LF353-N

ACTIVE

Dual, 36-V, 4-MHz, high slew rate (13-V/µs), In to V+, JFET-input op amp

A newer version of this product is available

open-in-new Compare alternates
Drop-in replacement with upgraded functionality to the compared device
TL072H ACTIVE Dual, 40-V, 5-MHz, 4-mV offset voltage, 20-V/µs, In to V+ op amp with -40°C to 125°C operation Wider temperature range (-40°C to 125°C), lower quiescent current (0.0937mA), wider voltage range (4.5 V to 40 V) and improved offset voltage drift
TL082H ACTIVE Dual, 40-V, 5.25-MHz, 4-mV offset voltage, 20-V/µs, In to V+ op amp with -40°C to 125°C operation Wider supply range (4.5 V to 40 V), higher GBW (5.25 MHz), faster slew rate (20 V/us), lower offset voltage (4 mV), lower power (0.9375 mA)

Product details

Number of channels 2 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 36 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 10 Rail-to-rail In to V+ GBW (typ) (MHz) 4 Slew rate (typ) (V/µs) 13 Vos (offset voltage at 25°C) (max) (mV) 10 Iq per channel (typ) (mA) 1.8 Vn at 1 kHz (typ) (nV√Hz) 16 Rating Catalog Operating temperature range (°C) 0 to 70 Offset drift (typ) (µV/°C) 10 Input bias current (max) (pA) 200 CMRR (typ) (dB) 100 Iout (typ) (A) 0.02 Architecture FET Input common mode headroom (to negative supply) (typ) (V) 3 Input common mode headroom (to positive supply) (typ) (V) 0 Output swing headroom (to negative supply) (typ) (V) 1.5 Output swing headroom (to positive supply) (typ) (V) -1.5
Number of channels 2 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 36 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 10 Rail-to-rail In to V+ GBW (typ) (MHz) 4 Slew rate (typ) (V/µs) 13 Vos (offset voltage at 25°C) (max) (mV) 10 Iq per channel (typ) (mA) 1.8 Vn at 1 kHz (typ) (nV√Hz) 16 Rating Catalog Operating temperature range (°C) 0 to 70 Offset drift (typ) (µV/°C) 10 Input bias current (max) (pA) 200 CMRR (typ) (dB) 100 Iout (typ) (A) 0.02 Architecture FET Input common mode headroom (to negative supply) (typ) (V) 3 Input common mode headroom (to positive supply) (typ) (V) 0 Output swing headroom (to negative supply) (typ) (V) 1.5 Output swing headroom (to positive supply) (typ) (V) -1.5
PDIP (P) 8 92.5083 mm² 9.81 x 9.43 SOIC (D) 8 29.4 mm² 4.9 x 6
  • Internally Trimmed Offset Voltage: 10 mV
  • Low Input Bias Current: 50pA
  • Low Input Noise Voltage: 25 nV/√Hz
  • Low Input Noise Current: 0.01 pA/√Hz
  • Wide Gain Bandwidth: 4 MHz
  • High Slew Rate: 13 V/μs
  • Low Supply Current: 3.6 mA
  • High Input Impedance: 1012Ω
  • Low Total Harmonic Distortion : ≤0.02%
  • Low 1/f Noise Corner: 50 Hz
  • Fast Settling Time to 0.01%: 2 μs

All trademarks are the property of their respective owners.

  • Internally Trimmed Offset Voltage: 10 mV
  • Low Input Bias Current: 50pA
  • Low Input Noise Voltage: 25 nV/√Hz
  • Low Input Noise Current: 0.01 pA/√Hz
  • Wide Gain Bandwidth: 4 MHz
  • High Slew Rate: 13 V/μs
  • Low Supply Current: 3.6 mA
  • High Input Impedance: 1012Ω
  • Low Total Harmonic Distortion : ≤0.02%
  • Low 1/f Noise Corner: 50 Hz
  • Fast Settling Time to 0.01%: 2 μs

All trademarks are the property of their respective owners.

These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage (BI-FET II technology). They require low supply current yet maintain a large gain bandwidth product and fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The LF353-N is pin compatible with the standard LM1558 allowing designers to immediately upgrade the overall performance of existing LM1558 and LM358 designs.

These amplifiers may be used in applications such as high speed integrators, fast D/A converters, sample and hold circuits and many other circuits requiring low input offset voltage, low input bias current, high input impedance, high slew rate and wide bandwidth. The devices also exhibit low noise and offset voltage drift.

These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage (BI-FET II technology). They require low supply current yet maintain a large gain bandwidth product and fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The LF353-N is pin compatible with the standard LM1558 allowing designers to immediately upgrade the overall performance of existing LM1558 and LM358 designs.

These amplifiers may be used in applications such as high speed integrators, fast D/A converters, sample and hold circuits and many other circuits requiring low input offset voltage, low input bias current, high input impedance, high slew rate and wide bandwidth. The devices also exhibit low noise and offset voltage drift.

Download View video with transcript Video

Similar products you might be interested in

open-in-new Compare alternates
Drop-in replacement with upgraded functionality to the compared device
LF353 ACTIVE Dual, 36-V, 3-MHz, high slew rate (13-V/µs), In to V+, JFET-input operational amplifier This is the same device optimized for cost-sensitive applications

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 7
Type Title Date
* Data sheet LF353 Wide Bandwidth Dual JFET Input Operational Amplifier datasheet (Rev. F) 25 Mar 2013
E-book The Signal e-book: A compendium of blog posts on op amp design topics 28 Mar 2017
Application note AN-256 Circuitry for Inexpensive Relative Humidity Measurement (Rev. B) 06 May 2013
Application note AN-262 Applying Dual and Quad FET Op Amps (Rev. B) 06 May 2013
Application note AN-263 Sine Wave Generation Techniques (Rev. C) 22 Apr 2013
Application note AN-447 Protection Schemes for BI-FET Amplifiers and Switches 02 May 2004
Application note Get More Power Out of Dual or Quad Op-Amps 02 Oct 2002

Design & development

Please view the Design & development section on a desktop.

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos