LM5150-Q1 宽输入电压车用低 Iq 升压控制器

1 特性

- 符合 AEC-Q100 标准：
 - 器件温度 1 级：-40°C 至 +125°C 的环境运行温度范围
 - 器件人体模型 (HBM) 静电放电 (ESD) 分类等级 2
 - 充电器件模型 (CDM) ESD 分类等级 C4B
- 输出电压 ≥ 5V（65V 绝对最大值）时具有 1.5V 至 42V 的宽输入电压范围
- 低关断电流 (Iq ≤ 5µA)
- 低待机电流 (Iq ≤ 15µA)
- 四种可编程输出电压选项和两种可选配置
 - 6.8V、7.5V、8.5V 或 10.5V
 - 启停或紧急呼叫配置
- 220kHz 至 2.3MHz 可调开关频率
- 自动唤醒和待机模式转换
- 可选的时钟同步
- 升压状态指示器
- 1.5A 峰值 MOSFET 栅极驱动器
- 可调逐周期电流限制
- 热关断
- 具有可湿性侧面的 16 引脚 WQFN

2 应用

- 汽车启停系统
- 汽车紧急呼叫系统
- 电池供电升压转换器

3 说明

LM5150-Q1 器件是宽输入范围自动升压控制器。该器件适合用作预升压转换器，在汽车启动期间维持汽车电池的输出电压，或在缺少汽车电池期间维持备用电池的输出电压。

可以使用一个电阻器在 220kHz 与 2.3MHz 之间对 LM5150-Q1 开关频率进行编程。快速开关（≥ 2.2MHz）可最大限度地降低调幅频带干扰，并支持实现小解决方案尺寸和快速瞬态响应。

LM5150-Q1 在输入或输出电压高于预设待机阈值时以低 Iq 待机模式运行，并且在输出电压降至预设唤醒阈值以下时自动唤醒。

处于或未处于低 Iq 待机模式的器件瞬态，可在轻负载下延长电池寿命。单个电阻器对目标输出稳定电压以及配置进行编程。其他特性包括低关断电流、升压状态指示器、可调逐周期电流限制和热关断。

典型应用电路

效率（VLOAD=6.8V，Fsw=440kHz）

器件信息(1)

<table>
<thead>
<tr>
<th>器件型号</th>
<th>封装</th>
<th>封装尺寸（标称值）</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM5150-Q1</td>
<td>WQFN (16)</td>
<td>4.00mm x 4.00mm</td>
</tr>
</tbody>
</table>

(1) 如需了解所有可用封装，请参阅数据表末尾的可订购产品附录。
目录

1 特性 .. 1
2 应用 .. 1
3 说明 .. 1
4 修订历史记录 .. 2
5 Pin Configuration and Functions 3
6 Specifications .. 4
 6.1 Absolute Maximum Ratings 4
 6.2 ESD Ratings .. 4
 6.3 Recommended Operating Conditions 5
 6.4 Thermal Information ... 5
 6.5 Electrical Characteristics ... 5
 6.6 Typical Characteristics .. 8
7 Detailed Description ... 10
 7.1 Overview .. 10
 7.2 Functional Block Diagram .. 11
 7.3 Feature Description ... 11
 7.4 Device Functional Modes .. 17
8 Application and Implementation 21
 8.1 Application Information .. 21
 8.2 Typical Application .. 24
 8.3 System Examples .. 31
9 Power Supply Recommendations 33
10 Layout ... 33
 10.1 Layout Guidelines .. 33
 10.2 Layout Example .. 34
11 器件和文档支持 ... 35
 11.1 器件支持 ... 35
 11.2 接收文档更新通知 ... 35
 11.3 社区资源 ... 35
 11.4 商标 ... 35
 11.5 静电放电警告 .. 35
 11.6 Glossary ... 35
12 机械、封装和可订购信息 36

修订历史记录

<table>
<thead>
<tr>
<th>日期</th>
<th>修订版本</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017年9月</td>
<td>*</td>
<td>初始发行版。</td>
</tr>
</tbody>
</table>
5 Pin Configuration and Functions

<table>
<thead>
<tr>
<th>PIN NO.</th>
<th>NAME</th>
<th>I/O(1)</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SYNC</td>
<td>I</td>
<td>External synchronization clock input pin. The internal oscillator is synchronized to an external clock by applying a pulse signal into the SYNC pin in the start-stop configuration. Connect directly to ground if not used or in emergency call configuration. Maximum duty cycle limit can be programmed by controlling the external synchronization clock frequency.</td>
</tr>
<tr>
<td>2</td>
<td>STATUS</td>
<td>O</td>
<td>Status indicator with an open-drain output stage. Internal pulldown switch holds the pin low when the device is not boosting. The pin can be left floating if not used.</td>
</tr>
<tr>
<td>3</td>
<td>EN</td>
<td>I</td>
<td>Enable pin. If EN is below 1 V, the device is in shutdown mode. The pin must be raised above 2 V to enable the device. Connect directly to VOUT pin for an automatic boost.</td>
</tr>
<tr>
<td>4</td>
<td>VOUT</td>
<td>I/P</td>
<td>Boost output voltage-sensing pin and input to VCC regulator. Connect to the output of the boost converter.</td>
</tr>
<tr>
<td>5</td>
<td>PVCC</td>
<td>O/P</td>
<td>Output of the VCC bias regulator. Decouple locally to PGND using a low-ESR or low-ESL ceramic capacitor located as close to the device as possible.</td>
</tr>
<tr>
<td>6</td>
<td>NC</td>
<td>—</td>
<td>No internal electrical connection. Leave the pin floating or connect directly to ground.</td>
</tr>
<tr>
<td>7</td>
<td>AVCC</td>
<td>I/P</td>
<td>Analog VCC supply input. Decouple locally to AGND using 0.1-µF low-ESR or low-ESL ceramic capacitor located as close to the device as possible. Connect to the PVCC pin through 10-Ω resistor.</td>
</tr>
<tr>
<td>8</td>
<td>NC</td>
<td>—</td>
<td>No internal electrical connection. Leave the pin floating or connect directly to ground.</td>
</tr>
<tr>
<td>9</td>
<td>LO</td>
<td>O</td>
<td>N-channel MOSFET gate drive output. Connect to the gate of the N-channel MOSFET through a short, low inductance path.</td>
</tr>
<tr>
<td>10</td>
<td>PGND</td>
<td>G</td>
<td>Power ground pin. Connect to the ground connection of the sense resistor through a wide and short path.</td>
</tr>
<tr>
<td>11</td>
<td>AGND</td>
<td>G</td>
<td>Analog ground pin. Connect to the analog ground plane through a wide and short path.</td>
</tr>
<tr>
<td>12</td>
<td>CS</td>
<td>I</td>
<td>Current sense input pin. Connect to the positive side of the current sense resistor through a short path.</td>
</tr>
<tr>
<td>13</td>
<td>COMP</td>
<td>O</td>
<td>Output of the internal transconductance error amplifier. The loop compensation components must be connected between this pin and AGND.</td>
</tr>
<tr>
<td>14</td>
<td>RT</td>
<td>I</td>
<td>Switching frequency setting pin. The switching frequency is programmed by a single resistor between RT and AGND.</td>
</tr>
</tbody>
</table>

(1) G = GROUND, I = INPUT, O = OUTPUT, P = POWER
6 Specifications

6.1 Absolute Maximum Ratings

Over the recommended operating junction temperature range of –40°C to 150°C (unless otherwise noted)\(^{(1)}\)

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN to AGND</td>
<td>-0.3</td>
<td>65</td>
<td>V</td>
</tr>
<tr>
<td>VOUT to AGND</td>
<td>-0.3</td>
<td>65</td>
<td>V</td>
</tr>
<tr>
<td>EN to AGND</td>
<td>-0.3</td>
<td>65</td>
<td>V</td>
</tr>
<tr>
<td>RT to AGND(^{(2)})</td>
<td>-0.3</td>
<td>AVCC+0.3</td>
<td>V</td>
</tr>
<tr>
<td>SYNC to AGND</td>
<td>-0.3</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>VSET to AGND</td>
<td>-0.3</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>CS to AGND (DC)</td>
<td>-0.3</td>
<td>AVCC+0.3</td>
<td>V</td>
</tr>
<tr>
<td>CS to AGND (40ns transient)</td>
<td>-1.0</td>
<td>AVCC+0.3</td>
<td>V</td>
</tr>
<tr>
<td>CS to AGND (20ns transient)</td>
<td>-2.0</td>
<td>AVCC+0.3</td>
<td>V</td>
</tr>
<tr>
<td>PGND to AGND</td>
<td>-0.3</td>
<td>0.3</td>
<td>V</td>
</tr>
<tr>
<td>LO to AGND (DC)</td>
<td>-0.3</td>
<td>PVCC+0.3</td>
<td>V</td>
</tr>
<tr>
<td>LO to AGND (40ns transient)</td>
<td>-1.0</td>
<td>PVCC+0.3</td>
<td>V</td>
</tr>
<tr>
<td>LO to AGND (20ns transient)</td>
<td>-2.0</td>
<td>PVCC+0.3</td>
<td>V</td>
</tr>
<tr>
<td>STATUS to AGND(^{(3)})</td>
<td>-0.3</td>
<td>65</td>
<td>V</td>
</tr>
<tr>
<td>COMP to AGND(^{(2)})</td>
<td>-0.3</td>
<td>AVCC+0.3</td>
<td>V</td>
</tr>
<tr>
<td>AVCC to AGND</td>
<td>-0.3</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>PVCC to AVCC</td>
<td>-0.3</td>
<td>0.3</td>
<td>V</td>
</tr>
<tr>
<td>TJ</td>
<td>-40</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Tstg</td>
<td>-55</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The pin voltage is clamped by an internal circuit, and is not specified to have an external voltage applied.

(3) STATUS can go below ground during the STATUS low-to-high transition. The negative voltage on STATUS during this transition is clamped by an internal diode and it does not damage the device.

(4) High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V(_{\text{ESD}}) Electrostatic discharge</td>
<td>-2000</td>
<td>2000</td>
<td>V</td>
</tr>
<tr>
<td>Human body model (HBM), per AEC Q100-002(^{(1)})</td>
<td>-750</td>
<td>750</td>
<td>V</td>
</tr>
<tr>
<td>Charged device model (CDM), per AEC Q100-011 Corner pins</td>
<td>-500</td>
<td>500</td>
<td>V</td>
</tr>
<tr>
<td>Other pins</td>
<td>-760</td>
<td>760</td>
<td></td>
</tr>
</tbody>
</table>

(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.
6.3 Recommended Operating Conditions

Over the recommended operating junction temperature range of –40°C to 150°C (unless otherwise specified)\(^{(1)}\):

<table>
<thead>
<tr>
<th>(V_{\text{VIN}})</th>
<th>Boost input voltage sense</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{VOUT}})</td>
<td>Boost output voltage sense(^{(2)})</td>
<td>1.5</td>
<td>42</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{EN}})</td>
<td>EN input</td>
<td>0</td>
<td>42</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{PVCC}})</td>
<td>PVCC Voltage(^{(3)})</td>
<td>4.5</td>
<td>5</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{SYNC}})</td>
<td>SYNC Input</td>
<td>0</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{CS}})</td>
<td>Current sense Input</td>
<td>0</td>
<td>0.3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(F_{\text{SW}})</td>
<td>Typical switching frequency</td>
<td>220</td>
<td>2300</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>(F_{\text{SYNC}})</td>
<td>Synchronization pulse frequency</td>
<td>220</td>
<td>2300</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>(T_{J})</td>
<td>Operating junction temperature(^{(4)})</td>
<td>–40</td>
<td>150</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

(1) Operating Ratings are conditions under the device is intended to be functional. For specifications and test conditions, see Electrical Characteristics.

(2) The device requires minimum 5V at VOUT pin to start up.

(3) \(V_{\text{PVCC}}\) should be less than \(V_{\text{VOUT}} + 0.3\) V.

(4) High junction temperatures degrade operating lifetimes. Operating lifetime is derated for junction temperatures greater than 125°C.

6.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC(^{(1)})</th>
<th>(R_{\text{UM}}) (WQFN)</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junction-to-ambient thermal resistance</td>
<td>44.4</td>
<td>°C/W</td>
</tr>
<tr>
<td>Junction-to-case (top) thermal resistance</td>
<td>33.4</td>
<td>°C/W</td>
</tr>
<tr>
<td>Junction-to-board thermal resistance</td>
<td>19.5</td>
<td>°C/W</td>
</tr>
<tr>
<td>Junction-to-top characterization parameter</td>
<td>0.5</td>
<td>°C/W</td>
</tr>
<tr>
<td>Junction-to-board characterization parameter</td>
<td>19.3</td>
<td>°C/W</td>
</tr>
<tr>
<td>Junction-to-case (bottom) thermal resistance</td>
<td>2</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

Typical values correspond to \(T_{J} = 25°C\). Minimum and maximum limits apply over \(T_{J} = -40°C\) to 125°C. Unless otherwise stated, \(V_{\text{VOUT}} = 6.8\) V, \(R_{T} = 9.09\) kΩ.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{\text{SHUTDOWN(VOUT)}})</td>
<td>VOUT shutdown current</td>
<td>(V_{\text{VOUT}} = 12) V, (V_{\text{EN}} = 0) V</td>
<td>5</td>
<td>12</td>
<td>µA</td>
</tr>
<tr>
<td>(I_{\text{STANDBY(VOUT)}})</td>
<td>VOUT standby current (PVCC in regulation, STATUS is low)</td>
<td>(V_{\text{VOUT}} = 12) V, (V_{\text{EN}} = 3.3) V, (R_{\text{SET}} = 90.9) kΩ</td>
<td>15</td>
<td>25</td>
<td>µA</td>
</tr>
<tr>
<td>(I_{\text{WAKEUP(VOUT)}})</td>
<td>VOUT operating current (exclude current into RT resistor)</td>
<td>(V_{\text{VOUT}} = 10.5) V, (V_{\text{EN}} = 2.5) V, non-switching, (R_{T} = 9.09) kΩ</td>
<td>1.2</td>
<td>2.0</td>
<td>mA</td>
</tr>
<tr>
<td>(I_{\text{SHUTDOWN(VIN)}})</td>
<td>VIN shutdown current</td>
<td>(V_{\text{VIN}} = 12) V, (V_{\text{EN}} = 0) V</td>
<td>0.1</td>
<td>0.5</td>
<td>µA</td>
</tr>
<tr>
<td>(I_{\text{STANDBY(VIN)}})</td>
<td>VIN standby current</td>
<td>(V_{\text{VIN}} = 12) V, (V_{\text{EN}} = 3.3) V, (R_{\text{SET}} = 29.4) kΩ</td>
<td>0.1</td>
<td>0.5</td>
<td>µA</td>
</tr>
<tr>
<td>(I_{\text{WAKEUP(VIN)}})</td>
<td>VIN operating current</td>
<td>(V_{\text{VIN}} = 10.5) V, (V_{\text{EN}} = 2.5) V, non-switching, (R_{T} = 9.09) kΩ</td>
<td>30</td>
<td>45</td>
<td>µA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VCC REGULATOR</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{VCC-REG-NOLOAD}})</td>
<td>PVCC regulation</td>
<td>(V_{\text{VOUT}} = 6.0) V, No load, wake-up mode</td>
<td>4.75</td>
<td>5</td>
<td>5.25</td>
</tr>
<tr>
<td>(V_{\text{VCC-REG-FULLLOAD}})</td>
<td>PVCC regulation</td>
<td>(V_{\text{VOUT}} = 5.0) V, (I_{\text{PVCC}} = 70) mA</td>
<td>4.5</td>
<td>4.8</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{VCC-UVLO-RISING}})</td>
<td>AVCC UVLO threshold</td>
<td>AVCC rising</td>
<td>4.1</td>
<td>4.3</td>
<td>4.5</td>
</tr>
<tr>
<td>(V_{\text{VCC-UVLO-FALLING}})</td>
<td>AVCC UVLO threshold</td>
<td>AVCC falling</td>
<td>3.9</td>
<td>4.1</td>
<td>4.3</td>
</tr>
</tbody>
</table>
Electrical Characteristics (continued)

Typical values correspond to $T_J = 25^\circ C$. Minimum and maximum limits apply over $T_J = -40^\circ C$ to $125^\circ C$. Unless otherwise stated, $V_{VOUT} = 6.8$ V, $R_T = 9.09$ kΩ

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{VCC-UVLO-HYS}$</td>
<td>AVCC UVLO hysteresis</td>
<td>0.2</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{VCC-CL}</td>
<td>PVCC sourcing current limit</td>
<td>$V_{PVCC} = 0$ V, wake-up mode</td>
<td>75</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

ENABLE

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{EN-RISING}$</td>
<td>Enable threshold</td>
<td>EN rising</td>
<td>1.7</td>
<td>2</td>
<td>V</td>
</tr>
<tr>
<td>$V_{EN-FALLING}$</td>
<td>Enable threshold</td>
<td>EN falling</td>
<td>1</td>
<td>1.3</td>
<td>V</td>
</tr>
<tr>
<td>I_{EN}</td>
<td>EN bias current</td>
<td>$V_{EN} = 42$ V</td>
<td>100</td>
<td>nA</td>
<td></td>
</tr>
</tbody>
</table>

6.8-V SETTING

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>$V_{VOUT-REG}$</td>
<td>$R_{SET} = 29.4$ kΩ or 90.9 kΩ</td>
<td>6.66</td>
<td>6.80</td>
<td>6.98</td>
</tr>
<tr>
<td>V</td>
<td>$V_{VOUT-WAKEUP}$</td>
<td>$R_{SET} = 29.4$ kΩ or 90.9 kΩ, $VOUT$ falling</td>
<td>6.83</td>
<td>7.00</td>
<td>7.14</td>
</tr>
<tr>
<td>V</td>
<td>$V_{VOUT-STANDBY1}$</td>
<td>$VOUT$ standby threshold ($V_{VOUT-REG}$+6%, EC config)</td>
<td>7.02</td>
<td>7.21</td>
<td>7.35</td>
</tr>
<tr>
<td>V</td>
<td>$V_{VOUT-STATUS-OFF}$</td>
<td>$VOUT$ status off threshold ($V_{VOUT-REG}$+12%, EC config)</td>
<td>7.42</td>
<td>7.62</td>
<td>7.81</td>
</tr>
<tr>
<td>V</td>
<td>$V_{VOUT-STANDBY2}$</td>
<td>$VOUT$ standby threshold ($V_{VOUT-REG}$+24%, SS config)</td>
<td>8.22</td>
<td>8.43</td>
<td>8.60</td>
</tr>
<tr>
<td>V</td>
<td>$V_{VIN-STANDBY}$</td>
<td>$VOUT$ standby threshold ($V_{VOUT-WAKEUP}$+1.0 V, SS config)</td>
<td>7.82</td>
<td>8.00</td>
<td>8.19</td>
</tr>
</tbody>
</table>

7.5-V SETTING

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>$V_{VOUT-REG}$</td>
<td>$R_{SET} = 19.1$ kΩ or 71.5 kΩ</td>
<td>7.37</td>
<td>7.50</td>
<td>7.67</td>
</tr>
<tr>
<td>V</td>
<td>$V_{VOUT-WAKEUP}$</td>
<td>$R_{SET} = 19.1$ kΩ or 71.5 kΩ, $VOUT$ falling</td>
<td>7.52</td>
<td>7.73</td>
<td>7.88</td>
</tr>
<tr>
<td>V</td>
<td>$V_{VOUT-STANDBY1}$</td>
<td>$VOUT$ standby threshold ($V_{VOUT-REG}$+6%, EC config)</td>
<td>7.74</td>
<td>7.95</td>
<td>8.11</td>
</tr>
<tr>
<td>V</td>
<td>$V_{VOUT-STATUS-OFF}$</td>
<td>$VOUT$ status off threshold ($V_{VOUT-REG}$+12%, EC config)</td>
<td>8.19</td>
<td>8.40</td>
<td>8.61</td>
</tr>
<tr>
<td>V</td>
<td>$V_{VOUT-STANDBY2}$</td>
<td>$VOUT$ standby threshold ($V_{VOUT-REG}$+24%, SS config)</td>
<td>9.07</td>
<td>9.30</td>
<td>9.46</td>
</tr>
<tr>
<td>V</td>
<td>$V_{VIN-STANDBY}$</td>
<td>$VOUT$ standby threshold ($V_{VOUT-WAKEUP}$+1.0 V, SS config)</td>
<td>8.50</td>
<td>8.73</td>
<td>8.93</td>
</tr>
</tbody>
</table>

8.5-V SETTING

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>$V_{VOUT-REG}$</td>
<td>$R_{SET} = 9.53$ kΩ or 54.9 kΩ</td>
<td>8.37</td>
<td>8.50</td>
<td>8.69</td>
</tr>
<tr>
<td>V</td>
<td>$V_{VOUT-WAKEUP}$</td>
<td>$R_{SET} = 9.53$ kΩ or 54.9 kΩ, $VOUT$ falling</td>
<td>8.52</td>
<td>8.76</td>
<td>8.93</td>
</tr>
<tr>
<td>V</td>
<td>$V_{VOUT-STANDBY1}$</td>
<td>$VOUT$ standby threshold ($V_{VOUT-REG}$+6%, EC config)</td>
<td>8.78</td>
<td>9.01</td>
<td>9.19</td>
</tr>
<tr>
<td>V</td>
<td>$V_{VOUT-STATUS-OFF}$</td>
<td>$VOUT$ status off threshold ($V_{VOUT-REG}$+12%, EC config)</td>
<td>9.28</td>
<td>9.52</td>
<td>9.75</td>
</tr>
<tr>
<td>V</td>
<td>$V_{VOUT-STANDBY2}$</td>
<td>$VOUT$ standby threshold ($V_{VOUT-REG}$+24%, SS config)</td>
<td>10.29</td>
<td>10.54</td>
<td>10.72</td>
</tr>
<tr>
<td>V</td>
<td>$V_{VIN-STANDBY}$</td>
<td>$VOUT$ standby threshold ($V_{VOUT-WAKEUP}$+1.0 V, SS config)</td>
<td>9.50</td>
<td>9.76</td>
<td>9.98</td>
</tr>
</tbody>
</table>

10.5-V SETTING

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>$V_{VOUT-REG}$</td>
<td>$R_{SET} = GND$ or 41.2 kΩ</td>
<td>10.31</td>
<td>10.50</td>
<td>10.75</td>
</tr>
<tr>
<td>V</td>
<td>$V_{VOUT-WAKEUP}$</td>
<td>$R_{SET} = GND$ or 41.2 kΩ, $VOUT$ falling</td>
<td>10.53</td>
<td>10.82</td>
<td>11.02</td>
</tr>
<tr>
<td>V</td>
<td>$V_{VOUT-STANDBY1}$</td>
<td>$VOUT$ standby threshold ($V_{VOUT-REG}$+6%, EC config)</td>
<td>10.84</td>
<td>11.13</td>
<td>11.33</td>
</tr>
</tbody>
</table>
Electrical Characteristics (continued)

Typical values correspond to $T_J = 25°C$. Minimum and maximum limits apply over $T_J = -40°C$ to $125°C$. Unless otherwise stated, $V_{VOUT} = 6.8 V$, $R_T = 9.09 k\Omega$

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{VOUT-STATUS-OFF}$</td>
<td>V_{VOUT} status off threshold</td>
<td>$R_{SET} = 41.2 k\Omega$, $VOUT$ rising</td>
<td>11.46</td>
<td>11.76</td>
<td>12.04</td>
</tr>
<tr>
<td>$V_{VOUT-STANDBY2}$</td>
<td>$VOUT$ standby threshold</td>
<td>$R_{SET} = GND$, $VOUT$ rising</td>
<td>12.70</td>
<td>13.02</td>
<td>13.24</td>
</tr>
<tr>
<td>$V_{VIN-STANDBY}$</td>
<td>VIN standby threshold</td>
<td>$R_{SET} = GND$, VIN rising</td>
<td>11.47</td>
<td>11.82</td>
<td>12.11</td>
</tr>
<tr>
<td>R_T</td>
<td>RT regulation voltage</td>
<td></td>
<td>1.2</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>$V_{SYNC-RISING}$</td>
<td>SYNC rising threshold</td>
<td></td>
<td>2.0</td>
<td>2.4</td>
<td>V</td>
</tr>
<tr>
<td>$V_{SYNC-FALLING}$</td>
<td>SYNC falling threshold</td>
<td></td>
<td>0.4</td>
<td>1.5</td>
<td>V</td>
</tr>
<tr>
<td>F_{SW1}</td>
<td>Switching frequency</td>
<td></td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>F_{SW2}</td>
<td>Switching frequency</td>
<td></td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>F_{SW3}</td>
<td>Switching frequency</td>
<td>$R_T = 9.09 k\Omega$, $F_{SYNC} = 2.0 MHz$</td>
<td></td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>T_{ON-MIN}</td>
<td>Forced minimum on-time</td>
<td>SS config, $V_{COMP} = 0 V$</td>
<td>30</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>D_{MIN}</td>
<td>Minimum duty cycle limit (EC config)</td>
<td>$R_T = 9.09 k\Omega$, $V_{VIN} = 1.5 V$, $V_{VOUT} = 6.8 V$, $V_{COMP} = 0 V$</td>
<td></td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_T = 93.1 k\Omega$, $V_{VIN} = 8.4 V$, $V_{VOUT} = 10.5 V$, $V_{COMP} = 0 V$</td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>D_{MAX}</td>
<td>Maximum duty cycle limit</td>
<td>SS config, $R_T = 9.09 k\Omega$</td>
<td>83</td>
<td>87</td>
<td>91.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EC config, $R_T = 93.1 k\Omega$</td>
<td>83</td>
<td>87</td>
<td>91.5</td>
</tr>
<tr>
<td>V_{CSTH}</td>
<td>Current limit threshold (CS-AGND) (^{(1)})</td>
<td>$V_{VIN} = 5.1 V$, $V_{VOUT} = 6.8 V$ at 25% DC</td>
<td>102</td>
<td>120</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{VIN} = 3.4 V$, $V_{VOUT} = 6.8 V$ at 50% DC</td>
<td>102</td>
<td>120</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{VIN} = 1.7 V$, $V_{VOUT} = 6.8 V$ at 75% DC</td>
<td>102</td>
<td>120</td>
<td>138</td>
</tr>
<tr>
<td>Gm</td>
<td>Transconductance</td>
<td></td>
<td>2</td>
<td></td>
<td>mA/V</td>
</tr>
<tr>
<td>COMP sourcing current</td>
<td>$V_{COMP} = 0 V$</td>
<td></td>
<td>312</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>COMP sinking current</td>
<td>$V_{COMP} = 1.5 V$</td>
<td></td>
<td>120</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>COMP clamp voltage</td>
<td></td>
<td></td>
<td>2.4</td>
<td>2.6</td>
<td>V</td>
</tr>
<tr>
<td>COMP to PWM offset</td>
<td></td>
<td></td>
<td>0.3</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{CSTH}</td>
<td>Status low-state voltage drop</td>
<td>1-mA sinking</td>
<td>0.1</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>STATUS rise to LO delay</td>
<td>5-kΩ pullup to 5 V</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>µs</td>
</tr>
<tr>
<td>R_T</td>
<td>High-state voltage drop</td>
<td>50-mA sinking</td>
<td>0.075</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Low-state voltage drop</td>
<td>50-mA sourcing</td>
<td>0.055</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>T_{SD}</td>
<td>Thermal shutdown threshold</td>
<td>Temperature rising</td>
<td>175</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>Thermal shutdown hysteresis</td>
<td></td>
<td>15</td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>

\(^{(1)}\) V_{CL} at the current limit comparator input is $10 \times V_{CSTH}$
6.6 Typical Characteristics

![Graph 1: Peak Inductor Current vs Supply Voltage](image1)

![Graph 2: Current Limit Threshold at CS vs Duty Cycle](image2)

![Graph 3: V\textsubscript{PVCC} vs I\textsubscript{PVCC} (V\textsubscript{OUT} = 6 V)](image3)

![Graph 4: V\textsubscript{PVCC} vs V\textsubscript{VOUT} (EN = 3.3 V, I\textsubscript{PVCC} = 10 mA, V\textsubscript{OUT} Rising)](image4)

![Graph 5: Frequency vs RT](image5)

![Graph 6: Duty Cycle Limit in EC Configuration vs V\textsubscript{VIN}](image6)
Typical Characteristics (接下页)

图 7. I_{OUT} vs Temperature

图 8. Efficiency vs Load Current
($V_{\text{LOAD}} = 6.8 \, \text{V}, F_{\text{SW}} = 440 \, \text{kHz}, \text{SS Configuration}$)
7 Detailed Description

7.1 Overview

The LM5150-Q1 device is a wide input range automotive boost controller designed for automotive start-stop or emergency-call applications. The device can maintain the output voltage from a vehicle battery during automotive cranking or from a back-up battery during the loss of vehicle battery. The wide input range of the device covers automotive load dump transient. The control method is based upon peak current mode control.

To extend the battery life time, the LM5150-Q1 features a low I_{Q} standby mode with automatic wake-up and standby control. The device stays in the low I_{Q} standby mode when the boost operation is not required, and automatically enters the wake-up mode when the output voltage drops below the preset wake-up threshold. High value feedback resistors are included inside the device to minimize leakage current in the low I_{Q} standby mode.

The LM5150-Q1 operates in one of two selectable configurations when waking up. In Start-Stop configuration (SS configuration), the device runs at a fixed switching frequency without any pulse skipping until entering into the standby mode, which helps to have a fixed EMI spectrum. In Emergency-Call configuration (EC configuration), the device will skip pulses as it automatically alternates between low I_{Q} standby mode and wake-up mode to extend the battery life in light load conditions.

The LM5150-Q1 switching frequency is programmable from 220 kHz to 2.3 MHz. Fast switching (≥ 2.2-MHz) minimizes AM band interference and allows for a small solution size and fast transient response. A single resistor at the VSET pin programs the target output regulation voltage as well as the configuration. This eliminates the need for an external feedback resistor divider which enables low I_{Q} operation. The device also features clock synchronization in the SS configuration, low quiescent current in shutdown mode, a boost status indicator, adjustable cycle-by-cycle current will limit, and thermal shutdown protection.
7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Enable (EN Pin)
When the EN pin voltage is less than 1 V, the LM5150-Q1 is in shutdown mode with all other functions disabled. To turn on the internal VCC regulator and begin start-up sequence, the EN pin voltage must be greater than 2 V. If the EN pin is controlled by user input, it is recommended to supply a voltage greater than 3 V at the EN pin. If the EN pin is not controlled by user input, connect the EN pin to the VOUT pin directly. See Device Functional Modes for more detailed information.

7.3.2 High Voltage VCC Regulator (PVCC, AVCC Pin)
The LM5150-Q1 contains an internal high voltage VCC regulator. The VCC regulator turns on when the EN pin voltage is greater than 2 V. The VCC regulator is sourced from the VOUT pin and provides 5 V (typical) bias supply for the N-channel MOSFET driver and other internal circuits.

The VCC regulator sources current into the capacitor connected to the PVCC pin with a minimum of 75-mA capability when the LM5150-Q1 is in the wake-up mode and during the device configuration period. The maximum sourcing capability is decreased to 17 mA in standby mode. The recommended PVCC capacitor is 4.7 µF to 10 µF. In normal operation, the PVCC pin voltage is either 5 V or \(V_{\text{VOUT}} + 0.3 \) V, whichever is lower.

The AVCC pin is the analog bias supply input of the LM5150-Q1. The recommended AVCC capacitor is 0.1-µF. Connect to the PVCC pin through 10-Ω resistor.
Feature Description (接下页)

7.3.3 Power-On Voltage Selection (VSET Pin)

During initial power on, the VOUT regulation target and the configuration are configured by a resistor connected between the VSET and the AGND pins. The configuration starts when the EN pin voltage is greater than 2 V and the AVCC voltage crosses the AVCC UVLO threshold, and requires typically 50 µs to finish. To reset and reconfigure, EN should be toggled below 1 V or AVCC/VOUT must be fully discharged.

![Image of Power-On Voltage Selection](image)

图 9. Power-On Voltage Selection

The VOUT regulation target can be programmed to 6.8 V, 7.5 V, 8.5 V, or 10.5 V with the appropriate resistor with 5% tolerance. The configuration can be selected as either SS or EC configuration. The LM5150-Q1 will not switch during the 50-µs configuration time.

<table>
<thead>
<tr>
<th>CONFIGURATION</th>
<th>EMERGENCY-CALL</th>
<th>START-STOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOUT regulation target</td>
<td>6.8 V</td>
<td>7.5 V</td>
</tr>
<tr>
<td>RSET [Ω]</td>
<td>90.9k</td>
<td>71.5k</td>
</tr>
</tbody>
</table>

(1) If other output regulation targets are required, contact the sales office/distributors for availability.

7.3.4 Switching Frequency (RT Pin)

The switching frequency of the LM5150-Q1 is set by a single RT resistor connected between the RT and the AGND pins. The resistor value to set the switching frequency (F_{SW}) is calculated using 公式 1.

\[
F_{SW,RT} = \frac{2.233 \times 10^{10}}{R_T} - 619 \Omega
\]

The RT pin is regulated to 1.2 V by the internal RT regulator during wake-up.

7.3.5 Clock Synchronization (SYNC Pin in SS Configuration)

In SS configuration, the switching frequency of the LM5150-Q1 can be synchronized to an external clock by directly applying a pulse signal to the SYNC pin. The internal clock of the LM5150-Q1 is synchronized at the rising edge of the external clock. The device ignores the rising edge input during forced off-time.

The external synchronization pulse must be greater than the 2.4 V in the high logic state and must be less than 0.4 V in the low logic state. The duty cycle of the external synchronization pulse is not limited, but the minimum pulse width should be greater than 100 ns. Because the maximum duty cycle limit and the peak current limit threshold are affected by synchronizing the switching frequency to an external synchronization pulse, take extra care when using the clock synchronization function. See the Maximum Duty Cycle Limit, Minimum Input Supply Voltage and Current Limit (CS Pin) section for more detailed information.
If the boost converter’s minimum input supply voltage is greater than \(\frac{1}{4} \) of the VOUT regulation target \((V_{OUT-REG}) \), the frequency of the external synchronization pulse \((F_{SYNC}) \) should be within +15% and −15% of the typical free-running switching frequency \((F_{SW(TYPICAL)}) \):

\[
0.85 \times F_{SW_{RT(TYPICAL)}} \leq F_{SYNC} \leq 1.15 \times F_{SW_{RT(TYPICAL)}},
\]

In this range, a maximum 1:4 \((V_{SUPPLY}:V_{LOAD})\) step-up ratio is allowed.

A higher step-up ratio can be achieved by supplying a lower frequency synchronization pulse. 1:5 step-up ratio can be achieved by selecting \(F_{SYNC} \) within −25% and −15% of the \(F_{SW_{RT(TYPICAL)}} \):

\[
0.75 \times F_{SW_{RT(TYPICAL)}} \leq F_{SYNC} \leq 0.85 \times F_{SW_{RT(TYPICAL)}},
\]

In this range, a maximum 1:5 \((V_{SUPPLY}:V_{LOAD})\) step-up ratio is allowed.

7.3.6 Current Sense, Slope Compensation, and PWM (CS Pin)

The LM5150-Q1 features low-side current sense amplifier with a gain of 10, and provides an internal slope compensation ramp to prevent sub-harmonic oscillation at high duty cycle. The device generates the slope compensation ramp using a sawtooth current source with a slope of \(30 \mu A \times F_{SW} \) (typical). This current flows through an internal 2-kΩ resistor and out of the CS pin. The slope compensation ramp is determined by the RT resistor and is \(60 \text{ mV} \times F_{SW} \) (typical) at the input of the current sense amplifier and \(600 \text{ mV} \times F_{SW} \) (typical) at the output of the current sense amplifier. The slope compensation ramp can be increased by adding an external slope resistor \((R_{SL}) \) between the sense resistor \((R_S) \) and the CS pin, but take extra care when using the \(R_{SL} \), because the peak current limit is affected by adding \(R_{SL} \). See **Current Limit (CS Pin)** for more detailed information.

![Current Sensing and Slope Compensation Diagram](image)

According to peak current mode control theory, the slope of the compensation ramp must be greater than half of the sensed inductor current falling slope to prevent sub-harmonic oscillation at high duty cycle. Therefore, the minimum amount of slope compensation should satisfy the following inequality.

\[
0.5 \times \frac{(V_{LOAD} + V_F) - V_{SUPPLY}}{L_M} \times R_S \times \text{Margin} < 30 \mu A \times (2k\Omega + R_{SL}) \times F_{SW}
\]

\(V_F \) is a forward voltage drop of D1, the external diode. 1.2 is recommended as a margin to cover non-ideal factors.

If required, \(R_{SL} \) can be added to increase the slope of the compensation ramp from half to 82% of the slope of the sensed inductor current during the falling slope. The typical \(R_{SL} \) value is calculated using formula 5. The maximum \(R_{SL} \) value is 1 kΩ:

\[
0.82 \times \frac{(V_{LOAD} + V_F) - V_{SUPPLY}}{L_M} \times R_S = 30 \mu A \times (2k\Omega + R_{SL}) \times F_{SW}
\]

(5)
The PWM comparator in 图 10 compares the sum of sensed inductor current, slope compensation ramp and a 0.3-V (typical) internal COMP-to-PWM offset with the COMP pin voltage (V_{COMP}), and terminates the present cycle if the sum is greater than V_{COMP}.

7.3.7 Current Limit (CS Pin)

The LM5150-Q1 features cycle-by-cycle peak current limit without sub-harmonic oscillation at high duty cycle. If the sum of the sensed inductor current and the slope compensation ramp exceeds the current limit threshold at the current limit comparator input (V_{CL}), the current limit comparator immediately terminates the present cycle. To minimize the peak current limit variation due to changes in either the supply voltage or the output voltage, the device features a variable current limit threshold which is calculated using 公式 6.

\[
V_{CL} = 1.2 + 0.6 \times \frac{(V_{OUT} - V_{VIN})}{V_{VOUT-REG}} [V]
\]

Cycle-by-cycle peak inductor current limit (I_{PEAK-CL}) in steady state calculated as follows:

\[
I_{PEAK-CL} = \frac{V_{CL} - 10 \times 30 \mu A \times (2k\Omega + R_{SL}) \times F_{SW_RT} \times D}{10 \times R_S}
\]

\[
D = 1 - \frac{V_{SUPPLY}}{V_{LOAD} + V_F}
\]

F_{SYNC} is included in the equation because the peak amplitude of the slope compensation varies with the frequency of the external synchronization clock. Substitute F_{SW_RT} for F_{SYNC} if clock synchronization is not used.

Boost converters have a natural pass-through path from the supply to the load through the high-side power diode (D1). Due to this path, boost converters cannot provide current limit protection when the output voltage is close to or less than the input supply voltage.

A small external RC filter (R_F, C_F) at the CS pin is required to overcome the leading edge spike of the current sense signal. Select an R_F value which is greater than 30 Ω and a C_F value which is greater than 1 nF. Due to the effect of the filter, the peak current limit is not valid when the on-time is less than 2 × R_F × C_F.

7.3.8 Feedback and Error Amplifier (COMP Pin)

The LM5150-Q1 includes internal feedback resistors which are set based on the VSET pin resistor selection. These feedback resistors are disconnected from the VOUT pin in the standby mode to minimize quiescent current. The feedback resistor divider is connected to an internal transconductance error amplifier which features high output resistance (R_O = 10 MΩ) and wide bandwidth (BW = 3 MHz). The internal transconductance error amplifier sources current which is proportional to the difference between the feedback resistor divider voltage and the internal reference. The output of the error amplifier is connected to the COMP pin, allowing the use of a Type 2 loop compensation network.

R_{COMP}, C_{COMP} and optional C_{HF} loop compensation components configure the error amplifier gain and phase characteristics to achieve a stable loop response. This compensation network creates a pole at very low frequency (F_{DP}), a mid-band zero (F_{Z_EA}) and a high frequency pole (F_{P_EA}). See Loop Compensation Component Selection and Maximum ESR for more detailed information.

7.3.9 Automatic Wake-Up and Standby

The LM5150-Q1 wakes up when V_{VOUT} drops below the VOUT wake-up threshold. The device goes into standby when V_{VOUT} rises above the VOUT standby threshold in EC or SS configuration or when V_{VIN} rises above the VIN standby threshold in SS configuration. The VOUT wake-up threshold is typically 3% higher than the VOUT regulation target. The STATUS output is released in 3 µs (with 50-kΩ pullup resistor to 5 V) after the wake-up event. The LO driver is enabled 6 µs after the STATUS output starts rising.
图 11. Automatic Wake-Up and Standby Control

In SS configuration, the VOUT standby threshold is typically 24% higher than the VOUT regulation target. The
VIN standby threshold is typically 1 V higher than the VOUT wake-up threshold in SS configuration. To prevent
chatter, the forward voltage drop of diode D1 must be less than 0.95 V. See 图 15.

图 12. Automatic Wake-Up and Standby Operation in the SS Configuration
(With Fast V_{SUPPLY} Fall and Slow Switching)
In EC configuration, the VOUT standby threshold is typically 6% higher than the VOUT regulation target. Because of the minimum duty cycle limit (see Emergency-Call Configuration (EC Configuration)), the LM5150-Q1 alternates between the wake-up and the low IQ standby modes at medium or light load. See 图16.

To minimize output undershoot when waking up, the LM5150-Q1 boosts the VOUT regulation target during the first 128 cycles after the wake-up event. The regulation target becomes 3% higher than the original regulation target for 64 cycles, 2% higher for the next 32 cycles and 1% higher for the final 32 cycles. The VOUT pin voltage may rise up above the VOUT standby threshold even if switching stops at the VOUT standby threshold because the energy stored in the inductor transfers to the output capacitor when switching stops. See Device Functional Modes for more information about the automatic wake-up and standby operation.
7.3.10 Boost Status Indicator (STATUS Pin)

STATUS is an open-drain output and requires a pullup resistor between 5 kΩ and 100 kΩ. The pin is pulled up after V_{VOUT} falls below the VOUT wake-up threshold, and is toggled to a low logic state when V_{VIN} rises above the VIN standby threshold in SS configuration or when V_{VOUT} rises above the VOUT status off-threshold in EC configuration. The pin is also pulled to ground when $\text{EN} < 1 \text{ V}$ and VOUT is greater than about 2 V, when AVCC < $V_{\text{VCC-UVLO-FALLING}}$ or during thermal shutdown.

7.3.11 Maximum Duty Cycle Limit, Minimum Input Supply Voltage

When designing a boost converter, the maximum duty cycle should be reviewed at the minimum supply voltage. The minimum input supply voltage which can achieve the target output voltage is estimated from the formula:

$$V_{\text{SUPPLY(MIN)}} \approx (V_{\text{VOUT-REG}} + V_F) \times (1 - D_{\text{MAX}}) \times \frac{F_{\text{SYNC}}}{F_{\text{SW_RT}}} + I_{\text{SUPPLY(MAX)}} \times R_{\text{DCR}} + I_{\text{SUPPLY(MAX)}} \times (R_{\text{DS(ON)}} + R_S) \times D_{\text{MAX}}$$ \hspace{1cm} (9)

$I_{\text{SUPPLY(MAX)}}$ is the maximum input current. R_{DCR} is the DC resistance of the inductor. $R_{\text{DS(ON)}}$ is the on-resistance of the MOSFET. Substitute $F_{\text{SW_RT}}$ for F_{SYNC} if the clock synchronization is not used. The minimum input supply voltage can be decreased by supplying F_{SYNC} which is less than $F_{\text{SW_RT}}$.

This maximum duty cycle limit (D_{MAX}) is 87% (typical), but may fall down below 80% if the external synchronization clock frequency is lower than 0.85 times $F_{\text{SW (TYPICAL)}}$. Select an F_{SYNC} which is within –25% and –15% of the $F_{\text{SW (TYPICAL)}}$ if a 1:5 step-up ratio is required with clock synchronization. The minimum input supply voltage can be further decreased by supplying a lower frequency external synchronization clock. See Clock Synchronization (SYNC Pin in SS Configuration) for more information.

7.3.12 MOSFET Driver (LO Pin)

The LM5150-Q1 provides an N-channel MOSFET driver which can source or sink a peak current of 1.5 A. The driver is powered by the 5-V VCC regulator and is enabled when the EN pin voltage is greater than 2 V and the AVCC pin voltage is greater than the AVCC UVLO threshold.

7.3.13 Thermal Shutdown

Internal thermal shutdown is provided to protect the LM5150-Q1 if the junction temperature exceeds 175°C (typical). When thermal shutdown is activated, the device is forced into a low power thermal shutdown state with the MOSFET driver and the VCC regulator disabled. After the junction temperature is reduced (typical hysteresis is 15°C), the device is re-enabled.

7.4 Device Functional Modes

7.4.1 Shutdown Mode

If the EN pin voltage is below 1 V, the LM5150-Q1 is in shutdown mode with all functions disabled except EN. In shutdown mode, the device reduces the VOUT pin current consumption to below 5.25 µA (typical) and the STATUS pin is pulled to ground. The device can be enabled by raising the EN pin above 2 V and operates in either the standby mode or the wake-up mode if V_{AVCC} is greater than the AVCC UVLO threshold.

表 2. State of Each Pin in Shutdown Mode

<table>
<thead>
<tr>
<th>STATUS</th>
<th>SYNC</th>
<th>RT</th>
<th>COMP</th>
<th>EN</th>
<th>VOUT</th>
<th>PVCC/AVCC</th>
<th>LO</th>
<th>CS</th>
<th>VIN</th>
<th>VSET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grounded</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Enabled</td>
<td>$I_0 \leq 5 \mu A$</td>
<td>Disabled</td>
<td>Grounded</td>
<td>Disabled</td>
<td>$I_0 = 0.1 \mu A$</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

7.4.2 Standby Mode

If VOUT is greater than the VOUT standby threshold or VIN is greater than the VIN standby threshold in the SS mode, the LM5150-Q1 enters into standby mode.

In standby mode, most functions are disabled, including the thermal shutdown, to minimize the current consumption. The VOUT wake-up monitor is enabled in standby mode to allow wake-up if the VOUT voltage drops below the VOUT wake-up threshold. The VCC regulator reduces the sourcing capability to 17 mA in standby mode and the AVCC UVLO comparator is disabled.

The VOUT standby threshold fulfills effectively the overvoltage protection (OVP) function.
3. State of Each Pin in Standby Mode

<table>
<thead>
<tr>
<th>STATUS</th>
<th>SYNC</th>
<th>RT</th>
<th>COMP</th>
<th>EN</th>
<th>VOUT</th>
<th>PVCC/AVCC</th>
<th>LO</th>
<th>CS</th>
<th>VIN</th>
<th>VSET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Released or</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Enabled</td>
<td>I_O ≤ 15 µA, VOUT wake-up monitor enabled</td>
<td>Enabled Isupply capability = 17 mA</td>
<td>Grounded</td>
<td>Disabled</td>
<td>I_O = 0.1 µA</td>
<td>Disabled</td>
</tr>
<tr>
<td>Grounded</td>
<td></td>
</tr>
</tbody>
</table>

7.4.3 Wake-Up Mode

The LM5150-Q1 wakes up from standby mode if VOUT drops below the VOUT wake-up threshold. There are two configurations when the device wakes up. One is start-stop configuration (SS configuration) and the other is emergency-call configuration (EC configuration). The configuration is selectable by the VSET resistor (see表 1).

7.4.3.1 Start-Stop Configuration (SS Configuration)

The LM5150-Q1 runs at fixed switching frequency without any pulse skipping in SS configuration. The device turns on the LO driver every cycle with \(T_{ON-MIN} \) until entering into standby mode, which helps to prevent EMI spectrum shifts. Because the MOSFET turns on every cycle, the boost converter output may be above the regulation target if the required on-time is less than the \(T_{ON-MIN} \) when the boost supply voltage is close to the VOUT regulation target or the load current is very small. The output voltage will rise above the VOUT regulation target if one of the inequalities below is true.

\[
D \times \frac{1}{F_{SW}} < T_{ON-MIN} \tag{10}
\]

\[
\left(\frac{V_{SUPPLY} \times T_{ON-MIN}}{2 \times L_M} \right)^2 \times \frac{F_{SW}}{\left(V_{LOAD} + V_F - V_{SUPPLY} \right)} > I_{LOAD} \tag{11}
\]

In SS configuration, the LM5150-Q1 enters into the standby mode if VOUT is greater than the VOUT standby threshold—which is 24% higher than the VOUT regulation target—or if VIN is greater than the VIN standby threshold.

图 15. Typical Start-Stop Application

The LM5150-Q1 runs at fixed switching frequency without any pulse skipping in SS configuration. The device turns on the LO driver every cycle with \(T_{ON-MIN} \) until entering into standby mode, which helps to prevent EMI spectrum shifts. Because the MOSFET turns on every cycle, the boost converter output may be above the regulation target if the required on-time is less than the \(T_{ON-MIN} \) when the boost supply voltage is close to the VOUT regulation target or the load current is very small. The output voltage will rise above the VOUT regulation target if one of the inequalities below is true.

\[
D \times \frac{1}{F_{SW}} < T_{ON-MIN} \tag{10}
\]

\[
\left(\frac{V_{SUPPLY} \times T_{ON-MIN}}{2 \times L_M} \right)^2 \times \frac{F_{SW}}{\left(V_{LOAD} + V_F - V_{SUPPLY} \right)} > I_{LOAD} \tag{11}
\]

In SS configuration, the LM5150-Q1 enters into the standby mode if VOUT is greater than the VOUT standby threshold—which is 24% higher than the VOUT regulation target—or if VIN is greater than the VIN standby threshold.
7.4.3.2 Emergency-Call Configuration (EC Configuration)

The EC configuration achieves high efficiency at light/medium load by alternating between the wake-up and the
low I\textsubscript{Q} standby modes. In EC configuration, the LM5150-Q1 limits the minimum duty cycle programmed by V\textsubscript{VOUT} and V\textsubscript{VIN}. The minimum duty cycle limit is calculated using \textit{公式} 12.

\[
D_{\text{MIN}} = 0.75 \times \left(1 - \frac{V_{\text{VIN}}}{V_{\text{VOUT-REG}}} \right)
\]

(12)

Due to this minimum duty cycle limit, the boost converter sources more current than required when the load
current is relatively small. As a result, the output voltage increases and eventually crosses the VOUT standby
threshold which is typically 6\% higher than the VOUT regulation target. The LM5150-Q1 then goes into the low I\textsubscript{Q} standby mode. The LM5150-Q1 wakes up when VOUT drops below the VOUT wake-up threshold which is typically 3\% higher than the VOUT regulation target. The device alternates between these two modes when the
inequality below is true.

\[
2 \times L_{\text{M}} \times \left(V_{\text{SUPPLY}} \times \frac{F_{\text{MIN}}}{F_{\text{SW}}} \right)^2 - \frac{F_{\text{SW}}}{(V_{\text{LOAD}} + V_{\text{F}} - V_{\text{SUPPLY}})} > I_{\text{LOAD}}
\]

(13)

Assuming \(V_{\text{LOAD}} = V_{\text{VOUT}} = V_{\text{VOUT-REG}}\) and \(V_{\text{SUPPLY}} = V_{\text{VIN}}\), the skip cycle operation starts when the inequality below is true.

\[
2 \times L_{\text{M}} \times F_{\text{SW}} \times \left(V_{\text{LOAD}} - V_{\text{SUPPLY}} \right)^2 - \frac{F_{\text{SW}}}{(V_{\text{LOAD}} + V_{\text{F}} - V_{\text{SUPPLY}})} > I_{\text{LOAD}}
\]

(14)

In EC configuration, the LM5150-Q1 doesn’t generate any pulse if \(V_{\text{COMP}}\) is less than the 0.3 V and the required
minimum duty cycle limit is zero.

If the peak current limit is triggered before reaching the minimum duty cycle, the device terminates the LO driver
output immediately.
If \(V_{OUT} \) is greater than the \(V_{OUT} \) status-off threshold (typically 12% higher than the \(V_{OUT} \) regulation target), the LM5150-Q1 pulls the STATUS pin low.

In EC configuration, light load efficiency is proportional with the inductor current ripple ratio.

表 4. State of Each Pin in Wake-Up Mode

<table>
<thead>
<tr>
<th>STATUS</th>
<th>SYNC</th>
<th>RT</th>
<th>COMP</th>
<th>EN</th>
<th>VOUT</th>
<th>PVCC/AVCC</th>
<th>LO</th>
<th>CS</th>
<th>VIN</th>
<th>VSET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release</td>
<td>Enabled in SS configuration</td>
<td>Enabled</td>
<td>Enabled</td>
<td>Enabled</td>
<td>VOUT standby monitor is enabled. VOUT status-off monitor is enabled in EC configuration.</td>
<td>Enabled</td>
<td>PWM</td>
<td>Enabled</td>
<td>I(_L) = 30 (\mu)A. VIN status-off monitor is enabled in SS configuration</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

表 5. Start-Stop vs Emergency-Call Configuration

<table>
<thead>
<tr>
<th>CONFIGURATION</th>
<th>START-STOP</th>
<th>EMERGENCY-CALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOUT regulation options</td>
<td>6.8 V, 7.5 V, 8.5 V, 10.5 V</td>
<td></td>
</tr>
<tr>
<td>VSET resistor value [(\Omega)]</td>
<td>29.4k, 19.1k, 9.53k, GND</td>
<td>90.9k, 71.5k, 54.9k, 41.2k</td>
</tr>
<tr>
<td>Clock Synchronization</td>
<td>Yes</td>
<td>No, SYNC should be grounded</td>
</tr>
<tr>
<td>VOUT wake-up threshold [V]</td>
<td>(V_{OUT-REG} \times 1.03)</td>
<td></td>
</tr>
<tr>
<td>VOUT standby threshold [V]</td>
<td>(V_{OUT-REG} \times 1.24)</td>
<td>(V_{OUT-REG} \times 1.06)</td>
</tr>
<tr>
<td>VOUT status-off threshold [V]</td>
<td>N/A</td>
<td>(V_{OUT-REG} \times 1.12)</td>
</tr>
<tr>
<td>VIN standby threshold [V]</td>
<td>(V_{OUT-REG} \times 1.03 + 1.0) V</td>
<td>(V_{OUT-REG} \times 1.12)</td>
</tr>
<tr>
<td>STATUS pin control (Open-drain with pullup resistor)</td>
<td>Released by VOUT wake-up</td>
<td>Released by VOUT wake-up</td>
</tr>
<tr>
<td>At heavy load when (V_{VIN} = V_{VOUT})</td>
<td>Pulse width modulation (PWM)</td>
<td></td>
</tr>
<tr>
<td>At light/no load when (V_{VIN} = V_{VOUT})</td>
<td>LO turns on at every cycle in wake-up configuration. Skip cycle operation by alternating between wake-up and standby configurations.</td>
<td>Minimum on-time is limited</td>
</tr>
<tr>
<td>When (V_{VIN} = V_{VOUT}) or (V_{VIN} \geq V_{VOUT})</td>
<td>LO turns on at every cycle in wake-up configuration. On-time is limited by (T_{ON-MIN}). (V_{OUT}) goes out of regulation.</td>
<td>Minimum duty cycle is limited</td>
</tr>
<tr>
<td>Maximum duty-cycle limit</td>
<td>Typically 87%</td>
<td></td>
</tr>
</tbody>
</table>
8 Application and Implementation

注
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The LM5150-Q1 is a non-synchronous boost controller. The following design procedure can be used to select the external components for the LM5150-Q1. Alternately, the WEBENCH® software may be used to generate complete designs. The WEBENCH software uses an iterative design procedure and accesses comprehensive data bases of components when generating a design. This section presents a simplified discussion of the design process.

8.1.1 Bypass Switch / Disconnection Switch Control

The STATUS pin can be used to control an external bypass switch, which turns on when the boost is in standby mode, or to control an external disconnection switch that turns off when the boost is in standby mode. In 图 17, a P-channel MOSFET is used to connect the boost supply input to the load directly when the boost is in standby mode. This bypass switch can be turned on slowly, but it must be turned off fast after the STATUS pin is pulled up by the wake-up event. The STATUS pin is rated to the absolute maximum 65 V.

图 17. Bypass Switch Control Example

In 图 18, a P-channel MOSFET is used to disconnect the boost supply output from the battery when boost is not required. This disconnection switch can be turned off slowly, but it must be turned on fast after the STATUS pin is pulled up by the wake-up event.
8.1.2 Loop Response

The open-loop transfer function of a boost regulator is defined as the product of modulator transfer function and feedback transfer function.

The modulator transfer function of a current mode boost regulator including a power stage with an embedded current loop can be simplified as a one load pole (F_{LP}), one ESR zero ($F_{Z_{ESR}}$), and one Right Half Plane (RHP) zero (F_{RHP}) system, which can be explained as follows.

Modulator transfer function is defined as follows:

$$\frac{\dot{V}_{LOAD}(s)}{V_{COMP}(s)} = A_M \times \left(1 + \frac{s}{2\pi F_{Z_{ESR}}} \right) \times \left(1 - \frac{s}{2\pi F_{RHP}} \right) \left(1 + \frac{s}{2\pi F_{LP}} \right)$$

where

- $A_M = \frac{R_{LOAD}}{R_S \times 10} \times \frac{D'}{2}$
- $F_{LP} = \frac{2}{2\pi \times R_{LOAD} \times C_{OUT}}$ [Hz]
- $F_{Z_{ESR}} = \frac{1}{2\pi \times R_{ESR} \times C_{OUT}}$ [Hz]
- $F_{RHP} = \frac{R_{LOAD} \times (D')^2}{2\pi \times L_M}$ [Hz]

R_{ESR} is the equivalent series resistance (ESR) of the output capacitor which is specified in the capacitor datasheet.

R_{COMP}, C_{COMP} and C_{HF} (see 图 19) configure the error amplifier gain and phase characteristics to produce a stable voltage loop with fast response. This compensation network creates a dominant pole at low frequency ($F_{DP_{EA}}$), a mid-band zero ($F_{Z_{EA}}$), and a high frequency pole ($F_{P_{EA}}$).
The feedback transfer function is defined as follows:

\[
\frac{V_{\text{COMP}}(s)}{V_{\text{LOAD}}(s)} = A_{FB} \times \frac{\left(1 + \frac{s}{2\pi F_{Z_{EA}}}\right)}{\left(1 + \frac{s}{2\pi F_{D_{P_{EA}}}}\right) \times \left(1 + \frac{s}{2\pi F_{P_{EA}}}\right)}
\]

where

\[
A_{FB} = \frac{1.2}{V_{\text{LOAD}}} \times R_{O} \times G_{m}
\]

\[
F_{D_{P_{EA}}} = \frac{1}{2\pi R_{O} \times C_{\text{COMP}}} \text{ [Hz]}
\]

\[
F_{Z_{EA}} = \frac{1}{2\pi R_{\text{COMP}} \times C_{\text{COMP}}} \text{ [Hz]}
\]

\[
F_{P_{EA}} = \frac{1}{2\pi R_{\text{COMP}} \times \frac{C_{\text{COMP}} \times C_{HF}}{C_{\text{COMP}} + C_{HF}}} \approx \frac{1}{2\pi R_{\text{COMP}} \times C_{HF}} \text{ [Hz]}
\]

\[
R_{O} (\approx 10 \text{ M\Omega}) \text{ is the output resistance of the error amplifier and } G_{m} (\approx 2 \text{ mA/V}) \text{ is the transconductance of the error amplifier.}
\]

Assuming \(F_{L_{P}}\) is canceled by \(F_{Z_{EA}}\), \(F_{R_{H_{P}}}\) is much higher than crossover frequency \((F_{CROSS})\), and \(F_{Z_{ESR}}\) is either canceled by \(F_{P_{EA}}\) or \(F_{Z_{ESR}}\) is much higher than \(F_{CROSS}\), the open-loop transfer function can be simplified as follows:

\[
T(s) = A_{M} \times A_{FB} \times \frac{1}{\left(1 + \frac{s}{2\pi F_{D_{P_{EA}}}}\right)}
\]

Because \(|T(s)| = 1\) at the crossover frequency, the crossover frequency can be simply estimated using those assumptions.

\[
F_{CROSS} \approx \sqrt{\frac{A_{M} \times A_{FB}}{2\pi R_{O} \times C_{\text{COMP}}} - 1} \text{ [Hz]}
\]
8.2 Typical Application

The LM5150-Q1 requires a minimum number of external components to work. 图 19 includes all optional components as an example.

8.2.1 Design Requirements

表 6 lists the design parameters for 图 19.

<table>
<thead>
<tr>
<th>DESIGN PARAMETER</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Application</td>
<td>Start-stop</td>
</tr>
<tr>
<td>Minimum Input Supply Voltage (V_{SUPPLY(MIN)})</td>
<td>2.5 V</td>
</tr>
<tr>
<td>Target Output Voltage (V_{LOAD})</td>
<td>8.5 V</td>
</tr>
<tr>
<td>Maximum Load Current (I_{LOAD})</td>
<td>2.94 A (≈ 25 Watt)</td>
</tr>
<tr>
<td>Switching Frequency (F_{SW})</td>
<td>440 kHz</td>
</tr>
<tr>
<td>D1 Diode Forward Voltage Drop</td>
<td>0.7 V</td>
</tr>
<tr>
<td>Maximum Inductor Current Ripple Ratio (RR)</td>
<td>0.6 (≈ 60%)</td>
</tr>
<tr>
<td>Estimated Full Load Efficiency (Eff)</td>
<td>0.8 (≈ 80%)</td>
</tr>
<tr>
<td>Current Limit Margin (M_{CL})</td>
<td>1.2 (≈ 120%)</td>
</tr>
<tr>
<td>F_{LP} over F_{CROSS} (K1)</td>
<td>0.15 (F_{LP} = 0.15 x F_{CROSS})</td>
</tr>
<tr>
<td>F_{Z,EA} over F_{LP} (K2)</td>
<td>3 (F_{Z,EA} = 3 x F_{LP})</td>
</tr>
</tbody>
</table>

8.2.2 Detailed Design Procedure

8.2.2.1 Custom Design With WEBENCH® Tools

Click here to create a custom design using the LM5150-Q1 device with the WEBENCH® Power Designer.

1. Start by entering the input voltage (V_{IN}), output voltage (V_{OUT}), and output current (I_{OUT}) requirements.
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.
3. Compare the generated design with other possible solutions from Texas Instruments.
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability.

In most cases, these actions are available:
- Run electrical simulations to see important waveforms and circuit performance
- Run thermal simulations to understand board thermal performance
- Export customized schematic and layout into popular CAD formats
- Print PDF reports for the design, and share the design with colleagues

Get more information about WEBENCH tools at www.ti.com/WEBENCH.

8.2.2.2 \(R_{SET} \) Resistor

Select the value of \(R_{SET} \), referring to 表 1. 9.53 kΩ is chosen to target 8.5 V in SS configuration. In general, about 5% to approximately 10% output undershoot should be considered when selecting the VOUT regulation target.

8.2.2.3 \(R_T \) Resistor

The value of \(R_T \) for 440-kHz switching frequency is calculated as follows:

\[
R_T = \frac{2.233 \times 10^4}{F_{SW_{RT,TYPICAL}}} - 619 = \frac{2.233 \times 10^4}{440k} - 619 = 50.1 \text{kΩ}
\]

(19)

A standard value of 49.9 kΩ is chosen for RT.

In general, higher frequency boost converters are smaller and faster, but they also have higher switching losses and lower efficiency.

8.2.2.4 Inductor Selection (\(L_M \))

When selecting the inductor, consider three key parameters: inductor current ripple ratio (RR), falling slope of the inductor current, and RHP zero frequency (\(F_{RHP} \)).

Inductor current ripple ratio is selected to have a balance between core loss and copper loss. The falling slope of the inductor current must be low enough to prevent sub-harmonic oscillation at high duty cycle (additional \(R_{SL} \) resistor is required if not). Higher \(F_{RHP} \) (lower inductance) allows a higher crossover frequency and is always preferred when using a smaller value output capacitor.

The inductance value can be selected to set the inductor current ripple between 30% and 70% of the average inductor current as a good compromise between RR, \(F_{RHP} \) and inductor falling slope. In this example, 60% ripple ratio (RR = 0.6) is selected as the maximum inductor current ripple ratio (the inductor current ripple ratio is the biggest when \(D = 0.33 \)). The target inductance value is calculated as follows:

\[
L_{M(TARGET)} = \frac{0.14 \times R_{LOAD}}{RR \times F_{SW}} = \frac{0.14 \times 8.5}{0.6 \times 440k} = 1.53 \mu \text{H}
\]

(20)

\[
L_{M(GUIDE)} = \frac{(V_{LOAD} - V_{SUPPLY(MIN)}) \times V_{SUPPLY(MIN)}}{F_{SW} \times V_{LOAD} \times I_{LOAD}} = \frac{(8.5 - 2.5) \times 2.5}{440k \times 8.5 \times 2.94} = 1.36 \mu \text{H}
\]

(21)

If the target inductance is smaller than the value calculated using 公式 21, consider adding the slope compensation resistor (\(R_{SL} \)), as mentioned in the Slope Compensation Ramp (\(R_{SL} \)) section, or select a smaller RR and recalculate the inductance using 公式 20.

A standard value of 1.5 \(\mu \text{H} \) is chosen for \(L_M \). The required inductor saturation current rating is estimated after selecting \(R_S \) and \(R_{SL} \).

8.2.2.5 Current Sense (\(R_S \))

Based on the assumptions that 20% of current limit margin (\(M_{CL} = 1.2 \)), 80% estimated efficiency (\(\text{Eff} = 0.8 \)) at full load and no \(R_{SL} \) populated, \(R_S \) is calculated using 公式 22 and 公式 23.
8.2.2.6 Slope Compensation Ramp (R_{SL})

The minimum inductance value which can prevent sub-harmonic oscillation without R_{SL} is calculated using公式24. If the selected inductance value is less than the minimum inductance calculated using公式24, add a slope compensation resistor (R_{SL}) externally.

\[
L_{M(MIN)} = 0.5 \times \frac{(V_{LOAD} + V_F) - V_{SUPPLY(MIN)}}{60m \times F_{SW}} \times R_S \times \text{Margin} = 0.5 \times \frac{(8.5 + 0.7) - 2.5}{60m \times 440k} \times 7m \times 1.2 = 1.07\mu\text{H} \tag{24}
\]

1.2 is the recommended margin to cover non-ideal factors.

If needed, use公式25 to find the R_{SL} value which matches the typical amount of slope compensation.

\[
R_{SL} = 0.82 \times \frac{(V_{LOAD} + V_F) - V_{SUPPLY(MIN)}}{L_M \times F_{SW} \times 30\mu\text{A}} \times R_S - 2k[\Omega] \tag{25}
\]

In this example, R_{SL} is not populated because the selected inductance value, 1.5 \mu\text{H}, is greater than the minimum required inductance from公式24.

After selecting R_{S} and R_{SL}, the peak inductor current at current limit (I_{PEAK-CL}) can be calculated. Setting the inductor saturation current rating higher than the I_{PEAK-CL} is recommended.

\[
I_{PEAK-CL} = \frac{V_{CL} - 10 \times 30\mu\text{A} \times (2k\Omega + R_{SL}) \times F_{SW_{RT}} \times D}{10 \times R_S} + \frac{V_{SUPPLY(MIN)} \times D \times 1}{L_M} \times T_D[A] \tag{26}
\]

\[
I_{PEAK-CL} = \frac{1.2 + 0.6 \times \frac{(8.5 - 2.5)}{8.5} - 10 \times 30\mu \times 2k \times 1 \times \left(1 - \frac{2.5}{8.5 + 0.7}\right)}{10 \times 7m} + \frac{2.5 \times 20n}{1.5u} = 16.9[A] \tag{27}
\]

T_D is the typical propagation delay of current limit.

8.2.2.7 Output Capacitor (C_{OUT})

There are a few ways to select the proper value of output capacitor (C_{OUT}). The output capacitor value can be selected based on output voltage ripple, output overshoot or undershoot due to load transient. In this example, C_{OUT} is selected based on output undershoot because the waking up performance is similar with no-load to full-load transient performance.

The output undershoot becomes smaller by increasing F_{CROSS} or by decreasing F_{LP}: a smaller C_{OUT} is allowed by increasing F_{CROSS} or by decreasing F_{LP}.
To increase F_{CROSS}, F_{SW} and F_{RHP} must be increased because the maximum F_{CROSS} is, in general, limited at 1/10 of F_{RHP} at $V_{SUPPLY(MIN)}$ or 1/10 of F_{SW} whichever is lower.

F_{RHP} is calculated using 公式 28.

$$F_{RHP} = \frac{R_{LOAD} \times \left(\frac{V_{SUPPLY(MIN)}}{V_{LOAD} + V_F} \right)^2}{2\pi \times L_M} = \frac{8.5 \times 2.5}{2\pi \times 1.5} = 22.6\text{kHz}$$

(28)

F_{CROSS} is selected at 1/10 of F_{RHP} or 1/10 of F_{SW} whichever is lower.

$$F_{CROSS} = \frac{2.27\text{kHz}}{10} = 0.227\text{kHz}$$

(29)

$$F_{SW} = \frac{440\text{kHz}}{10} = 44\text{kHz}$$

(30)

In this example, 2.27 kHz is selected as a target F_{CROSS} and F_{LP} is selected to be 340 Hz ($K_1 = 0.15$).

In general, there is about 5% or less undershoot with $F_{LP} = 0.1 \times F_{CROSS}$ ($K_1 = 0.1$) and 10% or less undershoot with $F_{LP} = 0.2 \times F_{CROSS}$ ($K_1 = 0.2$) during 0% to 100% load transient. The recommended K_1 factor range is from 0.02 to 0.2.

F_{LP} is calculated using 公式 31.

$$F_{LP} = \frac{2}{2\pi \times R_{LOAD} \times C_{OUT}}$$

(31)

The minimum required output capacitance value is calculated using 公式 32.

$$C_{OUT} = \frac{2}{2\pi \times R_{LOAD} \times F_{LP}} = \frac{2}{2\pi \times 8.5 \times 340} = 324\mu\text{F}$$

(32)

The maximum output ripple current is calculated at the minimum input supply voltage as follows:

$$I_{RIPPLE,COUT(MAX)} = \frac{V_{LOAD} \times I_{LOAD}}{2 \times V_{SUPPLY(MIN)}} = \frac{8.5 \times 2.94}{2 \times 2.5} = 5[A]$$

(33)

The ripple current rating of the output capacitors must be enough to handle the output ripple current. By using multiple output capacitors, the ripple current can be split. In practice, ceramic capacitors are placed closer to the diode and the MOSFET than the bulk aluminum capacitors in order to absorb the majority of the ripple current.

In this example, three 100-μF capacitors are placed in parallel to ensure ripple current capability. If high-ESR capacitors are used for the output capacitor, additional 10-μF ceramic capacitors can be placed close to the switching components to minimize switching noise.

8.2.2.8 Loop Compensation Component Selection and Maximum ESR

Based on 公式 18, C_{COMP} is calculated as follows:

$$C_{COMP(over\ damping)} = \frac{\sqrt{\left[A_M \times A_{FB}\right]^2 - 1}}{2\pi \times R_O \times F_{CROSS}} = \sqrt{\frac{R_{LOAD}}{R_S \times 10} \times \frac{D' \times V_{LOAD}}{2}} \times \frac{1.2 \times R_O \times G_m}{2\pi \times R_O \times F_{CROSS}}$$

(34)

$$= \frac{8.5 \times 2.94}{7 \times 10} \times \frac{8.5 + 0.7}{2} \times \frac{1.2 \times 10 \times 10 \times 2}{2\pi \times 10 \times 2.27} = 111\text{nF}$$

(35)
By selecting C_{COMP} following 公式 34, the typical phase margin is set to 90° and the loop response is overdamped. In this example, F_{Z_EA} is placed at 3 times higher frequency than F_{LP} to have lower phase margin but faster settling time ($K2 = 3$, target F_{Z_EA} is 1.02 kHz). Recommended range of F_{Z_EA} is from $1 \times F_{LP}$ to $4 \times F_{LP}$ ($1 \leq K2 \leq 4$). Practical crossover frequency will vary with $K2$ with a range of $0.5 \times F_{\text{CROSS}}$ to $1.0 \times F_{\text{CROSS}}$.

$$C_{\text{COMP}} = \frac{C_{\text{COMP(over damping)}}}{K2} = \frac{111 \text{nF}}{3} = 37 \text{nF}$$ \hspace{1cm} (36)

A standard value of 33 nF is chosen for C_{COMP}. R_{COMP} is selected to set the error amplifier zero at 1.02 kHz.

$$R_{\text{COMP}} = \frac{1}{2\pi \times C_{\text{COMP}} \times F_{Z_EA}} = \frac{1}{2\pi \times 33 \text{nF} \times 1.02 \text{kHz}} = 4.73 \text{k}\Omega$$ \hspace{1cm} (37)

A standard value of 4.64 kΩ is chosen for R_{COMP}. C_{HF} is usually used to create a pole at high frequency (F_{P_EA}) to cancel F_{Z_ESR}. By using a small ESR capacitor which can place F_{Z_ESR} greater than $10 \times F_{\text{CROSS}}$, the output capacitor ESR would not affect the loop stability. The maximum ESR which does not affect the loop response is calculated using 公式 38.

$$R_{\text{ESR(MAX)}} = \frac{1}{2\pi \times C_{\text{COMP}} \times F_{\text{CROSS}} \times 10} = \frac{1}{2\pi \times 330 \text{uF} \times 2.27 \text{k}\Omega \times 10} = 23 \text{m}\Omega$$ \hspace{1cm} (38)

8.2.2.9 PVCC Capacitor, AVCC Capacitor, and AVCC Resistor

The PVCC capacitor supplies the peak transient current to the LO driver. The value of PVCC capacitor (C_{PVCC}) must be 4.7 μF or higher and must be a high-quality, low-ESR, ceramic capacitor. C_{PVCC} must be placed close to the PVCC pin and the PGND pin. A value of 4.7 μF is selected for this design example. The AVCC capacitor must be placed close to the device. The recommended AVCC capacitor value is 0.1 μF. The AVCC resistor should be placed between PVCC and AVCC pins. The recommended AVCC resistor value is 10 Ω.

8.2.2.10 VOUT Filter (C_{VOUT}, R_{VOUT})

The VOUT pin is the input of the internal VCC regulator and also is the input of the output voltage sensing. To minimize noise at the VOUT pin, a 1-μF capacitor must be placed at the VOUT pin in most cases. If multiple output capacitors are used, one of them can be placed at the VOUT pin as C_{VOUT}. The VOUT capacitor must be a high-quality, low-ESR, ceramic capacitor and must be placed close to the device. A resistor can be added at the VOUT pin (R_{VOUT}) to form a RC filter (see 图 19). In this case, the maximum resistor value should be less than or equal to 2 Ω.

8.2.2.11 Input Capacitor

The input capacitors reduce the input voltage ripple. Assuming high-quality ceramic capacitors are used for the input capacitors, the maximum input voltage ripple can be calculated by using 公式 39.

$$V_{\text{RIPPLY(CIN)}} = \frac{V_{\text{LOAD}}}{32 \times L_{M} \times C_{\text{IN}} \times F_{SW}} [V]$$ \hspace{1cm} (39)

The required input capacitor value is a function of the impedance of the source power supply. More input capacitors are required if the impedance of the source power supply is not low enough. In the example, three 10-μF ceramic capacitors are used.

8.2.2.12 MOSFET Selection

The MOSFET gate driver of the LM5150-Q1 is powered by the internal 5-V VCC regulator. The MOSFET driven by the LM5150-Q1 must have a logic-level gate threshold with its on-resistance specified at 4.5 V or lower and must be rated to handle the maximum output voltage plus any switch node ringing. The maximum gate charge is limited by the 75-mA PVCC sourcing current limit, and is calculated as follows:

$$Q_{G\!(@5\text{V})} < \frac{75m\text{C}}{F_{SW}}$$ \hspace{1cm} (40)

A leadless package is preferred for high switching-frequency designs. The MOSFET gate capacitance should be small enough so that the gate voltage is fully discharged during the off-time.
8.2.2.13 Diode Selection

A Schottky is the preferred type for D1 diode due to its low forward voltage drop and small reverse recovery charge. Low reverse leakage current is important parameter when selecting the Schottky diode. The diode must be rated to handle the maximum output voltage plus any switching node ringing. Also, it must be able to handle the average output current. To prevent chatter between wake-up and standby, the forward voltage drop of the D1 diode must be less than 0.95 V at full load.

8.2.2.14 Efficiency Estimation

The total loss of the boost converter \(P_{\text{TOTAL}} \) can be expressed as the sum of the losses in the LM5150-Q1 \((P_{\text{IC}}) \), MOSFET power losses \((P_{\text{Q}}) \), diode power losses \((P_{\text{D}}) \), inductor power losses \((P_{\text{L}}) \), and the loss in the sense resistor \((P_{\text{RS}}) \).

\[
P_{\text{TOTAL}} = P_{\text{IC}} + P_{\text{Q}} + P_{\text{D}} + P_{\text{L}} + P_{\text{RS}} \text{[W]}
\]

(41)

\(P_{\text{IC}} \) can be separated into gate driving loss \((P_{\text{G}}) \) and the losses caused by quiescent current \((P_{\text{IQ}}) \).

\[
P_{\text{IC}} = P_{\text{G}} + P_{\text{IQ}} \text{[W]}
\]

(42)

Each power loss is approximately calculated as follows:

\[
P_{\text{G}} = Q_{\text{G}}(\text{mS}) \times V_{\text{OUT}} \times f_{\text{SW}} \text{[W]}
\]

(43)

\[
P_{\text{IQ}} = V_{\text{OUT}} \times I_{\text{OUT}} + V_{\text{VIN}} \times I_{\text{VIN}} \text{[W]}
\]

(44)

\(I_{\text{VIN}} \) and \(I_{\text{VOUT}} \) values in each mode can be found in the supply current section of the Electrical Characteristics table.

\(P_{\text{Q}} \) can be separated into switching loss \((P_{\text{Q(SW)}}) \) and conduction loss \((P_{\text{Q(COND)}}) \).

\[
P_{\text{Q}} = P_{\text{Q(SW)}} + P_{\text{Q(COND)}} \text{[W]}
\]

(45)

Each power loss is approximately calculated as follows:

\[
P_{\text{Q(SW)}} = 0.5 \times (V_{\text{VOUT}} + V_{\text{F}}) \times I_{\text{SUPPLY}} \times (t_{\text{R}} + t_{\text{F}}) \times f_{\text{SW}} \text{[W]}
\]

(46)

\(t_{\text{R}} \) and \(t_{\text{F}} \) are the rise and fall times of the low-side N-channel MOSFET device. \(I_{\text{SUPPLY}} \) is the input supply current of the boost converter.

\[
P_{\text{Q(COND)}} = D \times I_{\text{SUPPLY}}^2 \times R_{\text{DS(ON)}} \text{[W]}
\]

(47)

\(R_{\text{DS(ON)}} \) is the on-resistance of the MOSFET and is specified in the MOSFET data sheet. Consider the \(R_{\text{DS(ON)}} \) increase due to self-heating.

\(P_{\text{D}} \) can be separated into diode conduction loss \((P_{\text{VF}}) \) and reverse recovery loss \((P_{\text{RR}}) \).

\[
P_{\text{D}} = P_{\text{VF}} + P_{\text{RR}} \text{[W]}
\]

(48)

Each power loss is approximately calculated as follows:

\[
P_{\text{VF}} = (1 - D) \times V_{\text{F}} \times I_{\text{SUPPLY}} \text{[W]}
\]

(49)

\[
P_{\text{RR}} = V_{\text{LOAD}} \times Q_{\text{RR}} \times f_{\text{SW}} \text{[W]}
\]

(50)

\(Q_{\text{RR}} \) is the reverse recovery charge of the diode and is specified in the diode datasheet. Reverse recovery characteristics of the diode strongly affect efficiency, especially when the output voltage is high.

\(P_{\text{L}} \) is the sum of DCR loss \((P_{\text{DCR}}) \) and AC core loss \((P_{\text{AC}}) \). DCR is the DC resistance of inductor which is mentioned in the inductor data sheet.

\[
P_{\text{L}} = P_{\text{DCR}} + P_{\text{AC}} \text{[W]}
\]

(51)

Each power loss is approximately calculated as follows:

\[
P_{\text{DCR}} = I_{\text{SUPPLY}}^2 \times R_{\text{DCR}} \text{[W]}
\]

(52)

\[
P_{\text{AC}} = K \times \Delta f f_{\text{SW}} \text{[W]}
\]

(53)

\[
\Delta f = \frac{V_{\text{SUPPLY}} \times D \times \frac{1}{f_{\text{SYNC}}}}{L_{\text{M}}}
\]

(54)
ΔI is the peak-to-peak inductor current ripple. K, α, and β are core dependent factors which can be provided by the inductor manufacturer.

P_{RS} is calculated as follows:

$$P_{RS} = D \times I_{SUPPLY}^2 \times R_S [\text{W}]$$ \hspace{1cm} (55)

Efficiency of the power converter can be estimated as follows:

$$\text{Efficiency} = \frac{V_{LOAD} \times I_{LOAD}}{P_{TOTAL} + V_{LOAD} \times I_{LOAD}} \times 100[\%]$$ \hspace{1cm} (56)

8.2.3 Application Curves

图 20. Automatic Wake-Up

图 21. Load Transient (3 A to 1.5 A, 0.1 V/DIV)
8.3 System Examples

8.3.1 Lower Standby Threshold in SS Configuration

By connecting the VIN pin to the VOUT pin, the current limit threshold at the current limit comparator input \(V_{CL}\) is set to 1.2 V. In SS configuration, the VOUT standby threshold is ignored. The device goes into the standby mode when VOUT > VIN standby threshold.

![Diagram of LM5150 with components labeled](image)

图 22. Lower Standby Threshold in SS Configuration

8.3.2 Dithering Using Dither Enabled Device

Dithering is achieved by connecting DITH output to the RT pin through a resistor.

![Diagram of LM5141 and LM5150](image)

图 23. Dithering Using Dither Enabled Device LM5141

8.3.3 Clock Synchronization With LM5140

Clock synchronization can be achieved by connecting LM5140’s SYNCOUT to SYNC.

![Diagram of LM5140 and LM5150](image)

图 24. Clock Synchronization With LM5140
System Examples (接下页)

8.3.4 Dynamic Frequency Change
Switching frequency can be changed dynamically during operation by changing the RT resistor.

8.3.5 Dithering Using an External Clock
If a low-frequency clock is available, dithering can be achieved by injecting a ramp signal into RT.
9 Power Supply Recommendations

The LM5150-Q1 is designed to operate from a power supply or a battery whose voltage range is from 1.5 V to 42 V. The input power supply should be able to supply the maximum boost supply voltage and handle the maximum input current at 1.5 V. The impedance of the power supply and battery including cables must be low enough that an input current transient does not cause an excessive drop. Additional input ceramic capacitors may be required at the supply input of the converter.

10 Layout

10.1 Layout Guidelines

The performance of switching converters heavily depends on the quality of the PCB layout. The following guidelines will help users design a PCB with the best power conversion performance, thermal performance, and minimize generation of unwanted EMI.

- Place Q1, D1, and Rs first.
- Place ceramic C_{OUT} and make the switching loop (C_{OUT}-D1-Q1-Rs-C_{OUT}) as small as possible.
- Leave copper area next to D1 for thermal dissipation.
- Place LM5150-Q1 close to Rs.
- Place C_{PVCC} as close to the device as possible between PVCC and PGND.
- Connect PGND directly to the center of the sense resistor using a wide and short trace.
- Connect CS to the center of the sense resistor. Connect through vias if required. Connect filter capacitor between CS pin and exposed pad.
- Connect AGND directly to the analog ground plain and connect to R_{SET}, R_{T}, and C_{COMP}.
- Connect the exposed pad to the analog ground plain and the power ground plain through vias.
- Connect LO directly to the gate of Q1.
- Make the switching signal loop (LO-Q1-Rs-PGND-LO) as small as possible.
- Place C_{VOUT} as close to the device as possible.
- The LM5150-Q1 has an exposed thermal pad to aid power dissipation. Adding several vias under the exposed pad helps conduct heat away from the device. Connect the vias to a large ground plane on the bottom layer.
10.2 Layout Example

图 27. LM5150-Q1 PCB Layout Example
11 器件和文档支持

11.1 器件支持

11.1.1 开发支持

11.1.1.1 使用 WEBENCH® 工具创建定制设计

请单击此处，使用 LM5150-Q1 器件并借助 WEBENCH® 电源设计器创建定制设计。
1. 在开始阶段键入输出电压 (V_IN)、输出电压 (V_OUT) 和输出电流 (I_OUT) 要求。
2. 使用优化器拨盘优化关键设计参数，如效率、封装和成本。
3. 将生成的设计与德州仪器 (TI) 的其他解决方案进行比较。

WEBENCH Power Designer 提供一份定制原理图以及罗列实时价格和组件可用性的物料清单。

在多数情况下，可执行以下操作：
- 运行电气仿真，观察重要波形以及电路性能
- 运行热性能仿真，了解电路板热性能
- 将定制原理图和布局方案导出至常用 CAD 格式
- 打印设计方案的 PDF 报告并与同事共享

有关 WEBENCH 工具的详细信息，请访问 www.ti.com/WEBENCH。

11.2 接收文档更新通知

要接收文档更新通知，请导航至 TI.com 上的器件产品文件夹。单击右上角的“通知我”进行注册，即可每周接收产品信息更改摘要。有关更改的详细信息，请查看任何已修订文档中包含的修订历史记录。

11.3 社区资源

下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商“按照原样”提供。这些内容并不构成 TI 技术规范，并且不一定反映 TI 的观点；请参阅 TI 的《使用条款》。

TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在 e2e.ti.com 中，您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。

设计支持 TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。

11.4 商标

E2E is a trademark of Texas Instruments.
WEBENCH is a registered trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

11.5 静电放电警告

ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序，可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级，大至整个器件故障。精密的集成电路可能更容易受到损坏，这是因为非常细微的参数更改都可能导致器件与其发布的规格不相符。

11.6 Glossary

SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.
12 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更，恕不另行通知和修订此文档。如欲获取此数据表的浏览器版本，请参阅左侧的导航。
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.
NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM5150QRUMRQ1</td>
<td>ACTIVE</td>
<td>WQFN</td>
<td>RUM</td>
<td>16</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>-40 to 150</td>
<td>LM5150 Q</td>
</tr>
<tr>
<td>LM5150QRUMTQ1</td>
<td>ACTIVE</td>
<td>WQFN</td>
<td>RUM</td>
<td>16</td>
<td>250</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>-40 to 150</td>
<td>LM5150 Q</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) **RoHS**: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
- **RoHS Exempt**: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
- **Green**: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) **Lead/Ball Finish** - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
德州仪器（TI）公司有权按照最新发布的JESD46对其半导体产品和服务进行纠正、增强、改进和其他修改，并不再按最新发布的JESD48提供任何产品和服务。买方在下订单前应获取最新的相关信息，并验证这些信息是否完整且是最新的。

TI公布的半导体产品销售条款（http://www.ti.com/sc/docs/stdterms.htm）适用于TI已认证和批准上市的已封装集成电路产品的销售。另有其他条款可能适用于其他类型TI产品和服务的使用或销售。

复制TI数据表上TI信息的任何部分时，不得变更该等信息，且必须随附所有相关保证、条件、限制和通知，否则不得复制。TI对该等复制文件不承担任何责任。第三方信息可能受到其他限制条件的制约。在转售TI产品或服务时，如果存在对产品或服务参数的虚假陈述，则会失去相关TI产品或服务的明示或暗示保证，且构成不公平的、欺诈性的商业行为，且此等虚假陈述不承担任何责任。

买方和在系统中整合TI产品的其他开发人员（总称“设计人员”）理解并同意，设计人员在设计应用时应自行实施独立的分析、评价和判断，并应全权负责确保应用的安全性，及设计人员的应用（包括应用中使用的所有TI产品）应符合所有适用的法律法规及其他相关要求。设计人员就自己设计的应用声明，其具有以下所有必要专业知识，能够预见故障的危险后果，并降低可能导致危险的故障几率并采取适当措施。设计人员同意，在使用或分发包含TI产品的任何应用前，将彻底测试该等应用和该等应用中所用TI产品的功能。

TI提供技术、应用或其他设计建议、质量特点、可靠性数据或其他服务或信息，旨在帮助设计人员开发整合了TI产品的应用。如设计人员（个人，或如果是代表公司，则为设计人员的公司）下载、访问或使用任何TI资源，即表示其同意仅为该等目标，按照本通知的条款使用任何特定TI资源。

TI提供的TI资源系“按原样”提供。TI及其代表全权赔偿因其不遵守本通知条款和条件而引起的任何损害、费用、损失和/或责任。除TI已明确指出特定产品已达到特定行业标准（例如ISO/TS 16949和ISO 26262）的要求外，TI不对未达到任何该等行业标准要求而承担任何责任。

如果设计人员明确宣称产品有助于功能安全或符合行业功能安全标准，则该等产品旨在帮助设计人员设计和创作自己的符合相关功能安全标准和要求的系统。设计人员必须确保遵守适用的法律法规和监管要求。设计人员不可将任何TI产品用于关乎性命的医疗设备，除非已由各方具有相应资质的管理人员签署专门为该类应用制定的专业文件。关乎性命的医疗设备包括但不限于，生命保障设备、心脏起搏器、人工心脏泵、神经刺激器和植入设备。此类设备包括但不限于，美国食品药品监督管理局认定为III类设备的设备，以及在任何国家的其他国家或地区认定为同类型设备的所有医疗设备。

TI可能明确指示某些产品具备某些特定资格（例如Q100、军用级或增强型产品）。设计人员同意，其具备一切必要专业知识，可以为自己的应用选择适合的产品，并且正确选择产品的风险由设计人员承担。设计人员单方面负责遵守与该等选择有关的所有法律及监管要求。设计人员同意向TI及其代表全额赔偿因其不遵守本通知条款和条件而引起的任何损害、费用、损失和/或责任。

邮寄地址：上海市浦东新区世纪大道1568号中建大厦32楼，邮政编码：200122
Copyright © 2017德州仪器半导体技术（上海）有限公司