Bootmode selection can be hard wired if required modes are known.
Place Near U6 as close to U6 as possible

Minimize Trace Length

U6 MUST BE on TOP (OUTER, FREE-AIR) side of board!!!!

NOTE:
For CENELEC A band use 680pf for C10 and C11
For CENELEC B/C band use 560pf for C10 and 270pf for C11.

Optional Components:
necessary for G1 only, use 2700 pF 6V for C61 and a 510R 5% for R41

Optional Components:
necessary for G1 only, use 2700 pF 6V for C62 and a 510R 5% for R42

NOTE:
For CENELEC A band use 680pf for C10 and C11
For CENELEC B/C band use 560pf for C10 and 270pf for C11.
NOTE: Several components on this page have been removed or changed in the BOM.
OPTIONAL: Heatsink is not needed.

OPTIONAL: to source VDD with the on-chip LDO, do not populate R43 and place a 10k resistor on R27. Additionally, the optional components below are not needed.

OPTIONAL: For reduced power consumption use a DC/DC converter instead of the On-Chip Linear Supply. Note: Follow Layout Procedures described in TPS62240 Datasheet.
Notes/Revision Information

01 - Title / Notes
02 - Coupling Circuit
03 - USB JTAG/UART
04 - System Power
05 - Connectors
HIGH VOLTAGE!
VDDS decoupling capacitors

VDDR decoupling capacitors

Place L331 and C331 close to pin 33.
Low inductance ground for C331

VDDS Decoupling Capacitors

- Pin 22
- Pin 44
- Pin 13
- Pin 34

VDDR Decoupling Capacitors

- Pin 48
- Pin 45

Mount either R11 or R12 To select SMA or PCB ant.

EM connector 1

EM connector 2

Title: CC13xxEM-7XD-7793, main

Drawn: a0132595

Checked: <Check name>

Size: A3

Rev: 1.3.3

Page: 1 of 2

Date: Tuesday, August 25, 2015
R 1.0.0
---Initial release revision

R 1.0.1
L3 -> Changed from LQG to LQW
L4 -> Changed from LQG to LQW

R 1.1.0
- New CC13xx symbol with different DIO to pin mapping
- New Crystal (9 pF, from 7 pF. But 9 pF has been assembled on previous EMs).
- New reference numbers on components.

R 1.2.0
- Updating RF filter for better harmonic suppression.
- Remove test point on RXTX pin.

R 1.3.0
- For IC3:
 - C15 33pF -> 100pF
 - L12, L21 8.2nH -> 7.5nH
 - C13 4.7nH -> 6.2nH
 - C14 2.2nH -> 3.3nH

R 1.3.1
L331 10uH -> 6.8uH

R 1.3.2
C341 10uF -> 22uF

R 1.3.3
C331 10uF -> 22uF
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Buyers") who are developing systems that incorporate TI semiconductor products (also referred to herein as "components"). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used.

Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI anticipates dangerous failures, monitors failures and their consequences, lessens the likelihood of dangerous failures and takes appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer’s safety-critical applications.

Buyer's safety-critical applications. Buyer acknowledges and agrees that Buyer is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer acknowledges and agrees that it has the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer's safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.