A or B)
uint32 Combined_WE_Protection_A_Sectors =
(uint32)WE_Protection_AB_Sectors_uUnit_0 |
(uint32)WE_Protection_AB_Sectors_unit_1;
uint32 Combined_WE_Protection_B_Sectors =
WE_Protection_AB_Sectors_uUnit_0 >> 32 |
WE_Protection_AB_Sectors_uUnit_1 >> 32;

// Create protection masks accordingly
WE_Protection_A_Mask = OXFFFFFFFF A Combined_WE_Protection_A_Sectors;
WE_Protection_B_Mask = 0x00000FFF A Combined_WE_Protection_B_Sectors;

Erase_Bank();

Finally, Write/Erase Protection masks are configured for the Active EEPROM Unit.

// Configure write/Erase Protection Masks used by the Flash API
uint64 WE_Protection_AB_Mask =
Configure_Protection_Masks (FIRST_AND_LAST_SECTOR[EEPROM_ACTIVE_UNIT], NUM_EEPROM_SECTORS);

WE_Protection_A_Mask
WE_Protection_B_Mask

OXFFFFFFFF A (uint32)WE_Protection_AB_Mask;
0x00000FFF A WE_Protection_AB_Mask >> 32;

12 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers SPRADES8A — NOVEMBER 2023 — REVISED APRIL 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://dev.ti.com/tirex/explore/node?node=A__AD.W0E1mY2ck8q7NS8q5Hw__c2000ware_software_package__gYkahfz__LATEST
https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

13 TEXAS TI Information - Selective Disclosure
INSTRUMENTS
www.ti.com Ping-Pong Emulation

5.2.2 Configure_Protection_Masks

The Configure_Protection_Masks provides functionality to disable Write/Erase protection for any sector
selected for EEPROM Emulation. This is done by calculating the appropriate Masks to pass to the
Fapi_setupBankSectorEnable function. It requires two parameters: a pointer to the selected Flash Sector
numbers and the number of Flash Sectors to be emulated. For more details on the implementation of the
Fapi_setupBankSectorEnable function, see the TMS320F28P65x Flash API Version 3.02.00.00 Reference
Guide.

The return value of this function will be used to disable Write/Erase protection in Flash Sectors selected for
EEPROM Emulation.

// Initialize a variable to store the bits indicating which sectors
// need to have write/erase protection disabled.

// The first Tower 32 bits will represent CMDWEPROTA and the upper 32
// bits will represent CMDWEPROTB.

uint64 Protection_Mask_Sectors = 0;

// If we have more than one Flash Sector
if (NUm_EEPROM_Sectors > 1)

uint64 unshifted_Sectors;
uintl6 shift_Amount;

// If all sectors use Mask A
if (Sector_Numbers[0] < 32 && Sector_Numbers[1l] < 32)
{

// Configure Mask A

Unshifted_sectors = (uint64) 1 << Num_EEPROM_Sectors;
Unshifted_Sectors -= 1;

Protection_Mask_Sectors |= (Unshifted_Sectors << Sector_Numbers[0]);

}// 1f all sectors use Mask B
else if (Sector_Numbers[0] > 31 && Sector_Numbers[1l] > 31)
{

// Configure Mask B

shift_Amount = ((Sector_Numbers[1] - 32)/8) - ((Sector_Numbers[0] - 32)/8) + 1;
Unshifted_Sectors = (uint64) 1 << Shift_Amount;

unshifted_Sectors -= 1;

Protection_Mask_Sectors |= (Unshifted_sectors << ((Sector_Numbers[0] - 32)/8));
Protection_Mask_Sectors = Protection_Mask_Sectors << 32;

} else // If both Masks A and B need to be configured
{

// Configure Mask B

Shift_Amount = ((Sector_Numbers[1l] - 32)/8) + 1;
Unshifted_Sectors = (uint64) 1 << Shift_Amount;
Unshifted_sectors -= 1;

Protection_Mask_Sectors |= Unshifted_Sectors;
Protection_Mask_Sectors = Protection_Mask_Sectors << 32;

// Configure Mask A
Unshifted_Sectors = (uint64) 1 << ((32 - Sector_Numbers[0]) + 1);

Unshifted_sectors -= 1;
Protection_Mask_Sectors |= (Unshifted_Sectors << Sector_Numbers[0]);

} else { // 1If only using 1 Flash Sector

if(Sector_Numbers[0] < 32)
{

Protection_Mask_Sectors |= ((uint64) 1 << Sector_Numbers[0]);

} else

{
Protection_Mask_Sectors |= ((uint64) 1 << ((Sector_Numbers[0] - 32)/8));
Protection_Mask_Sectors = Protection_Mask_Sectors << 32;

}

}
SPRADESA — NOVEMBER 2023 — REVISED APRIL 2024 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers 13

Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://dev.ti.com/tirex/explore/node?node=A__AD.W0E1mY2ck8q7NS8q5Hw__c2000ware_software_package__gYkahfz__LATEST
https://dev.ti.com/tirex/explore/node?node=A__AD.W0E1mY2ck8q7NS8q5Hw__c2000ware_software_package__gYkahfz__LATEST
https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

Tl Information - Selective Disclosure 13 TEXAS

INSTRUMENTS
Ping-Pong Emulation www.ti.com

return Protection_Mask_Sectors;

For comparison, the F28003x EEPROM Ping Pong example project's Configure Protection_Masks functionality
differs from that of the F28P65x EEPROM PingPong project example with the amount of sectors available for
protection. Each bit in the Write/Erase protection mask represents it's own sector.

// Initialize a variable to store the bits indicating which sectors need to have write/erase
// protection disabled.
uintl6é Protection_Mask_Sectors = 0;
uintl6 uUnshifted_Sectors;

// If we have more than one Flash Sector
if (Num_EEPROM_Sectors > 1)

// Configure mask
Unshifted_Sectors = (uintl6) 1 << Num_EEPROM_Sectors;
Unshifted_sectors -= 1;
Protection_Mask_Sectors |= (Unshifted_Sectors << Sector_Numbers[0]);
} else { // 1If only using 1 Flash Sector
if(Sector_Numbers[0] < 16)
Unshifted_Sectors = (uintl6) 1 << Sector_Numbers[0];
Protection_Mask_Sectors |= Unshifted_Sectors;

}

return Protection_Mask_Sectors;

5.2.3 EEPROM_Write

The EEPROM_Write() function provides the functionality for programming the data to Flash. It leverages the
Flash API directly and makes several function calls within to prepare for data programming. The functions called
are listed below:

+ EEPROM_GetValidBank()

« EEPROM_UpdatePageStatus()
« EEPROM_UpdateBankStatus()
« EEPROM_UpdatePageData()

Each of the above functions are described in detail in their respective sections. To begin, the current EEPROM
Bank and Page are found. After the current EEPROM Bank and Page are found, the Page Status of the previous
Page is updated and the EEPROM Bank status is updated if a new EEPROM Bank is being used. Next, the
actual programming occurs during the EEPROM page data update.

EEPROM_GetvalidBank(); // Find Current Bank and Current Page

EEPROM_UpdatePageStatus(); // Update Page Status of previous page
EEPROM_UpdateBankStatus(); // Update Bank Status of current and previous bank
EEPROM_UpdatePageData(); // Update Page Data of current page

5.2.4 EEPROM_Read

The EEPROM_Read() function provides functionality for reading the most recently written data and storing it
into a temporary buffer. This function can be used for debug purposes or to read stored data at runtime. The
behavior differs in Page Mode vs 64-bit mode. In general, the most recently written data (page or 64-bits) are
stored in the Read_Buffer.

14 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers SPRADES8A — NOVEMBER 2023 — REVISED APRIL 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

13 TEXAS TI Information - Selective Disclosure
INSTRUMENTS
www.ti.com Ping-Pong Emulation

Page Mode: First, the function verifies that data has been written to EEPROM by checking the Empty EEPROM
flag. If attempting to read data before any has been written, the values read into the buffer are invalid and an
error is thrown. If data has been written, the current EEPROM Bank and Page are found and then the Read
Buffer is filled.

uintl6 i;

// Check for empty EEPROM
if (Empty_EEPROM)

Sample_Error(); // Attempting to read data that hasn't been written
} else

{
// Find Current Bank and Current Page
EEPROM_GetVvalidBank(1l);

// Increment page pointer to point at first data word
Page_Pointer += 8;

// Transfer contents of Current Page to Read Buffer
for(i=0;i<DATA_SIZE;i++)

Read_Buffer[i] = *(Page_Pointer++);

64-Bit Mode: First, the function verifies that data has been written to EEPROM by checking the Empty EEPROM
flag. If attempting to read data before any has been written, the values read into the buffer are invalid and an
error is thrown. If data has been written, The pointer is moved back by four addresses (64-bits total) and the
Read Buffer is filled with the data.

uintl6 1i;

// Check for empty EEPROM
if (Empty_EEPROM)
{

Sample_Error(); // Attempting to read data that hasn't been written
} else
{

// Move the bank pointer backwards to read data

Bank_Pointer -= 4;

// Transfer contents of Current Page to Read Buffer
for(i=0;i<4;i++)

{
}

Read_Buffer[i] = *(Bank_Pointer++);

5.2.5 EEPROM_Erase

The EEPROM_Erase() function provides functionality for erasing the inactive sector(s) used for emulation. At
least one entire sector must be erased as partial erase is not supported. Before erasing, you must ensure
that stored data is no longer needed/valid. In the Ping Pong implementation, this function is only called when
all EEPROM banks and pages in one EEPROM unit are used and data is successfully written to the other
EEPROM unit. The function begins by re-calculating the Write/Erase Protection masks for the inactive (full)
EEPROM unit, and then calls the Erase_Bank function.

// Re-Configure Write/Erase Protection Masks used by the Flash API
uint64 WE_Protection_AB_Mask =
configure_Protection_Masks (FIRST_AND_LAST_SECTOR[EEPROM_ACTIVE_UNIT A 1], NUM_EEPROM_SECTORS);

// Assign individual protection masks accordingly
WE_Protection_A_Mask OXFFFFFFFF A (uint32)WE_Protection_AB_Mask;
WE_Protection_B_Mask = Ox00000FFF A WE_Protection_AB_Mask >> 32;

Erase_Bank();

SPRADESA — NOVEMBER 2023 — REVISED APRIL 2024 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers 15
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

Tl Information - Selective Disclosure 13 TEXAS
INSTRUMENTS

Ping-Pong Emulation www.ti.com

For comparison, the F28003x Ping Pong example project's EEPROM_Erase functionality differs by only calling
the Erase_Bank function. Write/erase protection masks are configured outside of the EEPROM_Erase call.

5.2.5.1 Erase_Bank

The Erase_Bank function leverages the Flash API to erase the inactive (full) EEPROM Unit. This function is
separate from EEPROM_Erase to minimize the CPU cycles required to erase both units in the EEPROM_Config
function. It begins by configuring the Write/Erase Protection masks for the appropriate Flash Sectors and then
calls Fapi_issueBankEraseCommand. Finally, it waits for completion and checks for any errors.

Fapi_StatusType oReturncCheck;

// Clears status of previous Flash operation
ClearFsMmstatus();

// Enable program/erase protection for select sectors
Fapi_setupBankSectorEnable (FLASH_WRAPPER_PROGRAM_BASE+FLASH_O_CMDWEPROTA, WE_Protection_A_Mask);
Fapi_setupBankSectorEnable (FLASH_WRAPPER_PROGRAM_BASE+FLASH_O_CMDWEPROTB, WE_Protection_B_Mask);

// Erase the inactive EEPROM Bank
oReturnCheck = Fapi_issueBankEraseCcommand((uint32*) FLASH_BANK_SELECT);

// wait for completion and check for any programming errors
EEPROM_CheckStatus (&oReturncheck);

For comparison, the F28003x Ping Pong example project's EEPROM_Bank function issues

the Flash APl erase command and then waits for completion, checking for any programming errors that occur.
Write/Erase protection masks are provided outside of the scope of the function.

5.2.6 EEPROM_GetValidBank

The EEPROM_GetValidBank() function provides functionality for finding the current EEPROM bank and page.
This function is called by both the EEPROM_Write() and EEPROM_Read() functions. GetValidBank Flow shows
the overall flow required to search for current EEPROM bank and page.

16 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers SPRADESA — NOVEMBER 2023 — REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

13 TEXAS TI Information - Selective Disclosure
INSTRUMENTS
www.ti.com Ping-Pong Emulation

[Read Bank Status)

)i

Current Bank?

Empty Bank? Used Bank?

Update Bank Pointer

[Read Page Status L

)

Blank/Current
Page?

Used Page?

Update Page Pointer

Figure 5-1. GetValidBank Flow

When entering this function, the EEPROM bank and page pointers are set to the beginning of the first sector
specified in FIRST_AND_LAST_SECTOR:

RESET_BANK_POINTER;
RESET_PAGE_POINTER;

The addresses for these pointers are defined the EEPROM_Config.h file for the specific device and EEPROM
configuration being used.

Next, the current EEPROM bank is found. As GetValidBank Flow shows, there are three different states that an
EEPROM bank can have: Empty, Current, and Used.

An Empty EEPROM Bank is signified by the 128 status bits all being 1s
(OXFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF). A Current EEPROM Bank is signified by the most
significant 64 bits being set to OX5A5A5A5A5A5A5A5A, with the remaining 64 bits set to 1
(Ox5A5A5A5A5A5A5A5AFFFFFFFFFFFFFFFF. A Used EERPOM Bank is signified by all 128 bits being set
to OX6A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A. These values can be changed if desired.

An Empty EEPROM Bank is tested first. If this status is encountered, the EEPROM bank has not been used and
no further searching is needed.

if(Bank_status[0] == EMPTY_BANK) // Check for Unused EEPROM Bank
{
Bank_Counter = i; // Set EEPROM Bank Counter to number of current page
return; // If EEPROM Bank is Unused, return as EEPROM 1is empty
SPRADESA — NOVEMBER 2023 — REVISED APRIL 2024 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers 17

Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

Tl Information - Selective Disclosure 13 TEXAS

INSTRUMENTS
Ping-Pong Emulation www.ti.com

If an Empty EEPROM Bank is not encountered, Current EEPROM Bank is tested next. If the EEPROM bank is
the current EEPROM bank, the EEPROM bank counter is updated and the page pointer is set to the first page of
the EEPROM bank to enable testing for the current page. The loop is then exited as no further EEPROM bank
searching is needed.

if(Bank_Status[0] == CURRENT_BANK && Bank_Status[4] != CURRENT_BANK) // Check for Current Bank
{

Bank_Counter = 1i; // Set Bank Counter to number of current bank
// Set Page Pointer to first page in current bank

Page_Pointer = Bank_Pointer + 8;

break; // Break from Toop as current bank has been found

}

Lastly, Used EEPROM Bank is tested. In this case the EEPROM bank has been used and the EEPROM bank
pointer is updated to the next EEPROM bank to test its status.

// Check for Used Bank
if(Bank_status[0] == CURRENT_BANK && Bank_Status[4] == CURRENT_BANK)
// If Bank has been used, set pointer to next bank

Bank_Pointer += Bank_Size;

After the current EEPROM bank has been found, the current page needs to be found. there are three different
states that a page can have: Empty, Current, and Used.

An Empty Page is signified by the 128 status bits all being 1s (OxFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF). A
Current Page is signified by the most significant 64 bits being set to Ox5F5F5F5F5F5F5F5F, with the remaining
64 bits set to 1 (OxX5F5F5F5F5F5F5F5FFFFFFFFFFFFFFFFF). A Used Page is signified by all 128 bits being
set to OxX5F5F5F5F5F5F5F5F5F5F5F5F5F5F5F5F. These values can be changed if desired.

18 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers SPRADES8A — NOVEMBER 2023 — REVISED APRIL 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

13 TEXAS TI Information - Selective Disclosure
INSTRUMENTS

www.ti.com Ping-Pong Emulation

The Blank and Current Pages are tested first. If either of these are the current state of the page, the correct page
is found and the loop is exited as further searching is not needed.

// Check for Blank Page or Current Page
if(Page_status[0] == BLANK_PAGE)
{

Page_Counter = i; // Set Page Counter to number of current page
break; // Break from loop as current page has been found

}

if (Page_status[0] == CURRENT_PAGE && Page_Status[4] != CURRENT_PAGE)

{
Page_Counter = i + 1;//Increment Page Counter as one has been used
break; // Break from loop as current page has been found

}

If the page status is neither of these, the only other possibility is a Used Page. In this case, the page pointer is
updated to the next page to test its status.

// Check for Used Page
if(Page_Status[0] == CURRENT_PAGE && Page_Status[4] == CURRENT_PAGE)

// If page has been used, set pointer to next page
Page_Pointer += EEPROM_PAGE_DATA_SIZE + 8;
1

At this point, the current EEPROM bank and page is found and the calling function can continue. As a final
step, this function will check if all EEPROM banks and pages have been used. In this case, the sector
needs to be erased. The active units will be switched, Write/Erase Protection masks are reconfigured, and
the Erase_lInactive_Unit flag is set.

if (!ReadFlag)
if (Bank_Counter == NUM_EEPROM_BANKS - 1 &&
Page_Counter == NUM_EEPROM_PAGES)
{
EEPROM_UpdatePagestatus();
EEPROM_UpdateBankStatus();
EEPROM_ACTIVE_UNIT A= 1;
uint64 WE_Protection_AB_Mask = Configure_Protection_Masks(
FIRST_AND_LAST_SECTOR[EEPROM_ACTIVE_UNIT],
NUM_EEPROM_SECTORS) ;
WE_Protection_A_Mask = OXFFFFFFFF A(uint32)WE_Protection_AB_Mask;
WE_Protection_B_Mask = Ox00000FFF A WE_Protection_AB_Mask >> 32;
Erase_Inactive_Unit = 1;
RESET_BANK_POINTER;
RESET_PAGE_POINTER;
}
}

This check is performed by testing the EEPROM bank and page counters. The amount of EEPROM banks and
pages indicating a full EEPROM depends on the application. These counters are set when testing for the current
EEPROM banks and pages as shown in the code snippets above. However, this check is not made when the
Read_Flag is set. This is to prevent premature erasing of the inactive EEPROM unit when reading from a full
EEPROM unit.

SPRADESA — NOVEMBER 2023 — REVISED APRIL 2024 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers 19
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

Tl Information - Selective Disclosure 13 TEXAS
INSTRUMENTS
Ping-Pong Emulation www.ti.com

5.2.7 EEPROM_UpdateBankStatus

The EEPROM_UpdateBankStatus() function provides functionality for updating the EEPROM bank status. This
function called from the EEPROM_Write() function. The EEPROM bank status is first read to determine how to
proceed.

Bank_status[0]
Page_Status[0]

*(Bank_Pointer);
*(Page_Pointer);

If this status indicates the EEPROM bank is empty, the status is changed to Current and programmed.

// Set Bank Status to Current Bank
Bank_Status[0] = CURRENT_BANK;
Bank_Status[1] = CURRENT_BANK;
Bank_Status[2] CURRENT_BANK;
Bank_Status[3] = CURRENT_BANK;

// Clears status of previous Flash operation

ClearFsmstatus(Q);

Fapi_setupBankSectorEnable (FLASH_WRAPPER_PROGRAM_BASE+FLASH_O_CMDWEPROTA, WE_Protection_A_Mask);
Fapi_setupBankSectoreEnable (FLASH_WRAPPER_PROGRAM_BASE+FLASH_O_CMDWEPROTB, WE_Protection_B_Mask);

// Program Bank Status to current bank
oReturnCheck = Fapi_issueProgrammingCommand((uint32*) Bank_Pointer,
Bank_sStatus, 4, 0, O,
Fapi_AutoEccGeneration);

// wait for completion and check for any programming errors
EEPROM_CheckStatus (&Returncheck);

// Set Page Pointer to first page of current bank
Page_Counter = 0;
Page_Pointer = Bank_Pointer + 8;

If the status is not empty, the next check is for a Current EEPROM Bank with all pages used in the EEPROM
bank (full EEPROM bank). In this case, the current EEPROM banks status will be updated to show the EEPROM
bank is Full and the next EEPROM banks status will be updated to Current to allow programming of the next
EEPROM bank. As a last step, the page pointer is updated to the first page of the new EEPROM bank.

// Set Bank Status to Used Bank
Bank_Status[0] = CURRENT_BANK;
Bank_Status[1] CURRENT_BANK;
Bank_Status[2] CURRENT_BANK;
Bank_Status[3] = CURRENT_BANK;

// Clears status of previous Flash operation

ClearFsMmstatus();

Fapi_setupBankSectorEnable (FLASH_WRAPPER_PROGRAM_BASE+FLASH_O_CMDWEPROTA, WE_Protection_A_Mask);
Fapi_setupBankSectorEnable (FLASH_WRAPPER_PROGRAM_BASE+FLASH_O_CMDWEPROTB, WE_Protection_B_Mask);

// Program Bank Status to full bank
oReturnCheck = Fapi_issueProgrammingCommand((uint32*) Bank_Pointer + 2,
Bank_Status, 4, 0, O,
Fapi_AutoEccGeneration);

// wait for completion and check for any programming errors
EEPROM_CheckStatus (&oReturncCheck) ;

// Increment Bank Pointer to next bank
Bank_Pointer += Bank_Size;

// Set Bank Status to Current Bank
Bank_Status[0] CURRENT_BANK;
Bank_Status[1] CURRENT_BANK;
Bank_sStatus[2] = CURRENT_BANK;
Bank_Status[3] CURRENT_BANK;

// Clears status of previous Flash operation

ClearFsMmstatus();

Fapi_setupBankSectorEnable (FLASH_WRAPPER_PROGRAM_BASE+FLASH_O_CMDWEPROTA, WE_Protection_A_Mask);
Fapi_setupBankSectorEnable (FLASH_WRAPPER_PROGRAM_BASE+FLASH_O_CMDWEPROTB, WE_Protection_B_Mask);

// Program Bank Status to current bank

20 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers SPRADES8A — NOVEMBER 2023 — REVISED APRIL 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

13 TEXAS TI Information - Selective Disclosure
INSTRUMENTS
www.ti.com Ping-Pong Emulation

oReturncCheck = Fapi_issueProgrammingCommand((uint32*) Bank_Pointer,
Bank_Status, 4, 0, O,
Fapi_AutoEccGeneration);

// wait for completion and check for any programming errors
EEPROM_CheckStatus (&oReturncheck);

// Set Page Pointer to first page of current bank
Page_Counter = 0;
Page_Pointer = Bank_Pointer + 8;

5.2.8 EEPROM_UpdatePageStatus

The EEPROM_UpdatePageStatus() function provides functionality for updating the previous page’s status. This
function is called from the EEPROM_Write() function. The page status is first read to determine how to proceed.

Bank_Status[0]
Page_Status[0]

*(Bank_Pointer); // Read Bank Status from Bank Pointer
*(Page_Pointer); // Read Page Status from Page Pointer

If this status indicates that the page is blank, the function is exited as this status is updated in the
EEPROM_Write() function. Otherwise, the page status is updated to show it is full and the page pointer is
incremented to prepare to program the next page:

// Check if Page Status is blank. If so return to EEPROM_WRITE.
if(Page_status[0] == BLANK_PAGE)
return;
// Program previous page's status to Used Page
else
{
// Set Page Status to Used Page
Page_Status[0] = CURRENT_PAGE;
Page_Status[1l] = CURRENT_PAGE;
Page_Status[2] = CURRENT_PAGE;
Page_Status[3] = CURRENT_PAGE;
// Clears status of previous Flash operation
ClearFsMmstatus(Q);
Fapi_setupBankSectorEnable (FLASH_WRAPPER_PROGRAM_BASE+FLASH_O_CMDWEPROTA, WE_Protection_A_Mask);
Fapi_setupBankSectorEnable (FLASH_WRAPPER_PROGRAM_BASE+FLASH_O_CMDWEPROTB, WE_Protection_B_Mask);
// Program Bank Status to current bank
oReturncCheck = Fapi_issueProgrammingCommand((uint32*) Page_Pointer+2,
Page_Status, 4, 0, O,
Fapi_AutoEccGeneration);
// wait for completion and check for any programming errors
EEPROM_CheckStatus (&Returncheck);
// Increment Page Pointer to next page
Page_PO'i nter += EEPROM_PAGE_DATA_SIZE + 8;
}

5.2.9 EEPROM_UpdatePageData

The EEPROM_UpdatePageData() function provides functionality for updating the EEPROM page data. This
function is called from the EEPROM_Write() function.

The following steps need to be taken to achieve this:

1. Clear the Flash State Machine (FSM) Status.
2. Configure program/erase protection for Flash sectors.
» Sectors not used in EEPROM Emulation will have protection enabled.
» Sectors used in EEPROM Emulation will have protection disabled.
3. Calculate the offset from the Page Pointer to write the data.
a. This is required because only 64-bits are written at a time. Thus, if the data size is greater than 64-bits,
multiple calls to the Flash API are necessary to write an entire Page.

SPRADESA — NOVEMBER 2023 — REVISED APRIL 2024 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers 21

Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

Tl Information - Selective Disclosure 13 TEXAS

INSTRUMENTS
Ping-Pong Emulation www.ti.com

4. Wait for programming completion and check for any programming errors.

// Clears status of previous Flash operation
ClearFsMstatus();

Fapi_setupBankSectorEnable (FLASH_WRAPPER_PROGRAM_BASE+FLASH_O_CMDWEPROTA, WE_Protection_A_Mask);
Fapi_setupBankSectoreEnable (FLASH_WRAPPER_PROGRAM_BASE+FLASH_O_CMDWEPROTB, WE_Protection_B_Mask);

// variable for page offset

// (first write position has offset of 2 (64 bits),
// second has offset of 4 (128 bits), etc.)

uint32 Page_oOffset = 4 + (2 * i);

// Program data located in Write_Buffer to current page
oReturncheck = Fapi_issueProgrammingCommand((uint32*) Page_Pointer + Page_Offset, write_Buffer
+ (i*4), 4, 0, 0, Fapi_AutoEccGeneration);

// wait for completion and check for any programming errors
EEPROM_CheckStatus (&oReturncheck) ;

The following parameters are passed to the Flash API for programming.

» Page Pointer (programming address)
» Buffer containing data to be written

* Length of data to be programmed

* Programming mode

The fourth and fifth parameters are zero when using Fapi_AutoEccGeneration mode. For more details, see the
TMS320F28P65x Flash API Version 3.02.00.00 Reference Guide.

If the programming is successful, the Page Status of the current Page is updated and the Empty_ EEPROM flag
is cleared. The code is shown below:

if(orReturncheck == Fapi_Status_Success)

// Set Page Status to Current Page
Page_Status[0] CURRENT_PAGE;
Page_Status[1] CURRENT_PAGE;
Page_Status[2] CURRENT_PAGE;
Page_Status[3] CURRENT_PAGE;

Fapi_setupBankSectorEnable(
FLASH_WRAPPER_PROGRAM_BASE+FLASH_O_CMDWEPROTA,
WE_Protection_A_Mask);

Fapi_setupBankSectoreEnable(
FLASH_WRAPPER_PROGRAM_BASE+FLASH_O_CMDWEPROTB,
WE_Protection_B_Mask);

oReturncCheck = Fapi_issueProgrammingCommand((uint32*)Page_Pointer,
Page_Status, 4, 0, O,
Fapi_AutoEccGeneration);

// wait for completion and check for any programming errors
EEPROM_ChecksStatus (&Returncheck) ;
Empty_EEPROM = 0;

After a successful write, the function checks if the inactive EEPROM unit needs to be erased. If so, it calls
EEPROM_Erase, clears the flag, and re-configures the W/E Protection Masks. The flag to set the blank check is
raised before erase is called. The flag to erase the inactive unit is set in EEPROM_GetValid_Bank.

if (Erase_Inactive_uUnit)

// Erase the inactive (full) EEPROM Bank
Erase_Blank_cCheck = 1;

EEPROM_Erase();

Erase_Inactive_Unit = 0;

// Re-configure Write/Erase Protection Masks for active EEPROM Bank
uint64 WE_Protection_AB_Mask = Configure_Protection_Masks(
FIRST_AND_LAST_SECTOR[EEPROM_ACTIVE_UNIT], NUM_EEPROM_SECTORS);

22 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers SPRADES8A — NOVEMBER 2023 — REVISED APRIL 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://dev.ti.com/tirex/explore/node?node=A__AD.W0E1mY2ck8q7NS8q5Hw__c2000ware_software_package__gYkahfz__LATEST
https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

13 TEXAS TI Information - Selective Disclosure
INSTRUMENTS
www.ti.com Ping-Pong Emulation

WE_Protection_A_Mask
WE_Protection_B_Mask

OXFFFFFFFF A (uint32)WE_Protection_AB_Mask;
0x00000FFF A WE_Protection_AB_Mask >> 32;

5.2.10 EEPROM_Get_64_Bit_Data_Address

The EEPROM_Get_64_Bit_Data_Address() provides functionality for determining if the EEPROM unit is full and
assigning the proper address, if required. If a full EEPROM unit is detected, EEPROM is erased using the
EEPROM_Erase() function and the active EEPROM unit is switched.

First, the end address of EEPROM is set according to the device being used and the configuration. The
END_OF_SECTOR directive is set in the EEPROM_Config.h file.

End_Address = (uintl6 *)END_OF_SECTOR; // Set End_Address for sector

Next, the EEPROM bank pointer is compared to the end address. If writing four 16-bit words beginning at the
current EEPROM bank pointer would go beyond the end address, this indicates the sector is full. At this point,
the active EEPROM unit is switched, new Write/Protection masks are configured, the Erase_Inactive_Unit flag is
set, and the EEPROM EEPROM Bank Pointer is reset to the beginning of the newly active EEPROM unit.

if(Bank_Pointer > End_Address-3) // Test if EEPROM is full
EEPROM_ACTIVE_UNIT A= 1;
uint64 WE_Protection_AB_Mask = Configure_Protection_Masks(

FIRST_AND_LAST_SECTOR[EEPROM_ACTIVE_UNIT],
NUM_EEPROM_SECTORS) ;

WE_Protection_A_Mask
WE_Protection_B_Mask

= OXFFFFFFFF A (uint32)WE_Protection_AB_Mask;
= Ox00000FFF A WE_Protection_AB_Mask >> 32;
Erase_Inactive_Unit = 1;
RESET_BANK_POINTER;
}

5.2.11 EEPROM_Program_64_Bits

The EEPROM_Program_64_Bits() function provides functionality for programming four 16-bit words to
memory. The first parameter, Num_Words, allows the user to specify how many valid words will be

written. The data words should be assigned to the first 4 locations of the Write_Buffer to be used by the
Fapi_issueProgrammingCommand function. If less than four words are specified in the function call, missing
words will be filled with OxFFFF. This is done to comply with ECC requirements.

First, a full EEPROM unit is tested for.

EEPROM_Get_64_Bit_Data_Address();

Next, the Write Buffer is filled with 1s if less than 4 words are specified.

int 1i;
for(i = Num_words; i < 4; i++)

write_Buffer[i] = OXFFFF;

Next, data is programmed and the pointer is incremented to the next location to program data.

// Clears status of previous Flash operation
ClearFsMmstatus();

Fapi_setupBankSectorEnable (FLASH_WRAPPER_PROGRAM_BASE+FLASH_O_CMDWEPROTA, WE_Protection_A_Mask);
Fapi_setupBankSectorEnable (FLASH_WRAPPER_PROGRAM_BASE+FLASH_O_CMDWEPROTB, WE_Protection_B_Mask);

oReturnCheck = Fapi_issueProgrammingCommand((uint32*) Bank_Pointer,

SPRADESA — NOVEMBER 2023 — REVISED APRIL 2024 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers 23
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

Tl Information - Selective Disclosure 13 TEXAS

INSTRUMENTS
Ping-Pong Emulation www.ti.com

write_Buffer, 4, 0, 0,
Fapi_AutoEccGeneration);

// wait for completion and check for any programming errors
EEPROM_CheckStatus (&oReturncCheck) ;

// Increment to next location
Bank_Pointer += 4;

Once programming is complete, the Erase_lnactive_Unit flag is checked. If set, the inactive unit is erased,
performs a blank check and the Write/Erase Protection masks are reconfigured.

if (Erase_Inactive_uUnit) {

// Erase inactive unit
Erase_Blank_cCheck = 1;
EEPROM_Erase();
Erase_Inactive_Unit = 0;

uint64 WE_Protection_AB_Mask = Configure_Protection_Masks(
FIRST_AND_LAST_SECTOR[EEPROM_ACTIVE_UNIT],
NUM_EEPROM_SECTORS) ;

WE_Protection_A_Mask = OXFFFFFFFF A (uint32)WE_Protection_AB_Mask;
WE_Protection_B_Mask = Ox00000FFF A WE_Protection_AB_Mask >> 32;

Note
This function cannot be used until RESET_BANK_ POINTER has been executed to set the pointer.

In this example, it is called in EEPROM_Config_Check(). Executing before could produce unknown
results.

24 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers SPRADES8A — NOVEMBER 2023 — REVISED APRIL 2024

Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

13 TEXAS TI Information - Selective Disclosure

INSTRUMENTS
www.ti.com Ping-Pong Emulation

5.2.12 EEPROM_CheckStatus

The EEPROM_CheckStatus function provides functionality to check the Flash API status and check the Flash
State Machine status after each program/erase to Flash. There is also an additional check to confirm the flash is
blank following an erase operation. If any unexpected statuses are detected, the program stops. Error handling
is not implemented in this project.

Fapi_FlashStatusType oFlashStatus;
Fapi_FlashStatuswordType oFlashStatusword;

uint32_t sectorAddress = FLASH_BANK_SELECT + FIRST_AND_LAST_SECTOR[EEPROM_ACTIVE_UNITA1][0] *
FLASH_SECTOR_SIZE;

uintl6_t sectorSize = (FIRST_AND_LAST_SECTOR[EEPROM_ACTIVE_UNITA1][1] -
FIRST_AND_LAST_SECTOR[EEPROM_ACTIVE_UNITA1][0] + 1) * (FLASH_SECTOR_SIZE / 2);

// wait until the Flash program operation is over
while(Fapi_checkFsmForReady() == Fapi_Status_FsmBusy);

if(*oReturnCheck != Fapi_Status_Success)

// Check Flash API documentation for possible errors
Sample_Error();

// Read FMSTAT register contents to know the status of FSM after

// program command to see if there are any program operation related
// errors

oFlashstatus = Fapi_getFsmStatus();

if (Erase_Inactive_Unit && Erase_Blank_cCheck){
*oReturncheck = Fapi_doBlankCheck((uint32_t *) sectorAddress,
sectorSize, &oFlashStatusword);
Erase_Blank_check = 0;

if(*oReturnCheck != Fapi_Status_Success || oFlashStatus != 3)

//Check FMSTAT and debug accordingly
Sample_Error();

SPRADESA — NOVEMBER 2023 — REVISED APRIL 2024 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers 25
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

Tl Information - Selective Disclosure 13 TEXAS

INSTRUMENTS
Ping-Pong Emulation www.ti.com

5.2.13 ClearFSMStatus

The ClearFSMStatus() function is responsible for clearing the status of the previous flash operation. This
function is applicable for F280013x, F280015x, F28P65x and F28P55x devices. This function must be used
as-is.

Fapi_FlashStatusType oFlashStatus;
Fapi_StatusType oReturncCheck;

// Wait until FSM is done with the previous flash operation
while (Fapi_checkFsmForReady() != Fapi_Status_FsmReady){}

oFlashstatus = Fapi_getFsmStatus();
if(oFlashStatus != 0)
/* Clear the Status register */
oReturncCheck = Fapi_issueAsyncCommand(Fapi_Clearstatus);

// Wait until status is cleared
while (Fapi_getFsmstatus() !'= 0) {}

if(oReturnCheck != Fapi_Status_Success)

// Check Flash API documentation for possible errors
Sample_Error();

}

5.3 Testing Example

The examples provided were tested with F28P650DK9. To properly test the example, the memory window and
breakpoints need to be utilized within Code Composer Studio. The following steps were followed to program and
test the project.

Connect the F28P650DK9 to the PC via USB and an XDS110 Debug Probe with JTAG connection.

Connect a 5V DC power supply to the board.

Start Code Composer Studio and open the F28P65x_EEPROM_PingPong_Example.pijt.

Build the project by selecting Project -> Build Project.

Launch the Target Configurations by going to View -> Target Configurations ->

F28P65x EEPROM_PingPong_Example -> targetConfigs -> right-click TMS320F28P650DK9.ccxml ->

Launch Selected Configuration.

6. Connect to CPU1 by going to the Debug window, right clicking Texas Instruments XDS110 USB Debug
Probe 0/C28xx_CPU1, and selecting Connect Target.

7. Load symbols by clicking Load Symbols and selecting the F28P65x_EEPROM_PingPong.out from the
project.

8. Set breakpoints to properly view data written to and read from the memory within the memory window as

shown in Break Points.

grON -~

T . [gt s A e

EEPROM _Write(Write_ Buffer);
EEPROM Read(Read Buffer);

Figure 5-2. Break Points

26 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers SPRADES8A — NOVEMBER 2023 — REVISED APRIL 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

13 TEXAS
INSTRUMENTS

www.ti.com

Tl Information - Selective Disclosure

Ping-Pong Emulation

9. Run to the first break-point and open the Memory Browser (View -> Memory Browser) to view the data.
Bank_Pointer can be used to watch the data written and Read_Buffer to watch the data being read back

from the memory. This is shown in Write to EEPROM Unit and Read Data.

Data e

Data:(heald00 -

| Bank_Pointer

Bank_Pointer <Memory Rendering 1= 3

16-Bit Hex - Tl Style ~

ExeaaAa488

ExaaaaCal2
BwaeaaCalc
BwBeaaCa2o
Bxaaaacase
Bwaeaecasis
awaeaeCadd

EIEI sasa SASA SASA FFFE FFEF FEFF FFFF ASAS ASAS

BxBBRBABABA ASAS ASAS FFFF FFFF FFFF FFFF DR20 2001 0282 0083
ex2ERARA14 0OR4 DBAS DPRG BOA7 GORE BAED PRAA AEOE GEAC BEED
exBERARAIE GEOE GRAF APLe BA11 @A12 AA13 PR14 AE1S GALG @17
@xPPRARI2E @@18 GA19 APLA PA1B @A1C GA1D PRLE ARLF G620 @R21
@xBRRARA32 @822 G023 PR24 BA2S GO26 BA27 PR2E AO29 GA2A BO2E
@xBPRARA3C @82C @020 AR2E PAZF @30 BA31 PR32 AA33 0634 B35
@xPPRARA4E 0036 BO37 DO3E PO30 GO3A 803B PB3C 903D GO3E BO3F

Figure 5-3. Write to EEPROM Unit

Data w | Read_Buffer gl

Data:lec008 <Memory Rendering 1= 3

16-Bit Hex - Tl Style v

Il eeel cee2 0ees 0opd 0ROS PAAG GAG7 DOAS ORI

eges Baab seaC eaeD BBEE Gaer Bele aall Bal2 aBl3
2814 Bals5 eals 817 BRl5 8215 8alA @816 BelC aelD
BR1E BELlF BB26 8821 BR22 8825 BE24 BB25 Ba2o BB27
BB25 BE20 BA2A 8826 BR2C @820 BEZE BB2F BA36 BES1
@832 Ba33 @54 @a35 eB36 @B37 Be35 B39 BA34A BBsE
@a3C 8a3D \asEt 0a3F ooeo aael poaZ aaes Baad BEas

Figure 5-4. Read Data

10. Continue running from break-point to break-point until the program has finished or EEPROM is full.
11. Once EEPROM is full, you will see the new data written to the previously inactive unit and the full EEEPROM

will be erased. Shown in Write to new EEPROM Unit and Erase full EEPROM Unit.

Data e
Data:(eald0l - Bank_Pointer <Mermory Rendering 1>

16-Bit Hex - Tl

BoeeaA 1488

BxBaasl4nn
gwBeasldald
BxBeasl4lE
BxBeasl42s
BxBaasld32
BxBaasla3c
BxBeaslddn

s me——

| Bank_Pointer Bl

Style ~

MEASA SASA SASA FFFF FFFF FFFF FFFF ASAS ASAS
ASAS ASAS FFFF FFFF FFFF FFFF BBGa @2l 8aa2 agas
2Ea4 Beas obbo BT BEES G2E0 BEAA BRBE BeaC aral
BEEE Bear aele @211 @al2 @8l Beld4 aBlsS Bals BALT
2818 88l eelA @816 @alC ealD BelE e0lF Baz2d eB2l
BE22 BEZ3 BO24 BO25 BE26 BB2T BOZE BO29 BAZA BO2E
BE2C BaZD BO2E BOZF BE36 BB31 BE32 B33 BA34 BE35
BE360 BE37 BO3E 00359 PE3A @B3E BE3C B03D BA3E BB3F

i e e e e e = e

Figure 5-5. Write to new EEPROM Unit

SPRADESA — NOVEMBER 2023 — REVISED APRIL 2024

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

EEPROM Emulation for Generation 3 C2000 Real-Time Controllers 27

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

Ping-Pong Emulation

Tl Information - Selective Disclosure

13 TEXAS
INSTRUMENTS

www.ti.com

Data
Data:laldld <Mermory Rendering 1>

16-Bit Hex - Tl Style

Data
Data:(ald0l «Memory Rendering 1= 3

16-Bit Hex - Tl Style

o

BxBa88A0106
axaaasadan
axaaasadlq
axaeasadlE
axeeasad2s
Exaeasads2
gxiaeasad3C
gxaeataddn
gwBeasedse

Data

| 0xa0400

FFFF [3333

FEFF FFFF
FEFF FFFF
FEFF FFFF
FEFF FFFF
FFFF FFFF
FFFF FFFF
FFFF FFFF
FFFF FFFF

S

FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF

FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF

FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF

FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF

FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF

FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF

Figure 5-6. Erase full EEPROM Unit
12. This process can be repeated between the two EEPROM units as necessary.

FFFF FFFF
FFFF FFFF
FFFF FFFF
FFFF FFFF
FFFF FFFF
FFFF FFFF
FFFF FFFF
FFFF FFFF
FFFF FFFF

w | Bank_Pointer

Data:lal400 - Bank_Pointer <Mernory Rendering 1>
16-Bit Hex - Tl Style

BxBeafnLa8 5:5.5;5. SA5A 5A5A FFFF FFFF FFFF FFFF ASAS ASAS
FFFF FFFF @208 eaal pea2 aaas
gREsE Boes epps 2EaE eeeC eaaD
BEl2 eals eeld 8als eels eal?y
G81C 881D e8lE @alF @28 821
BB26 BE27 BB2E BB20 BE2A BB2E
BB38 BE31 eB32 BA33 B34 8835
@834 @836 @83C @830 @BSE 8a3F

FEEE FERE FEEE RS PR FEEE

aaaasaLan
axgaaspdld
EncaatadlE
Gwiaaasad2s
GwiBesads2
@xidaasadsc
axaaaspddn

Pl T AT A T

ot

Bee8aAlipe

Ecaaisldan
Gwideaslald
GwaeesldlE
Bxwaasldzs
Gwaaslasz
@waaslasc
@weaaslddo
Gxwgeasldse

ASAS ASAS FFFF FFFF
g4 2oas epgc veav
BEEE eeF aBle eall
ge18 ealo aalAh @E1B
BE22 BE23 ap24 BE25
BB2C Ba2D @B2E BB2F
BB36 @a37 @B38 8839

FEEE FEEE FEEE FEEE

Figure 5-7. Write to original EEPROM unit

b

| 0xa1400

FrrrF s

FFFF FFFF
FFFF FFFF
FFFF FFFF
FFFF FFFF
FFFF FFFF
FFFF FFFF
FFFF FFFF
FFFF FFFF

S

FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF

FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF

FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF

FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF

FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF

FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF

Figure 5-8. Erase full EEPROM Unit

FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF

FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF

i

gl

Bl

The preceding steps were used to test the Page Mode configuration. The 64-Bit Mode configuration

can also be tested with the same procedure. To enable 64-Bit Mode, change the definition in the
EEPROM_PingPong_Config.h file by un-commenting the _64_BIT_MODE directive and commenting out the
PAGE_MODE directive.

28

EEPROM Emulation for Generation 3 C2000 Real-Time Controllers

SPRADESA — NOVEMBER 2023 — REVISED APRIL 2024

Copyright © 2024 Texas Instruments Incorporated

Submit Document Feedback

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

13 TEXAS TI Information - Selective Disclosure
INSTRUMENTS
www.ti.com Single-Unit Emulation

6 Single-Unit Emulation

Single-Unit Emulation is similar to the Ping Pong Emulation, but only uses one set of Flash Sectors. Thus, the
Ping Pong method cannot be used and when a full EEPROM is detected. The implemented behavior is shown
in this section. Many of the functions remain the same between the two modes, and the primary differences are
seen in the Erase behavior.

6.1 User-Configuration

The implementation detailed in this document allows you to configure several variables for EEPROM Emulation.
These variables are mainly found within EEPROM_Config.h, but one is contained in F28P65x_EEPROM.c.

6.1.1 EEPROM_Config.h

This header file contains definitions that allow the user to change various aspects of EEPROM configuration.
These aspects include:

» Define which device variant is being used. This allows EEPROM emulation in Flash Banks not common to all
devices

// Un-comment appropriate definition if one of the following variants is being used
#define F28P65xDKx 1

//#define F28P65xSKx 1

//#define F28P65xSHx 1

Choose between Page Mode and 64-Bit Mode

//#define _64_BIT_MODE 1
#define PAGE_MODE 1

* Choose which Flash Bank to use for emulation. The Flash APl and program are stored/run from Flash
Bank 0 by default, so it cannot be used for EEPROM Emulation. In general, the Flash APl and program
should be stored/run from a different bank than the ones used for EEPROM emulation.

‘#define FLASH_BANK_SELECT FlashBanklStartAddress ‘

» Define the Flash Sector size (unit is 16-bit words). This will vary based on the device being used, reference
the appropriate data sheet for details.

‘#def‘ine FLASH_SECTOR_SIZE F28P65X_FLASH_SECTOR_SIZE ‘

» Define how many Flash sectors are in a Flash Bank. This will vary based on the device being used, reference
the appropriate data sheet for details.

‘#def'i ne NUM_FLASH_SECTORS F28P65x_NUM_FLASH_SECTORS ‘

* Choose how many EEPROM Banks to emulate.

‘#deﬁ' ne NUM_EEPROM_BANKS 4 ‘

* Choose how many EEPROM Pages within each EEPROM Bank

‘#deﬁ'ne NUM_EEPROM_PAGES 3 ‘

* Choose the size of data contained within each EEPROM Page (unit is 16-bit words). Although any size can
be specified, the size will be adjusted to the closest multiple of four that is greater than or equal to the size
specified. For example, a specified size of 6 16-bit words per page will be programmed as 8 16-bit words
per page, with the last two being treated as OxFFFF. This is to comply with Flash requirements (8-bit ECC is
programmed for every 64-bit aligned Flash memory address).

#define DATA_SIZE 64

SPRADESA — NOVEMBER 2023 — REVISED APRIL 2024 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers 29
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

Tl Information - Selective Disclosure 13 TEXAS
INSTRUMENTS
Single-Unit Emulation www.ti.com

6.1.2 F28P65x_EEPROM.c

Choose which Flash Sectors to use for EEPROM emulation. The sectors chosen (if multiple) should be
contiguous and in order from least to greatest. Insert only the First and Last sectors to be used for EEPROM. For
example, to use sectors 1-10, insert {1,10}. To only use sector 1, insert {1,1}. A valid configuration will have the
following properties.

* Imply the same amount of sectors for emulation as specified in EEPROM_Config.h
* Only include a sector(s) that exist on the device
* Not create an overlap in the Write/Erase Protection Masks between the two units
— The F28P65x Flash API requires Write/Erase Protection Masks to be configured before programming
Flash Memory. Details about the proper configuration of these masks can be found in the F28P65x Flash
API Reference Guide.

More details about invalid or dangerous configurations can be found in Section 6.2.1.

uintlé FIRST_AND_LAST_SECTOR[2][2] = {1,1};

6.2 EEPROM Functions

To implement this functionality, 11 functions are required to configure, program, read, and erase in Page
programming. Two additional functions are needed for 64-bit programming. All functions are included in the
F28P65x_EEPROM.c or F28P65x_EEPROM.c file.

+ EEPROM_Config_Check()

» Configure_Protection_Masks(Uint16* Sector_Numbers, Uint16 Num_EEPROM_Sectors)
+ EEPROM_Write(Uint16* Write_Buffer)

+ EEPROM_Read(Uint16* Read_Buffer)

+ EEPROM_Erase()

+ EEPROM_GetValidBank(Uint16 Read_Flag)

+ EEPROM_UpdateBankStatus()

+ EEPROM_UpdatePageStatus()

+ EEPROM_UpdatePageData(Uint16* Write_Buffer)

+ EEPROM_Get_64 Bit Data_Address()

+ EEPROM_Program_64_Bits(Uint16 Num_Words)

+ EEPROM_CheckStatus(Fapi_StatusType* oReturnCheck);
* ClearFSMStatus()

The description of each of these functions is discussed in detail in the subsequent sections.
6.2.1 EEPROM_Config_Check

The EEPROM_Config_Check() function provides general error-checking and configures Write/Erase protection
masks required by the Flash API. This function should be called before programming or reading from the
emulated EEPROM Unit(s).

30 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers SPRADES8A — NOVEMBER 2023 — REVISED APRIL 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

13 TEXAS TI Information - Selective Disclosure

INSTRUMENTS
www.ti.com Single-Unit Emulation

First, the function verifies that the Flash Bank selected for EEPROM Emulation are valid. A valid Flash Bank
selection must not select Bank 0 for emulation and must be supported by a specific device variant. For example,
only specific F28p65x variants have Flash Banks 2-4. To verify this information, see the device-specific data-
sheet.

if (FLASH_BANK_SELECT == FlashBankOStartAddress)

return OXFFFF;

if (FLASH_BANK_SELECT == FlashBank2StartAddress)

{

#if !defined(F28P65xDKx) && !defined(F28P65xSKkx) && !defined(F28P65xSHX)
return OXFFFF;

#endif

} else if (FLASH_BANK_SELECT == FlashBank3startAddress) // If using Bank 3

{
#if !defined(F28P65xDKx) && !defined(F28P65xSKx)
return OXFFFF;
#endif
} else if (FLASH_BANK_SELECT == FlashBank4StartAddress)

{
#if !defined(F28P65xDKx) && !defined(F28P65xSKx) && !defined(F28P65XxSHX)
return OXFFFF;

#endif
}

Second, the validity of Flash Sectors selected for emulation is examined. This function checks for:

« More Flash Sectors selected for emulation than available within the Flash Bank

NUM_EEPROM_SECTORS = FIRST_AND_LAST_SECTOR[1] - FIRST_AND_LAST_SECTOR[0] + 1;
if (NUM_EEPROM_SECTORS > NUM_FLASH_SECTORS || NUM_EEPROM_SECTORS == 0)

return OXEEEE;

Invalid combinations for First and Last Sectors selected for emulation

if (NUM_EEPROM_SECTORS > 1)
if (FIRST_AND_LAST_SECTOR[1] <= FIRST_AND_LAST_SECTOR[0])
return OXEEEE;

:
// Check if SECTOR_NUMBERS contains invalid sector
if (FIRST_AND_LAST_SECTOR[0] > NUM_FLASH_SECTORS - 1)

return OXEEEE;
}
if (FIRST_AND_LAST_SECTOR[1] > NUM_FLASH_SECTORS - 1 || FIRST_AND_LAST_SECTOR[1] < 1)
return OXEEEE;
} else // If only one sector, validate it is input properly
// Vverify that the only sector 1is valid

if (FIRST_AND_LAST_SECTOR[0] > NUM_FLASH_SECTORS - 1) {
return OXEEEE;

SPRADESA — NOVEMBER 2023 — REVISED APRIL 2024 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers 31

Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

Tl Information - Selective Disclosure 13 TEXAS
INSTRUMENTS
Single-Unit Emulation www.ti.com

If using Page Mode, the following will also be checked for
» Check if total size of EEPROM Banks + Pages will fit in the Flash Sectors selected

// Calculate size of each EEPROM Bank (16 bit words)
Bank_Size = 8 + ((EEPROM_PAGE_DATA_SIZE + 8) * NUM_EEPROM_PAGES);

// Calculate amount of available space (16 bit words)
uint32 Available_words = NUM_EEPROM_SECTORS * FLASH_SECTOR_SIZE;

// Check if size of EEPROM Banks and Pages will fit in EEPROM sectors
if (Bank_Size * NUM_EEPROM_BANKS > Available_words)

{
return OxCCCC;

It will also warn you with the appropriate code if one of the following conditions is detected:

» Space for one or more EEPROM Banks is left in Flash after configuring EEPROM Bank and Page size

// Notify for extra space (more than one bank leftover)
if (Available_words - (Bank_Size * NUM_EEPROM_BANKS) >= Bank_Size)

warning_Flags += 1;

» If each page consists of less than 5 16-bit words (this wastes space as the 64-Bit Mode could be used
without the need for Status Codes)

if (EEPROM_PAGE_DATA_SIZE < 5)
{

warning_Flags += 2;

» If using sectors in the 32-127 range (for F28P65x devices) and not using all eight sectors allocated to a single
bit in the Write Protection Mask, a warning is issued. Any unused sectors within the eight designed by a
single bit cannot be properly be protected from erase. For more details on the Write Protection Masks, see
the TMS320F28P65x Flash API Version 3.02.00.00 Reference Guide.

if (FIRST_AND_LAST_SECTOR[1] > 31) {
if (FIRST_AND_LAST_SECTOR[0] > 31)
if (NUM_EEPROM_SECTORS < 8) {
warning_Flags += 4;
} else {
if ((FIRST_AND_LAST_SECTOR[O] % 8) != 0 || ((FIRST_AND_LAST_SECTOR[1] + 1) % 8 != 0))
{

warning_Flags += 4;

} else

if ((FIRST_AND_LAST_SECTOR[1] + 1) % 8 != 0)
{

warning_Flags += 4;

32 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers SPRADES8A — NOVEMBER 2023 — REVISED APRIL 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://dev.ti.com/tirex/explore/node?node=A__AD.W0E1mY2ck8q7NS8q5Hw__c2000ware_software_package__gYkahfz__LATEST
https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

13 TEXAS TI Information - Selective Disclosure
INSTRUMENTS
www.ti.com Single-Unit Emulation

Finally, Write/Erase Protection masks are configured for the Active EEPROM Unit. This function also prepares
Flash for Emulation by erasing the Sectors to be used for programming.

uint64 WE_Protection_AB_Mask = Configure_Protection_Masks(FIRST_AND_LAST_SECTOR,
NUM_EEPROM_SECTORS) ;

WE_Protection_A_Mask
WE_Protection_B_Mask

OXFFFFFFFF A (uint32)WE_Protection_AB_Mask;
0x00000FFF A WE_Protection_AB_Mask >> 32;

EEPROM_Erase();

6.2.2 Configure_Protection_Masks

The Configure_Protection_Masks provides functionality to disable Write/Erase protection for any sector
selected for EEPROM Emulation. This is done by calculating the appropriate Masks to pass to the
Fapi_setupBankSectorEnable function. It requires two parameters, a pointer to the selected Flash Sector
numbers, and the number of Flash Sectors to be emulated. For more details on the implementation of the
Fapi_setupBankSectorEnable function, see the TMS320F28P65x Flash API Version 3.02.00.00 Reference
Guide.

The return value of this function is used to disable Write/Erase protection in Flash Sectors selected for EEPROM
Emulation.

// Initialize a variable to store the bits indicating which sectors
// need to have write/erase protection disabled.

// The first Tower 32 bits will represent CMDWEPROTA and the upper 32
// bits will represent CMDWEPROTB.

uint64 Protection_Mask_Sectors = 0;

// If we have more than one Flash Sector
if (Num_EEPROM_Sectors > 1)

uint64 Unshifted_Sectors;
uintl6 shift_Amount;

// If all sectors use Mask A
if (Sector_Numbers[0] < 32 && Sector_Numbers[1l] < 32)
{

// Configure Mask A

Unshifted_Sectors = (uint64) 1 << Num_EEPROM_Sectors;
Unshifted_Sectors -= 1;

Protection_Mask_Sectors |= (Unshifted_Sectors << Sector_Numbers[0]);

}// 1f all sectors use Mask B
else if (sector_Numbers[0] > 31 && Sector_Numbers[1l] > 31)
{

// Configure Mask B

shift_Amount = ((Sector_Numbers[1l] - 32)/8) - ((Sector_Numbers[0] - 32)/8) + 1;
Unshifted_Sectors = (uint64) 1 << Shift_Amount;

Unshifted_sectors -= 1;

Protection_Mask_Sectors |= (Unshifted_Sectors << ((Sector_Numbers[0] - 32)/8));
Protection_Mask_Sectors = Protection_Mask_Sectors << 32;

} else // 1f both Masks A and B need to be configured
{

// Configure Mask B

shift_Amount = ((Sector_Numbers[1l] - 32)/8) + 1;
Unshifted_sectors = (uint64) 1 << Shift_Amount;
Unshifted_Sectors -= 1;

Protection_Mask_Sectors |= Unshifted_Sectors;
Protection_Mask_Sectors = Protection_Mask_Sectors << 32;

// Configure Mask A

Unshifted_sectors = (uint64) 1 << ((32 - Sector_Numbers[0]) + 1);
Unshifted_Sectors -= 1;

Protection_Mask_Sectors |= (Unshifted_Sectors << Sector_Numbers[0]);

SPRADESA — NOVEMBER 2023 — REVISED APRIL 2024 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers 33
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://dev.ti.com/tirex/explore/node?node=A__AD.W0E1mY2ck8q7NS8q5Hw__c2000ware_software_package__gYkahfz__LATEST
https://dev.ti.com/tirex/explore/node?node=A__AD.W0E1mY2ck8q7NS8q5Hw__c2000ware_software_package__gYkahfz__LATEST
https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

Tl Information - Selective Disclosure 13 TEXAS

INSTRUMENTS
Single-Unit Emulation www.ti.com

}

} else { // 1If only using 1 Flash Sector

if(Sector_Numbers[0] < 32)
{

Protection_Mask_Sectors |= ((uint64) 1 << Sector_Numbers[0]);

} else

{
Protection_Mask_Sectors |= ((uint64) 1 << ((Sector_Numbers[0] - 32)/8));
Protection_Mask_Sectors = Protection_Mask_Sectors << 32;

}

}

return Protection_Mask_Sectors;

For comparison, the F28003x EEPROM example project's Configure Protection_Masks functionality differs from
that of the F28P65x EEPROM project example with the amount of sectors available for protection. Each bit in the
Write/Erase protection mask represents it's own sector.

// Initialize a variable to store the bits indicating which sectors need to have write/erase
// protection disabled.
uintlé Protection_Mask_Sectors = 0;
uintl6 unshifted_Sectors;

// If we have more than one Flash Sector
if (Num_EEPROM_Sectors > 1)
{

// Configure mask
Unshifted_Sectors = (uintl6) 1 << Num_EEPROM_Sectors;
unshifted_Sectors -= 1;
Protection_Mask_Sectors |= (Unshifted_Sectors << Sector_Numbers[0]);
} else { // 1If only using 1 Flash Sector
if(Sector_Numbers[0] < 16)
Unshifted_sectors = (uintl6) 1 << Sector_Numbers[0];
Protection_Mask_Sectors |= Unshifted_Sectors;

}

return Protection_Mask_Sectors;

6.2.3 EEPROM_Write

The EEPROM_Write() function provides the functionality for programming the data to Flash. It leverages the
Flash API directly and makes several function calls within to prepare for data programming. The functions called
are listed below:

+ EEPROM_GetValidBank()

« EEPROM_UpdatePageStatus()
« EEPROM_UpdateBankStatus()
+ EEPROM_UpdatePageData()

Each of the above functions are described in detail in their respective sections. To begin, the current EEPROM
bank and page are found. After the current EEPROM bank and page are found, the page status of the previous
page is updated and the EEPROM bank status is updated if a new EEPROM bank is being used. Next, the
actual programming occurs during the EEPROM page data update.

EEPROM_GetvalidBank(); // Find Current Bank and Current Page

EEPROM_UpdatePagestatus(); // Update Page Status of previous page
EEPROM_UpdateBanksStatus(); // Update Bank Status of current and previous bank
EEPROM_UpdatePageData(); // Update Page Data of current page

34 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers SPRADES8A — NOVEMBER 2023 — REVISED APRIL 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

13 TEXAS TI Information - Selective Disclosure
INSTRUMENTS
www.ti.com Single-Unit Emulation

6.2.4 EEPROM_Read

The EEPROM_Read() function provides functionality for reading the most recently written data and storing that
data into a temporary buffer. This function can be used for debug purposes or to read stored data at runtime.
The behavior differs in Page Mode vs 64-bit mode. In general, the most recently written data (page or 64-bits)
are stored in the Read_Buffer.

Page Mode: First, the function verifies that data has been written to EEPROM by checking the Empty EEPROM
flag. If attempting to read data before any has been written, the values read into the buffer are invalid and an
error is thrown. If data has been written, the current EEPROM Bank and Page are found and then the Read
Buffer is filled.

uintl6 i;

// Check for empty EEPROM
if (Empty_EEPROM)
{

Sample_Error(); // Attempting to read data that hasn't been written
} else
{

// Find Current Bank and Current Page

EEPROM_GetVvalidBank(1);

// Increment page pointer to point at first data word
Page_Pointer += 8;

// Transfer contents of Current Page to Read Buffer
for(i=0;1i<DATA_SIZE;i++)

Read_Buffer[i] = *(Page_Pointer++);

by
}

64-Bit Mode: First, the function verifies that data has been written to EEPROM by checking the Empty EEPROM
flag. If attempting to read data before any has been written, the values read into the buffer are invalid and an
error is thrown. If data has been written,The pointer is moved back by four addresses (64-bits total) and the
Read Buffer is filled with the data.

uintl6é i;

// Check for empty EEPROM
if (Empty_EEPROM)
{

Sample_Error(); // Attempting to read data that hasn't been written
} else
{

// Move the bank pointer backwards to read data

Bank_Pointer -= 4;

// Transfer contents of Current Page to Read Buffer
for(i=0;i<4;i++)

Read_Buffer[i] = *(Bank_Pointer++);

}

6.2.5 EEPROM_Erase

The EEPROM_Erase() function provides functionality for erasing the sector(s) used for emulation. At least one
entire sector must be erased as partial erase is not supported. Before erasing, you must ensure that stored data
is no longer needed/valid. In the Single Unit implementation, this function is only called when all EEPROM Banks
and Pages are full.

SPRADESA — NOVEMBER 2023 — REVISED APRIL 2024 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers 35
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

Tl Information - Selective Disclosure 13 TEXAS
INSTRUMENTS

Single-Unit Emulation www.ti.com

The function begins by configuring the Write/Erase Protection masks for the EEPROM unit, and then calls the
Fapi_issueBankEraseCommand function. Finally, it waits for completion and checks for any errors.

Fapi_StatusType oReturncCheck;

// Clears status of previous Flash operation

ClearFsMstatus();

Fapi_setupBankSectorEnable (FLASH_WRAPPER_PROGRAM_BASE+FLASH_O_CMDWEPROTA, WE_Protection_A_Mask);

Fapi_setupBankSectorEnable (FLASH_WRAPPER_PROGRAM_BASE+FLASH_O_CMDWEPROTB,WE_Protection_B_Mask);

// Erase the EEPROM Bank
oReturnCheck = Fapi_issueBankEraseCommand((uint32*)FLASH_BANK_SELECT);

// wait for completion and check for any programming errors
EEPROM_CheckStatus (&oReturncCheck) ;

In the Single-Unit implementation, the EEPROM_Erase function leverages the Flash API to clear the Flash
Bank. It no longer has any need for the Erase_Bank function from the Ping Pong Implementation and the two
have been combined in EEPROM_Erase. Erase_Bank is no longer needed because it was created to optimize
the erasing of all Flash Sectors designated for EEPROM Emulation when there were two EEPROM units.

For comparison, the F28003x example project's EEPROM_Erase function issues

the Flash API erase command and then waits for completion, checking for any programming errors that occur.
Write/Erase protection masks are provided outside of the scope of the function.

Fapi_StatusType oReturncCheck;

// Erase the EEPROM Bank
oReturnCheck = Fapi_issueBankEraseCommand((uint32*) FLASH_BANK_SELECT, WE_Protection_Mask);

// wait for completion and check for any programming errors
EEPROM_CheckStatus (&oReturncCheck) ;

36 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers SPRADESA — NOVEMBER 2023 — REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

13 TEXAS TI Information - Selective Disclosure
INSTRUMENTS
www.ti.com Single-Unit Emulation

6.2.6 EEPROM_GetValidBank

The EEPROM_GetValidBank() function provides functionality for finding the current EEPROM bank and page.
This function is called by both the EEPROM_Write() and EEPROM_Read() functions. GetValidBank Flow shows
the overall flow required to search for current EEPROM bank and page.

[Read Bank Status J:

Empty Bank? Current Bank? Used Bank?

Update Bank Pointer

[Read Page Status }

Blank/Current
Page?

Used Page?

Update Page Pointer

Figure 6-1. GetValidBank Flow

When entering this function, the EEPROM bank and page pointers are set to the beginning of the first sector
specified in FIRST_AND_LAST_SECTOR:

RESET_BANK_POINTER;
RESET_PAGE_POINTER;

The addresses for these pointers are defined the EEPROM_Config.h file for the specific device and EEPROM
configuration being used.

Next, the current EEPROM bank is found. As GetValidBank Flow shows, there are three different states that a
EEPROM bank can have: Empty, Current, and Used.

An Empty EEPROM Bank is signified by the 128 status bits all being 1s
(OXFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF). A Current EEPROM Bank is signified by the first 64 bits being
set to OX5A5A5A5A5A5A5A5A, with the remaining 64 bits set to 1. A Used EEPROM Bank is signified by all 128
bits being set to 0OX5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A. These values can be changed if desired.

SPRADESA — NOVEMBER 2023 — REVISED APRIL 2024 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers 37
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

Tl Information - Selective Disclosure 13 TEXAS

INSTRUMENTS
Single-Unit Emulation www.ti.com

An Empty EEPROM Bank is tested first. If this status is encountered, the EEPROM bank has not been used and
no further searching is needed.

if(Bank_status[0] == EMPTY_BANK) // Check for Unused Bank

{
Bank_Counter = 1i; // Set Bank Counter to number of current page
return; // If Bank 1is Unused, return as EEPROM is empty

If an Empty EEPROM Bank is not encountered, Current EEPROM Bank is tested next. If the bank is the current
EEPROM bank, the EEPROM bank counter is updated and the page pointer is set to the first page of the
EEPROM bank to enable testing for the current page. The loop is then exited as no further EEPROM bank
searching is needed.

if(Bank_Status[0] == CURRENT_BANK && Bank_Status[4] != CURRENT_BANK) // Check for Current Bank
{

Bank_Counter = 1i; // Set Bank Counter to number of current bank
// Set Page Pointer to first page in current bank

Page_Pointer = Bank_Pointer + 8;

break; // Break from Toop as current bank has been found

}

Lastly, Used EEPROM Bank is tested. In this case the EEPROM bank has been used and the EEPROM bank
pointer is updated to the next EEPROM bank to test its status.

// Check for Used Bank
if(Bank_status[0] == CURRENT_BANK && Bank_Status[4] == CURRENT_BANK)
// If Bank has been used, set pointer to next bank

Bank_Pointer += Bank_Size;

After the current EEPROM bank has been found, the current page needs to be found. there are three different
states that a page can have: Empty, Current, and Used.

An Empty Page is signified by the 128 status bits all being 1s (OxFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF).
A Current EEPROM Bank is signified by the first 64 bits being set to 0Ox5F5F5F5F5F5F5F5F, with

the remaining 64 bits set to 1. A Used EEPROM Bank is signified by all 128 bits being set to
Ox5F5F5F5F5F5F5F5F5F5F5F5F5F5F5F5F. These values can be changed if desired.

The Blank and Current Pages are tested first. If either of these are the current state of the page, the correct page
is found and the loop is exited as further searching is not needed.

// Check for Blank Page or Current Page
if(Page_status[0] == BLANK_PAGE)
{

Page_Counter = i; // Set Page Counter to number of current page
break; // Break from loop as current page has been found

}

if (Page_status[0] == CURRENT_PAGE && Page_Status[4] != CURRENT_PAGE)

{
Page_Counter = i + 1;//Increment Page Counter as one has been used
break; // Break from loop as current page has been found

}

If the page status is neither of these, the only other possibility is a Used Page. In this case, the page pointer is
updated to the next page to test its status.

// Check for Used Page
if(Page_Status[0] == CURRENT_PAGE && Page_Status[4] == CURRENT_PAGE)
{

// If page has been used, set pointer to next page
Page_PO'i nter += EEPROM_PAGE_DATA_SIZE + 8;

38 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers SPRADES8A — NOVEMBER 2023 — REVISED APRIL 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

13 TEXAS TI Information - Selective Disclosure
INSTRUMENTS
www.ti.com Single-Unit Emulation

At this point, the current EEPROM bank and page is found and the calling function can continue. As a final step,
this function will check if all EEPROM banks and pages have been used. In this case, the sector needs to be
erased.

if (!ReadFlag)

if (Bank_Counter == NUM_EEPROM_BANKS - 1 &&
Page_Counter == NUM_EEPROM_PAGES)
{

Erase_Inactive_Unit = 1;
EEPROM_UpdatePageStatus();
EEPROM_UpdateBankStatus();
Erase_Blank_cCheck = 1;
EEPROM_Erase();
RESET_BANK_POINTER;
RESET_PAGE_POINTER;

}

This check is performed by testing the EEPROM bank and page counters. The amount of EEPROM banks and
pages indicating a full EEPROM depends on the application. These counters are set when testing for the current
EEPROM banks and pages as shown in the code snippets above. However, this check is not made when the
Read_Flag is set. This is to prevent premature erasing of the inactive EEPROM unit when reading from a full
EEPROM unit.

As show above, if the memory is full, the EEPROM_Erase() functions is called and the EEPROM bank and page
pointers are reset to the first EEPROM bank and page.

6.2.7 EEPROM_Get_64_Bit_Data_Address

The EEPROM_Get_64 Bit_Data_Address is largely unchanged in the Single-Unit implementation, but the
behavior upon detecting a full EEPROM unit is different.

if(Bank_Pointer > End_Address-3) // Test if EEPROM 1is full
{

Erase_Inactive_Unit = 1;
Erase_Blank_check = 1;
EEPROM_Erase();
Erase_Inactive_Unit = 0;
RESET_BANK_POINTER;

}

As shown above, if the EEPROM unit is full, it is simply erased, performs a blank check and the pointer is reset
to the beginning of the unit.

6.2.8 EEPROM_UpdateBankStatus

The EEPROM_UpdateBankStatus() function provides functionality for updating the EEPROM bank status. This
function called from the EEPROM_Write() function. The EEPROM bank status is first read to determine how to
proceed.

Bank_Status[0]
Page_Status[0]

*(Bank_Pointer);
*(Page_Pointer);

If this status indicates the EEPROM bank is empty, the status is changed to Current and programmed.

// Set Bank Status to Current Bank
Bank_Status[0] CURRENT_BANK;
Bank_status[1] = CURRENT_BANK;
Bank_Status[2] = CURRENT_BANK;
Bank_Status[3] CURRENT_BANK;

// Clears status of previous Flash operation
ClearFsMmstatus();

Fapi_setupBankSectorEnable (FLASH_WRAPPER_PROGRAM_BASE+FLASH_O_CMDWEPROTA, WE_Protection_A_Mask);
Fapi_setupBankSectorEnable(FLASH_WRAPPER_PROGRAM_BASE+FLASH_O_CMDWEPROTB. WE_Protection_B_Mask);

SPRADESA — NOVEMBER 2023 — REVISED APRIL 2024 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers 39
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

Tl Information - Selective Disclosure 13 TEXAS
INSTRUMENTS

Single-Unit Emulation www.ti.com

// Program Bank Status to current bank
oReturnCheck = Fapi_issueProgrammingCommand((uint32*) Bank_Pointer,
Bank_Status, 4, 0, O,
Fapi_AutoEccGeneration);

// wait for completion and check for any programming errors
EEPROM_Checkstatus (&oReturncheck) ;

// Set Page Pointer to first page of current bank
Page_Counter = 0;
Page_Pointer Bank_Pointer + 8;

If the status is not empty, the next check is for a Current EEPROM Bank with all pages used in the EEPROM
bank (full EEPROM bank). In this case, the current EEPROM banks status will be updated to show the EEPROM
bank is Full and the next EEPROM banks status will be updated to Current to allow programming of the next
EEPROM bank. As a last step, the page pointer is updated to the first page of the new EEPROM bank.

// Set Bank Status to Used Bank
Bank_Status[0] = CURRENT_BANK;
Bank_Status[1] CURRENT_BANK;
Bank_Status[2] CURRENT_BANK;
Bank_Status[3] = CURRENT_BANK;

// Clears status of previous Flash operation
ClearFsmstatus(Q);

Fapi_setupBankSectorEnable (FLASH_WRAPPER_PROGRAM_BASE+FLASH_O_CMDWEPROTA, WE_Protection_A_Mask);
Fapi_setupBankSectoreEnable (FLASH_WRAPPER_PROGRAM_BASE+FLASH_O_CMDWEPROTB, WE_Protection_B_Mask);

// Program Bank Status to full bank
oReturncCheck = Fapi_issueProgrammingCommand((uint32*) Bank_Pointer + 2,
Bank_Status, 4, 0, O,
Fapi_AutoEccGeneration);

// wait for completion and check for any programming errors
EEPROM_CheckStatus (&oReturnCheck) ;

// Increment Bank Pointer to next bank
Bank_Pointer += Bank_Size;

// Set Bank Status to Current Bank
Bank_Status[0] CURRENT_BANK;
Bank_Status[1] CURRENT_BANK;
Bank_Status[2] CURRENT_BANK;
Bank_Status[3] CURRENT_BANK;

// Clears status of previous Flash operation

ClearFsMmstatus();

Fapi_setupBankSectoreEnable (FLASH_WRAPPER_PROGRAM_BASE+FLASH_O_CMDWEPROTA, WE_Protection_A_Mask);
Fapi_setupBankSectoreEnable (FLASH_WRAPPER_PROGRAM_BASE+FLASH_O_CMDWEPROTB, WE_Protection_B_Mask);

// Program Bank Status to current bank
oReturnCheck = Fapi_issueProgrammingCommand((uint32*) Bank_Pointer,
Bank_Status, 4, 0, O,
Fapi_AutoEccGeneration);

// wait for completion and check for any programming errors
EEPROM_Checkstatus (&oReturncheck) ;

// Set Page Pointer to first page of current bank
Page_Counter = 0;
Page_Pointer = Bank_Pointer + 8;

6.2.9 EEPROM_UpdatePageStatus

The EEPROM_UpdatePageStatus() function provides functionality for updating the previous page’s status. This
function is called from the EEPROM_Write() function. The page status is first read to determine how to proceed.

Bank_Status[0] = *(Bank_Pointer); // Read Bank Status from Bank Pointer
Page_Status[0] = *(Page_Pointer); // Read Page Status from Page Pointer
40 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers SPRADESA — NOVEMBER 2023 — REVISED APRIL 2024

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

13 TEXAS TI Information - Selective Disclosure

INSTRUMENTS
www.ti.com Single-Unit Emulation

If this status indicates that the page is blank, the function is exited as this status is updated in the
EEPROM_Write() function. Otherwise, the page status is updated to show it is Full and the page pointer is
incremented to prepare to program the next page:

// Check if Page Status is blank. If so return to EEPROM_WRITE.
if(Page_status[0] == BLANK_PAGE)
return;

// Program previous page's status to Used Page
else

{

// Set Page Status to Used Page
Page_Status[0] CURRENT_PAGE;
Page_Status[1] CURRENT_PAGE;
Page_Status[2] CURRENT_PAGE;
Page_Status[3] CURRENT_PAGE;

// Clears status of previous Flash operation
ClearFsMstatus();

Fapi_setupBankSectorEnable (FLASH_WRAPPER_PROGRAM_BASE+FLASH_O_CMDWEPROTA, WE_Protection_A_Mask);
Fapi_setupBankSectorEnable (FLASH_WRAPPER_PROGRAM_BASE+FLASH_O_CMDWEPROTB, WE_Protection_B_Mask);

// Program Bank Status to current bank
oReturnCheck = Fapi_issueProgrammingCommand((uint32*) Page_Pointer+2,
Page_Status, 4, 0, O,
Fapi_AutoEccGeneration);

// wait for completion and check for any programming errors
EEPROM_CheckStatus (&oReturnCheck);

// Increment Page Pointer to next page
Page_Poi nter += EEPROM_PAGE_DATA_SIZE + 8;

6.2.10 EEPROM_UpdatePageData

The EEPROM_UpdatePageData() function provides functionality for updating the EEPROM page data. This
function is called from the EEPROM_Write() function.

The following steps need to be taken to achieve this:

1. Clear the Flash State Machine (FSM) Status.
2. Configure program/erase protection for Flash sectors.
a. Sectors not used in EEPROM Emulation will have protection enabled.
b. Sectors used in EEPROM Emulation will have protection disabled.
3. Calculate the offset from the Page Pointer to write the data.
a. This is required because only 64-bits are written at a time. Thus, if the data size is greater than 64-bits,
multiple calls to the Flash API are necessary to write an entire Page.
4. Wait for programming completion and check for any programming errors.

// Clears status of previous Flash operation
ClearFsMmstatus();

Fapi_setupBan ksectoreEnable (FLASH_WRAPPER_PROGRAM_BASE+FLASH_O_CMDWEPROTA, WE_Protection_A_Mask);
Fapi_setupBankSectorEnable (FLASH_WRAPPER_PROGRAM_BASE+FLASH_O_CMDWEPROTB, WE_Protection_B_Mask);

// Vvariable for page offset

//(first write position has offset of 2 (64 bits),
// second has offset of 4 (128 bits), etc.)

uint32 Page_oOffset = 4 + (2 * i);

// Program data Tocated in wWrite_Buffer to current page
oReturnCheck = Fapi_issueProgrammingCommand((uint32*) Page_Pointer + Page_Offset,write_Buffer +
(i*4), 4, 0, 0,Fapi_AutoEccGeneration);

// Wait for completion and check for any programming errors
EEPROM_CheckStatus (&oReturnCheck) ;

SPRADESA — NOVEMBER 2023 — REVISED APRIL 2024 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers 41
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

Tl Information - Selective Disclosure 13 TEXAS

INSTRUMENTS
Single-Unit Emulation www.ti.com

The following parameters are passed to the Flash API for programming.

» Page Pointer (programming address)
» Buffer containing data to be written

» Length of data to be programmed

* Programming mode

The fourth and fifth parameters are zero when using Fapi_AutoEccGeneration mode. For more details, see the
TMS320F28P65x Flash API Version 3.02.00.00 Reference Guide.

If the programming is successful, the page status of the current page is updated and the Empty EEPROM flag is
cleared. The code is shown below:

if(oReturnCheck == Fapi_Status_Success)

// Set Page Status to Current Page
Page_Status[0] CURRENT_PAGE;
Page_Status[1] CURRENT_PAGE;
Page_Status[2] CURRENT_PAGE;
Page_Status[3] CURRENT_PAGE;

Fapi_setupBankSectorEnable (FLASH_WRAPPER_PROGRAM_BASE+FLASH_O_CMDWEPROTA, WE_Protection_A_Mask);
Fapi_setupBankSectorEnable (FLASH_WRAPPER_PROGRAM_BASE+FLASH_O_CMDWEPROTB, WE_Protection_B_Mask);
oReturnCheck = Fapi_issueProgrammingCommand((uint32*)Page_Pointer,

Page_Status, 4, 0, O,

Fapi_AutoEccGeneration);
// wait for completion and check for any programming errors
EEPROM_CheckStatus (&oReturncCheck);
Empty_EEPROM = 0;
if (Erase_Inactive_unit)

// Erase the inactive (full) EEPROM Bank
Erase_Inactive_Unit = 0;

}

6.2.11 EEPROM_Get_64_Bit_Data_Address

The EEPROM_Get_64_ Bit Data_Address() provides functionality for determining if the EEPROM unit is full
and assigning the proper address if required. If a full EEPROM unit is detected, EEPROM is erased using the
EEPROM _Erase() function and the address is reset to the beginning of the first Flash Sector.

First, the end address of EEPROM is set according to the device being used and the configuration. The
END_OF_SECTOR directive is set in the EEPROM_Config.h file.

End_Address = (uintl6 *)END_OF_SECTOR; // Set End_Address for sector

Next, the EEPROM bank pointer is compared to the end address. If writing four 16-bit words beginning at the
current EEPROM bank pointer would go beyond the End Address, this indicates the sector is full. At this point,
the EEPROM unit is erased, performs a blank check and the EEPROM Bank Pointer is reset to the beginning of
the EEPROM Unit.

if(Bank_Pointer > End_Address-3) // Test if EEPROM 1is full
{

Erase_Inactive_uUnit = 1;

Erase_Blank_cCheck = 1;

EEPROM_Erase();

Erase_Inactive_uUnit = 0;

RESET_BANK_POINTER;

}

6.2.12 EEPROM_Program_64_Bits

The EEPROM_Program_64_Bits() function provides functionality for programming four 16-bit words to memory.
The first parameter, Num_Words, allows the user to specify how many valid words are written. The data words

42 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers SPRADES8A — NOVEMBER 2023 — REVISED APRIL 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://dev.ti.com/tirex/explore/node?node=A__AD.W0E1mY2ck8q7NS8q5Hw__c2000ware_software_package__gYkahfz__LATEST
https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

13 TEXAS TI Information - Selective Disclosure
INSTRUMENTS

www.ti.com Single-Unit Emulation

are assigned to the first 4 indexes of the Write_Buffer to be used by the Fapi_issueProgrammingCommand
function. If less than four words are specified in the function call, missing words are filled with OXFFFF. This is
done to comply with ECC requirements.

First, a full EEPROM unit is tested for.

EEPROM_Get_64_Bit_Data_Address();

Next, the Write Buffer is filled with 1s if less than 4 words are specified.

int 1i;
for(i = Num_words; i < 4; i++)

write_Buffer[i] = OXFFFF;

Next, data is programmed and the pointer is incremented to the next location to program data.

// Clears status of previous Flash operation
ClearFsMmstatus();

Fapi_setupBankSectorEnable (FLASH_WRAPPER_PROGRAM_BASE+FLASH_O_CMDWEPROTA, WE_Protection_A_Mask);
Fapi_setupBankSectorEnable(FLASH_WRAPPER_PROGRAM_BASE+FLASH_O_CMDWEPROTB, WE_Protection_B_Mask);

oReturnCheck = Fapi_issueProgrammingCommand((uint32*) Bank_Pointer,
write_Buffer, 4, 0, 0,
Fapi_AutoEccGeneration);

// wait for completion and check for any programming errors
EEPROM_Checkstatus (&oReturncheck);

Empty_EEPROM = 0;

// Increment to next location

Bank_Pointer += 4;

Note
This function cannot be used until RESET_BANK_POINTER has been executed to set the pointer.
In this example, it is called in EEPROM_Config_Check(). Executing before can produce unknown
results.

SPRADESA — NOVEMBER 2023 — REVISED APRIL 2024 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers 43
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

Tl Information - Selective Disclosure 13 TEXAS
INSTRUMENTS

Single-Unit Emulation www.ti.com

6.

2.13 EEPROM_CheckStatus

The EEPROM_CheckStatus function provides functionality to check the Flash API status and check the Flash
State Machine status after each program/erase to Flash. If any unexpected statuses are detected, the program
stops. Error handling is not implemented in this project.

Fapi_FlashStatusType oFlashStatus;
Fapi_FlashStatuswordType oFlashStatusword;

uint32_t sectorAddress = FLASH_BANK_SELECT + FIRST_AND_LAST_SECTOR[0] * FLASH_SECTOR_SIZE;
uintlé_t sectorSize = (FIRST_AND_LAST_SECTOR[1] - FIRST_AND_LAST_SECTOR[0] + 1) *
(FLASH_SECTOR_SIZE / 2);

// Wait until the Flash program operation is over
while(Fapi_checkFsmForReady() == Fapi_Status_FsmBusy);

if(*oReturncCheck != Fapi_Status_Success)

// Check Flash API documentation for possible errors
Sample_Error();

// Read FMSTAT register contents to know the status of FSM after

// program command to see if there are any program operation related

// errors

oFlashStatus = Fapi_getFsmStatus();

if (Erase_Inactive_Unit && Erase_Blank_check){
*oReturnCheck = Fapi_doBTankCheck((uint32_t *) sectorAddress,

sectorSize, &oFlashStatusword);

Erase_Blank_check = 0;

}
if(*oReturnCheck != Fapi_Status_Success || oFlashStatus != 3)

//Check FMSTAT and debug accordingly
Sample_Error();

44

EEPROM Emulation for Generation 3 C2000 Real-Time Controllers SPRADES8A — NOVEMBER 2023 — REVISED APRIL 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

13 TEXAS TI Information - Selective Disclosure
INSTRUMENTS
www.ti.com Single-Unit Emulation

6.2.14 ClearFSMStatus

The ClearFSMStatus() function is responsible for clearing the status of the previous flash operation. This
function is applicable for F280013x, F280015x, F28P65x and F28P55x devices. This function must be used
as-is.

Fapi_FlashStatusType oFlashStatus;
Fapi_StatusType oReturncCheck;

// Wait until FSM is done with the previous flash operation
while (Fapi_checkFsmForReady() != Fapi_Status_FsmReady){}

oFlashstatus = Fapi_getFsmStatus();
if(oFlashStatus != 0)
/* Clear the Status register */
oReturncCheck = Fapi_issueAsyncCommand(Fapi_Clearstatus);

// Wait until status is cleared
while (Fapi_getFsmstatus() !'= 0) {}

if(oReturnCheck != Fapi_Status_Success)

// Check Flash API documentation for possible errors
Sample_Error();

}

6.3 Testing Example

The examples provided were tested with F28P650DK9. To properly test the example, the memory window and
breakpoints need to be utilized within Code Composer Studio. The following steps were followed to program and
test the project.

Connect the F28P650DK9 to the PC via USB and an XDS110 Debug Probe with JTAG connection.

Connect a 5V DC power supply to the board.

Start Code Composer Studio and open the F28P65x_EEPROM_Example.pijt.

Build the project by selecting Project -> Build Project.

Launch the Target Configurations by going to View -> Target Configurations ->

F28P65x_EEPROM_Example -> targetConfigs -> right-click TMS320F28P650DK9.ccxml -> Launch

Selected Configuration.

6. Connect to CPU1 by going to the Debug window, right clicking Texas Instruments XDS110 USB Debug
Probe 0/C28xx_CPU1, and selecting Connect Target.

7. Load symbols by clicking Load Symbols and selecting the F28P65x_EEPROM.out from the project.

8. Set breakpoints to properly view data written to and read from the memory within the memory window as

shown in Break Points.

grON -~

i e T . [gt s A e

EEPROM _Write(Write_ Buffer);
EEPROM Read(Read Buffer);

Figure 6-2. Break Points

SPRADESA — NOVEMBER 2023 — REVISED APRIL 2024 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers 45
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

Single-Unit Emulation

Tl Information - Selective Disclosure

13 TEXAS
INSTRUMENTS

www.ti.com

9. Run to the first breakpoint and open the Memory Browser (View -> Memory Browser) to view the data.
Bank_Pointer can be used to watch the data written and Read_Buffer to watch the data being read back

from the memory. This is shown in Write to EEPROM and Read Data.

Data e

v [p—

| Bank_Pointer |

Data:(eald0l - Bank_Pointer <Mermory Rendering 1=

16-Bit Hex - Tl Style ~
s B sasa sASA SASA FFFE FFEF FEFF FFFF ASAS ASAS
@xBBBABABA ASAS ASAS FFFF FFFF FFFF FFFF BB0G 8001 6662 6003
@xBPBAG414 OG04 GOBS PPOG POG7 OGS GARY PRGA BEOB GEAC BRBD
@xBRBAGA1E GOOE GOBF BALG BAL11 GG12 GA13 PAL4 BOL5 GEL6 GOL7
@xPPBAB42E GO13 G019 PALA BALB GALC GALD PALE POLF 6620 B21
@xBBBAB432 ©O22 G823 PE24 BB2S GA26 BA27 PB2E BO29 BE2A BO2E
@xPBBAB43C ©02C @820 PP2E PO2F GA30 BA31 PB32 BO33 8634 0835
@xPPBABA46 ©O36 8037 BP3E BO30 GB3A G03E PB3C 903D BG3E GO3F
Figure 6-3. Write to EEPROM
Data w | Read_Buffer gl

Data:lec008 <Memory Rendering 1= 3

16-Bit Hex - Tl Style v

Il eeel cee2 0ees 0opd 0ROS PAAG GAG7 DOAS ORI
exBB08CP12 0GGA BGOE BAGC BRED GRRE GBGF 0010 G211 PB12 PB13
BxBEABCA1C @014 B@15 BA16 BA17 BA1S BA10 BALA BA1E BA1C BELD
Ox@EABCA26 O@1E GA1F BA20 BA21 BA22 BA23 BA24 BA2S PR2G PB27
ExBBABCA3A ©O28 B@20 BA2A BA2E BA2C BA2D BA2E BA2F PA3G PB31
exeeABCE3A 0032 8033 BA34 BA3S BA36 0037 0035 BA30 PB3A PB3B
exeEARCR44 003C 003D BA3E PA3F GAGE GOG1 0OG2 GRS PRAL PBAS

Figure 6-4. Read Data

A

10. Continue running from breakpoint to breakpoint until the program has finished or EEPROM is full.
11. Once EEPROM is full, you will see the new data written to the previously inactive unit and the full EEEPROM
will be erased. Shown in Erase full EEPROM Unit and Write to EEPROM.

| Bank_Pointer

Data w

Data:(xald00 - Bank_Pointer <Memory Rendering 2> X

16-Bit Hex - Tl Style w

ety [@ddd FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
@xBBOABABA FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
@x@@OABA14 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
@x@POABALE FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
@x@BOAB428 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
@x@00AR432 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
@x@e0AR43C FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
@x@BOABALE FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FEFF FFFF
@xBBOABAS® FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

Figure 6-5. Erase full EEPROM Unit

Bl

46 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers

Copyright © 2024 Texas Instruments Incorporated

SPRADESA — NOVEMBER 2023 — REVISED APRIL 2024

Submit Document Feedback

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

13 TEXAS TI Information - Selective Disclosure

INSTRUMENTS
www.ti.com Application Integration
Data e | Bank_Pointer il
Data:(xald00 - Bank_Pointer <Memory Rendering 2>
16-Bit Hex - T Style ~

s [saAsa SASA SASA FEFF FFFF FEFF FFFF ASAS ASAS
BxBEBABABA ASAS ASAS FFFF FFFF FFFF FFFF 000 8081 8062 8063
BxBaEABL1d GREL BRES BREG BRET BEES BPEY BREA BREE BREC BRED
exoBEAB41E GPEE BREF BE16 BR11 BB12 BB13 BB1ld BB1S BO1E BB17
exeBEAB42E BRLE 8R10 BRLA GR1E BR1C BE1D BE1E BELF BE26 BB21
exeEEAE432 BR22 BR23 BR24 BR2S BE2E BE27 BE2E BB20 BE2A BB2E
exeaeAR43C BB2C BR2D BE2E BE2F GB350 BES1 BB32 BB33 BB34 BB35
ex0aBAB4ALE GB35 BB37 GB35 BE30 GB3A BB3E 8B3C BB3D BBSE BB3SF
Figure 6-6. Write to EEPROM
12. This process can be repeated as necessary.

The preceding steps were used to test the Page Mode configuration. The 64-Bit Mode configuration can also be
tested with the same procedure. To enable 64-Bit Mode, change the definition in the EEPROM __Config.h file by
un-commenting the 64 _BIT_MODE directive and commenting out the PAGE_MODE directive.

7 Application Integration

Applications needing this functionality need to include the EEPROM_Config.h and EEPROM.c files provided for
the device. The Flash APl and driverlib also needs to be included for the appropriate device. For example, for
Single-Unit emulation on the F28P650DK9, the following files are needed:

+ F28P65x_EEPROM.c

+ EEPROM_Config.h

» Device.c and device.h

» flash_programming_f28p65x.h

+ FAPI_F28P65x_EABI_v3.02.00.lib
 driverlib.lib

Note
The Flash API is updated periodically with new revisions of silicon being released. To ensure
functionality, the latest Flash API libraries should be used.

8 Adapting to Other Gen 3 C2000 MCUs

As discussed earlier in the document, this guide uses the F28P65x to demonstrate the EEPROM Emulation
functionality. However, this project can be adapted to other Gen 3 C2000 MCUs by making small changes to
macros and function definitions. To show this, this section discusses the changes required to use the F280013x.

First and foremost, it should be noted that F280013x only has one Flash Bank as opposed to the five

within certain F28P65x devices. Thus, the CPU1_RAM Build Configuration should be used instead of the
CPU1_FLASH Build Configuration. This is necessary because the Flash API cannot be executed on the same
Flash Bank in which it is contained.

Additionally, the default configuration contained in the EEPROM_Config.h file uses device specific values to
create definitions and macros. These should be updated to the values found in the TMS320F280013x Real-Time
Microcontrollers Data Sheet. In the case of the F280013x, these values happen to be the same as the default
configuration for the F28P65x, but these values should always be verified with the device-specific data sheet.

#define FLASH_BANK_SELECT 0x80000

#define FLASH_SECTOR_SIZE 0x400

#define NUM_FLASH_SECTORS 128

SPRADESA — NOVEMBER 2023 — REVISED APRIL 2024 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers 47
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRSP63
https://www.ti.com/lit/pdf/SPRSP63
https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

Tl Information - Selective Disclosure 13 TEXAS

INSTRUMENTS
Flash API www.ti.com

These values are important for error-checking within EEPROM_Config_Check as well as defining the
beginning/end address of EEPROM Emulation.

Finally, the EEPROM_Config_Check() function needs to be modified when using the F280013x. By default,
Flash Bank 0 is reserved for storing the Flash API, and the function will throw an error if this Flash Bank is
selected for EEPROM Emulation. However, since the CPU_1_RAM Build Configuration is selected, Flash Bank
0 is now available for EEPROM Emulation. Thus, these lines should be removed or commented out in the
function.

if (FLASH_BANK_SELECT == FlashBankOStartAddress)

return OXFFFF;

While the changes required for using the F280013x are relatively simple, using other Gen 3 C2000 MCUs can
require more changes. For a list of available projects, see the Troubleshooting section.

9 Flash API

The Flash APl is resident and called for by the CPU for various Flash operations. The API library includes
functions to erase, program, and verify the Flash array. The smallest amount of memory that can be erased at a
time is a single sector. The program function can only change bits from a 1 to a 0 (assuming the corresponding
ECC bits have not been written yet). Bits cannot be moved from a 0 back to a 1 by the programming function.
The programming function operates on a single 16-bit word at a time, but 64-bits must be written every time to
align with ECC requirements.

9.1 Flash API Checklist

This following section is taken from the Flash API Reference Guide and describes the flow for using various API
functions.

» After the device is first powered up, the Fapi_initializeAPI() function must be called before any other API
function (except for the Fapi_getLibrarylnfo() function) can be used. This procedure configures the Flash
Wrapper based on the user specified operating system frequency.

» Before performing a Flash operation for the first time, the Fapi_setActiveFlashBank() function must be called.

» If the system operating frequency is changed after the initial call to the Fapi_initialize API() function, this
function must be called once again before any other API function (except the Fapi_getLibraryinfo() function)
can be used. This procedure updates the API internal state variables.

9.1.1 Flash API Do's and Do Not's
API Do's

» Execute the Flash API code from RAM or a Flash Bank not selected for EEPROM Emulation (some functions
must be run from RAM).

» Configure the API for the correct CPU frequency of operation

* Follow the Flash API checklist to integrate the API into an application

» Configure the PLL as needed and pass the configured CPUCLK value to Fapi_initializeAPI() function. Note
that the flash API library does not support flash erase/program operations when the system frequency is less
than or equal to 20 MHz.

* Configure BANKMUXSEL and FLASHCTLSEM registers as needed

» Configure waitstates as per the device-specific data manual before calling Flash API functions. The Flash API
issues and errors if the waitstate configured by the application is not appropriate for the operating frequency
of the application.

» Carefully review the API restrictions described in the TMS320F28P65x Flash API Version 3.02.00.00
Reference Guide.

48 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers SPRADES8A — NOVEMBER 2023 — REVISED APRIL 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://dev.ti.com/tirex/explore/node?node=A__AD.W0E1mY2ck8q7NS8q5Hw__c2000ware_software_package__gYkahfz__LATEST
https://dev.ti.com/tirex/explore/node?node=A__AD.W0E1mY2ck8q7NS8q5Hw__c2000ware_software_package__gYkahfz__LATEST
https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

13 TEXAS
INSTRUMENTS

www.ti.com

Tl Information - Selective Disclosure

Source File Listing

API Do Not's

» Do not execute Flash API from the same Flash Bank that is selected for emulation

» Do not configure interrupt service routines (ISRs) that result in read/fetch access from the Flash bank on
which an erase/program operation is in progress. Flash API functions, user application functions that call
Flash API functions, and any ISRs, must be executed from RAM or the flash bank on which there is no active
erase/program operation in progress.

* Do not access the Flash bank or OTP on which the Flash erase/program operation is in progress

» ECC should not be programmed for link-pointer locations. The API skips programming the ECC when the
start address provided for the program operation is any of the three link-pointer addresses. Care should be
taken to maintain a separate structure/section for link-pointer locations in the application. Do not mix these
fields with other DCSM OTP settings. If other fields are mixed with link-pointers, API skips programming ECC
for the non-link-pointer locations as well. This causes ECC errors in the application.

10 Source File Listing

File

Function

Description

F28P65x_EEPROM_PingPong.c

EEPROM_Config_Check()
Configure_Protection_Masks()
EEPROM_Write()
EEPROM_Read()
EEPROM_Erase()
Erase_Bank()
EEPROM_GetValidBank()
EEPROM_UpdateBankStatus()
EEPROM_UpdatePageStatus()
EEPROM_UpdatePageData()
EEPROM_Get_64_Bit_Data_Address()
EEPROM_Program_64_Bits()
EEPROM_CheckStatus()
ClearFSMStatus()

Validate EEPROM configuration
Configure bits for W/E Protection Masks
Performs write operation

Performs read operation

Performs erase operation

Performs erase operation

Finds valid bank and page

Updates bank status

Updates pages status

Updates page data

Finds pointer for 64-bit operation and tests for
full sector

Programs 64-bits to flash

Verify success of flash operation

Clear flash state machine status

EEPROM_PingPong_Config.h

Contains function prototypes, global
variables, includes flash API headers, pointer
initialization, definition of constants and
macros, enter user-configurable variables

F28P65x_EEPROM.c

EEPROM_Config_Check()
Configure_Protection_Masks()
EEPROM_Write()
EEPROM_Read()
EEPROM_Erase()
EEPROM_GetValidBank()
EEPROM_UpdateBankStatus()
EEPROM_UpdatePageStatus()
EEPROM_UpdatePageData()
EEPROM_Get_64_Bit_Data_Address()
EEPROM_Program_64_Bits()
EEPROM_CheckStatus()
ClearFSMStatus()

Validate EEPROM configuration
Configure bits for W/E Protection Masks
Performs write operation

Performs read operation

Performs erase operation

Finds valid bank and page

Updates bank status

Updates pages status

Updates page data

Finds pointer for 64-bit operation and tests for
full sector

Programs 64-bits to flash

Verify success of flash operation

Clear flash state machine status

EEPROM_Config.h

Contains function prototypes, global
variables, includes flash API headers, pointer
initialization, definition of constants and
macros, enter user-configurable variables

SPRADESA — NOVEMBER 2023 — REVISED APRIL 2024

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

EEPROM Emulation for Generation 3 C2000 Real-Time Controllers 49

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

Tl Information - Selective Disclosure 13 TEXAS
INSTRUMENTS
Troubleshooting www.ti.com

11 Troubleshooting

Below are solutions to some common issues encountered by users when utilizing the EEPROM and
EEPROM_PingPong projects.

11.1 General
Question: | cannot find the EEPROM and EEPROM_PingPong projects, where are they?:

Device Build Configurations Location

F28003x RAM, FLASH C2000Ware_5_02_xx_xx > driverlib > f28003x > examples > flash

F28P65x RAM, FLASH C2000Ware_5_02_xx_xx > driverlib > f28p65x > c28x > examples >
flash

Question: What are the first things | should check if the EEPROM project encounters an error?
Answer:

» View the configuration file (EEPROM_Config.h, EEPROM_PingPong_Config.h) and check the provided
options for the following: Device variation, programming mode (64 bit vs. Page), Flash Bank selection, Flash
sector size, number of Flash sectors, number of EEPROM banks, number of EEPROM pages, data size of
EEPROM pages. Also, check the main program file (EEPROM_Example.c, EEPROM_PingPong_Example.c)
to see if the correct Flash Sector locations are being used for EEPROM Emulation. If an incorrect first and
last sector value are provided, an error will occur and be seen in the EEPROM_Config_Check function. The
EEPROM_Config_Check function will provide general information for error checking.

» Ensure that the protection masks are enabled/disabled for the appropriate sector(s) selected for EEPROM
Emulation for your device, consulting the device's Flash API reference guide for more information.

* One area of the program to check would be the linker command file - make sure all flash sections are
aligned to 128-bit boundaries. In SECTIONS, add a comma and "ALIGN(8)" after each line where a section is
allocated to flash.

12 Conclusion

This application report has proven that the F28P65x Generation 3 C2000 Real-Time Controller is capable of
utilizing its internal Flash to emulate EEPROM. This allows for in-system storage and reduces the need for
an external component. This is highly dependent on code size and whether or not an extra Flash sector is
available for use. This document also provides designers with a ready-made driver using the Flash API library
that accelerates and simplifies design.

13 References

* Texas Instruments, EEPROM Emulation for Gen 2 C2000 Real-Time MCUs

» Texas Instruments, TMS320F28P65x Flash API Version 3.02.00.00 Reference Guide
* Texas Instruments, TMS320F28P65x Real-Time Microcontrollers

* Texas Instruments, TMS320F280013x Real-Time Microcontrollers

50 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers SPRADES8A — NOVEMBER 2023 — REVISED APRIL 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/sprab69a
https://dev.ti.com/tirex/explore/node?node=A__AD.W0E1mY2ck8q7NS8q5Hw__c2000ware_software_package__gYkahfz__LATEST
https://www.ti.com/lit/pdf/SPRSP69B
https://www.ti.com/lit/pdf/SPRSP69B
https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

13 TEXAS TI Information - Selective Disclosure

INSTRUMENTS
www.ti.com Revision History

14 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision * (November 2023) to Revision A (April 2024) Page
* Added project path for F28003X €XaMPIES.........ccociiiiiiiiiiieiii et e e e e e e e e e e e e s e aaaae s 1
» Updated Note to include TMS320F28003X AEVICE........cccciiicuriiiiieiiieee e e e e e e et e e e e e e e e e e sssaasbae e e e eeaaaeeeeeeannnnnes 2
* Added project path for F28003X €XaMPIES.........ccociiiiiiiiiiiiiie et e e e e e e e e e e e e s e eaaaae s 6
* Updated F28P65x code blocks and added F28003x code block cCOmMpPariSON..............ueveeiiiiieieieieieeeeeeeeeeeeeeeees 8
* Updated F28P65x code blocks and added F28003x code block COMPAriSON.............uvvieieiiiiiiiiiieeieeeeeeeeeeeeen, 29
» Updated F28P65x project file name for Single-Unit Emulation and updated related function and

Lo =S od] o410 1= PSPPI 49
* Added Troubleshooting section with F28P65x and F28003x example project paths and general user

Lo U =] 1o R 50
SPRADESA — NOVEMBER 2023 — REVISED APRIL 2024 EEPROM Emulation for Generation 3 C2000 Real-Time Controllers 51

Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADE8A&partnum=TMS320F28P650DK9

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with Tl products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an
application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other Tl intellectual property right or to any third party intellectual property right. Tl disclaims responsibility for, and you
will fully indemnify Tl and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such Tl products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for
TI products.

Tl objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2024, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	2 Difference Between EEPROM and On-Chip Flash
	3 Overview
	3.1 Basic Concept
	3.2 Single-Unit Method
	3.3 Ping-Pong Method
	3.4 Creating EEPROM Sections (Pages) and Page Identification

	4 Software Description
	4.1 Software Functionality and Flow

	5 Ping-Pong Emulation
	5.1 User-Configuration
	5.1.1 EEPROM_PingPong_Config.h
	5.1.2 F28P65x_EEPROM_PingPong.c

	5.2 EEPROM Functions
	5.2.1 EEPROM_Config_Check
	5.2.2 Configure_Protection_Masks
	5.2.3 EEPROM_Write
	5.2.4 EEPROM_Read
	5.2.5 EEPROM_Erase
	5.2.5.1 Erase_Bank

	5.2.6 EEPROM_GetValidBank
	5.2.7 EEPROM_UpdateBankStatus
	5.2.8 EEPROM_UpdatePageStatus
	5.2.9 EEPROM_UpdatePageData
	5.2.10 EEPROM_Get_64_Bit_Data_Address
	5.2.11 EEPROM_Program_64_Bits
	5.2.12 EEPROM_CheckStatus
	5.2.13 ClearFSMStatus

	5.3 Testing Example

	6 Single-Unit Emulation
	6.1 User-Configuration
	6.1.1 EEPROM_Config.h
	6.1.2 F28P65x_EEPROM.c

	6.2 EEPROM Functions
	6.2.1 EEPROM_Config_Check
	6.2.2 Configure_Protection_Masks
	6.2.3 EEPROM_Write
	6.2.4 EEPROM_Read
	6.2.5 EEPROM_Erase
	6.2.6 EEPROM_GetValidBank
	6.2.7 EEPROM_Get_64_Bit_Data_Address
	6.2.8 EEPROM_UpdateBankStatus
	6.2.9 EEPROM_UpdatePageStatus
	6.2.10 EEPROM_UpdatePageData
	6.2.11 EEPROM_Get_64_Bit_Data_Address
	6.2.12 EEPROM_Program_64_Bits
	6.2.13 EEPROM_CheckStatus
	6.2.14 ClearFSMStatus

	6.3 Testing Example

	7 Application Integration
	8 Adapting to Other Gen 3 C2000 MCUs
	9 Flash API
	9.1 Flash API Checklist
	9.1.1 Flash API Do's and Do Not's

	10 Source File Listing
	11 Troubleshooting
	11.1 General

	12 Conclusion
	13 References
	14 Revision History

