TPS61202

ACTIVE

0.3-V input voltage, 5-V fixed output voltage boost converter with 1.3-A switches, 3-mm x 3-mm QF

A newer version of this product is available

open-in-new Compare alternates
Same functionality with different pin-out to the compared device
TPS61023 ACTIVE 3.7-A boost converter with 0.5-V ultra-low input voltage For applications requiring smaller package or higher output current.

Product details

Rating Catalog Operating temperature range (°C) -40 to 125 Topology Boost Type Converter Vin (min) (V) 0.3 Vin (max) (V) 5.5 Switching frequency (min) (kHz) 1250 Switching frequency (max) (kHz) 1650 Features Synchronous Rectification Vout (min) (V) 5 Vout (max) (V) 5 Iq (typ) (µA) 50 Duty cycle (max) (%) 95
Rating Catalog Operating temperature range (°C) -40 to 125 Topology Boost Type Converter Vin (min) (V) 0.3 Vin (max) (V) 5.5 Switching frequency (min) (kHz) 1250 Switching frequency (max) (kHz) 1650 Features Synchronous Rectification Vout (min) (V) 5 Vout (max) (V) 5 Iq (typ) (µA) 50 Duty cycle (max) (%) 95
VSON (DRC) 10 9 mm² 3 x 3 WSON (DSC) 10 9 mm² 3 x 3
  • More than 90% Efficiency at
    • 300 mA Output Current at 3.3 V
      (VIN ≥ 2.4 V)
    • 600 mA Output Current at 5 V (VIN ≥ 3 V)
  • Automatic Transition between Boost Mode and
    Down Conversion Mode
  • Device Quiescent Current Less than 55 µA
  • Startup into Full Load at 0.5 V Input Voltage
  • Operating Input Voltage Range from
    0.3 V to 5.5 V
  • Programmable Undervoltage Lockout Threshold
  • Output Short Circuit Protection Under all Operating
    Conditions
  • Fixed and Adjustable Output Voltage Options from
    1.8 V to 5.5 V
  • Power Save Mode for Improved Efficiency at Low
    Output Power
  • Forced Fixed Frequency Operation Possible
  • Load Disconnect During Shutdown
  • Overtemperature Protection
  • Small 3 mm × 3 mm VSON-10 Package
  • More than 90% Efficiency at
    • 300 mA Output Current at 3.3 V
      (VIN ≥ 2.4 V)
    • 600 mA Output Current at 5 V (VIN ≥ 3 V)
  • Automatic Transition between Boost Mode and
    Down Conversion Mode
  • Device Quiescent Current Less than 55 µA
  • Startup into Full Load at 0.5 V Input Voltage
  • Operating Input Voltage Range from
    0.3 V to 5.5 V
  • Programmable Undervoltage Lockout Threshold
  • Output Short Circuit Protection Under all Operating
    Conditions
  • Fixed and Adjustable Output Voltage Options from
    1.8 V to 5.5 V
  • Power Save Mode for Improved Efficiency at Low
    Output Power
  • Forced Fixed Frequency Operation Possible
  • Load Disconnect During Shutdown
  • Overtemperature Protection
  • Small 3 mm × 3 mm VSON-10 Package

The TPS6120x devices provide a power supply solution for products powered by either a single-cell, two-cell, or three-cell alkaline, NiCd or NiMH, or one-cell Li-Ion or Li-polymer battery. It is also used in fuel cell or solar cell powered devices where the capability of handling low input voltages is essential. Possible output currents depend on the input to output voltage ratio. The devices provide output currents of up to 600 mA at a 5-V output, while using a single-cell Li-Ion or Li-Polymer battery and discharges it down to 2.6 V. The boost converter is based on a fixed frequency, pulse-width-modulation (PWM) controller using synchronous rectification to obtain maximum efficiency. At low load currents, the converter enters the Power Save mode to maintain a high efficiency over a wide load current range. The Power Save mode can be disabled, forcing the converter to operate at a fixed switching frequency. The average input current is limited to a maximum value of 1500 mA. The output voltage is programmed by an external resistor divider, or is fixed internally on the chip. The converter can be disabled to minimize battery drain. During shutdown, the load is completely disconnected from the battery. The device is packaged in a 10-pin VSON package measuring 3 mm × 3 mm.

The TPS6120x devices provide a power supply solution for products powered by either a single-cell, two-cell, or three-cell alkaline, NiCd or NiMH, or one-cell Li-Ion or Li-polymer battery. It is also used in fuel cell or solar cell powered devices where the capability of handling low input voltages is essential. Possible output currents depend on the input to output voltage ratio. The devices provide output currents of up to 600 mA at a 5-V output, while using a single-cell Li-Ion or Li-Polymer battery and discharges it down to 2.6 V. The boost converter is based on a fixed frequency, pulse-width-modulation (PWM) controller using synchronous rectification to obtain maximum efficiency. At low load currents, the converter enters the Power Save mode to maintain a high efficiency over a wide load current range. The Power Save mode can be disabled, forcing the converter to operate at a fixed switching frequency. The average input current is limited to a maximum value of 1500 mA. The output voltage is programmed by an external resistor divider, or is fixed internally on the chip. The converter can be disabled to minimize battery drain. During shutdown, the load is completely disconnected from the battery. The device is packaged in a 10-pin VSON package measuring 3 mm × 3 mm.

Download View video with transcript Video

Technical documentation

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

TPS61202EVM-179 — TPS61202EVM-179 Evaluation Module

The TPS61202EVM-179 is an evaluation module for the TPS61202 low input voltage synchronous boost converter. The TPS61202 provides a power supply solution for products powered by either a single-cell, two-cell, or three-cell alkaline, NiCd or NiMH, or one-cell Li-Ion or Li-polymer battery.

User guide: PDF
Not available on TI.com
Gerber file

Gerber Files for TPS6120xEVM

SLVC123.ZIP (107 KB)
Package Pins Download
VSON (DRC) 10 View options
WSON (DSC) 10 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos