BQ28Z610-R1 # ZHCSKR6B - JANUARY 2020 - REVISED JANUARY 2022 # BQ28Z610-R1 适用于 1-2 芯串联锂离子电池组的 Impedance Track™ 电量监测计和保护解决方案 ## 1 特性 - 采用专用主模式 I2C 接口实现自主电池充电控制 - 采用内部旁路实现电芯均衡,优化电池运行状况 - 高侧保护 N 沟道 FET 驱动器可在故障期间实现串 行总线通信 - 适用于电压、电流和温度的可编程保护等级 - 具备两个独立 ADC 的模拟前端 - 支持电流和电压同步采样 - 高精度库伦计数器,输入失调电压误差<1µV (典型值) - 支持低至 $1m\Omega$ 的电流感应电阻器,同时支持 1mA电流测量 - 支持电池跳变点 (BTP) 功能,用于 Windows® 集成 - SHA-1 认证响应器,用于提高电池组安全性 - 适用于高速编程和数据访问的 400kHz I2C 总线通 - 紧凑型 12 引脚 VSON 封装 (DRZ) # 2 应用 - 平板电脑计算 - 便携式和可佩戴式健康设备 - 便携式音频设备 - 无线 (Bluetooth®) 扬声器 简化版原理图 ## 3 说明 德州仪器 (TI) 的 BQ28Z610-R1 器件是一款高度集成 的高精度 1-2 芯串联电池电量监测计和保护解决方案, 可实现自主的电荷控制和电芯均衡。 BQ28Z610-R1 器件通过主模式 I2C 广播充电电流和电 压信息,可实现自主电荷控制,从而消除通常由系统主 机控制器产生的软件开销。 BQ28Z610-R1 器件提供了一个基于电池组的全集成解 决方案,该解决方案具备闪存可编程的定制精简指令集 CPU (RISC)、安全保护以及认证功能,适用于 1-2 芯 串联锂离子和锂聚合物电池组。 BQ28Z610-R1 电量监测计通过 I²C 兼容接口进行通 信,并将超低功耗的高速 TI BQBMP 处理器、高精度 模拟测量功能、集成闪存、大量的外设和通信端口、N 沟道 FET 驱动器以及 SHA-1 认证转换响应器融合于 套完整的高性能电池管理解决方案。 ## 器件信息 | 器件型号 ⁽¹⁾ | 封装 | 封装尺寸 (标称值) | |---------------------|-----------|--------------| | BQ28Z610-R1 | VSON (12) | 4mm x 2.5mm | 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。 无线 (Bluetooth®) 扬声器应用 方框图 ## **Table of Contents** | 1 特性 | . 1 | 7.23 Current Protection Thresholds | 10 | |--|-----|---|------------------| | | | 7.24 Current Protection Timing | <mark>1</mark> 1 | | 3 说明 | | 7.25 N-CH FET Drive (CHG, DSG) | | | 4 Revision History | | 7.26 I ² C Interface I/O | | | 5 说明(续) | | 7.27 I ² C Interface Timing | | | 6 Pin Configuration and Functions | | 7.28 Typical Characteristics | 14 | | 7 Specifications | | 8 Detailed Description | 17 | | 7.1 Absolute Maximum Ratings | | 8.1 Overview | 17 | | 7.2 ESD Ratings | | 8.2 Functional Block Diagram | 17 | | 7.3 Recommended Operating Conditions | | 8.3 Feature Description | 18 | | 7.4 Thermal Information | | 8.4 Device Functional Modes | <mark>2</mark> 2 | | 7.5 Supply Current | | 9 Applications and Implementation | 24 | | 7.6 Power Supply Control | | 9.1 Application Information | <mark>2</mark> 4 | | 7.7 Low-Voltage General Purpose I/O, TS1 | | 9.2 Typical Applications | <mark>2</mark> 4 | | 7.8 Power-On Reset (POR) | | 10 Power Supply Recommendations | <mark>2</mark> 7 | | 7.9 Internal 1.8-V LDO | | 11 Layout | 28 | | 7.10 Current Wake Comparator | | 11.1 Layout Guidelines | 28 | | 7.11 Coulomb Counter | | 11.2 Layout Example | 29 | | 7.12 ADC Digital Filter | | 12 Device and Documentation Support | 30 | | 7.13 ADC Multiplexer | | 12.1 第三方产品免责声明 | 30 | | 7.14 Cell Balancing Support | | 12.2 Documentation Support | 30 | | 7.15 Internal Temperature Sensor | | 12.3 接收文档更新通知 | 30 | | 7.16 NTC Thermistor Measurement Support | | 12.4 支持资源 | 30 | | 7.17 High-Frequency Oscillator | | 12.5 Trademarks | 30 | | 7.18 Low-Frequency Oscillator | | 12.6 Electrostatic Discharge Caution | 30 | | 7.19 Voltage Reference 1 | | 12.7 术语表 | | | 7.20 Voltage Reference 2 | | 13 Mechanical, Packaging, and Orderable | | | 7.21 Instruction Flash | | Information | 30 | | 7.22 Data Flash | | | | | | | | | # **4 Revision History** | Changes from Revision A (February 2020) to Revision B (January 2022) | Page | |---|------| | Changed Absolute Maximum Ratings | 4 | | | | | Changes from Revision * (February 2020) to Revision A (February 2020) | Page | | Changed I ² C Interface I/O | 12 | # 5 说明(续) BQ28Z610-R1 器件提供大量的电池和系统安全功能,其中包括对电池提供放电过流、充电短路和放电短路保护,对 N 沟道 FET 提供 FET 保护,内部 AFE 看门狗以及电芯均衡功能。该器件可通过固件添加更多保护特性,例如过压、欠压、过热等。 # **6 Pin Configuration and Functions** 图 6-1. DRZ Package 12-Pin VSON Top View 表 6-1. Pin Functions | PIN NUMBER | PIN NAME | TYPE | DESCRIPTION | |------------|--------------|------------------|---| | 1 | VSS | P ⁽¹⁾ | Device ground | | 2 | SRN | Al | Analog input pin connected to the internal coulomb counter peripheral for integrating a small voltage between SRP and SRN where SRP is the top of the sense resistor. | | 3 | SRP | Al | Analog input pin connected to the internal coulomb counter peripheral for integrating a small voltage between SRP and SRN where SRP is the top of the sense resistor. | | 4 | 4 TS1 AI | | Temperature input for ADC to the oversampled ADC channel, and optional Battery Trip Point (BTP) output | | 5 | SCL | I/O | Serial Clock for I ² C interface; requires external pullup when used | | 6 | SDA | I/O | Serial Data for I ² C interface; requires external pullup | | 7 | DSG | 0 | N-CH FET drive output pin | | 8 | PACK | AI, P | Pack sense input pin | | 9 | CHG | 0 | N-CH FET drive output pin | | 10 | PBI | Р | Power supply backup input pin | | 11 | 11 VC2 AI, P | | Sense voltage input pin for most positive cell, balance current input for most positive cell. Primary power supply input and battery stack measurement input (BAT) | | 12 | VC1 | Al | Sense voltage input pin for least positive cell, balance current input for least positive cell | | | PWPD | _ | Exposed Pad, electrically connected to VSS (external trace) | ⁽¹⁾ P = Power Connection, O = Digital Output, AI = Analog Input, I = Digital Input, I/O = Digital Input/Output ## 7 Specifications ## 7.1 Absolute Maximum Ratings Over operating free-air temperature range (unless otherwise noted)(1) | | | MIN | MAX | UNIT | |--|---------------------|---|------|------| | Supply voltage range, V _{CC} | VC2, PBI | - 0.3 | 30 | V | | | PACK | - 0.3 | 30 | V | | Supply voltage range, V _{CC} VC2, PBI - 0.3 30 Input voltage range, V _{IN} PACK - 0.3 30 TS - 0.3 V _{REG} + 0.3 SRP, SRN - 0.3 V _{REG} + 0.3 VC2 VC1 - 0.3 VC1 + 8.5 or VSS + 30 VC1 VSS - 0.3 VSS + 8.5 or VSS + 30 VC1 VSS - 0.3 VSS + 8.5 or VSS + 30 Output voltage range, V _O CHG, DSG - 0.3 6 Output voltage range, V _O CHG, DSG - 0.3 32 Maximum VSS current, I _{SS} ±50 Functional Temperature, T _{FUNC} - 40 110 Lead temperature (soldering, 10 s), T _{SOLDER} ±300 | V | | | | | | SRP, SRN | -0.3 30 V -0.3 30 V -0.3 30 V -0.3 V _{REG} + 0.3 V -0.3 V _{REG} + 0.3 V VC1 - 0.3 VC1 + 8.5 or VSS + 30 V VSS - 0.3 VSS + 8.5 or VSS + 30 V -0.3 6 V -0.3 32 V -0.3 32 V -0.40 110 °C +300 °C | | | | Input voltage range, V _{IN} | VC2 | VC1 - 0.3 | | V | | | VC1 | VSS - 0.3 | | V | | Communication Interface | SDA, SCL | - 0.3 | 6 | V | | Output voltage range, V _O | CHG, DSG | - 0.3 | 32 | V | | Maximum VSS current, I _{SS} | | | ±50 | mA | | Functional Temperature, T _{FUNC} | · | - 40 | 110 | °C | | Lead temperature (soldering, 10 s), | T _{SOLDER} | | ±300 | °C | | Storage temperature range, T _{STG} | | - 65 | 150 | °C | ⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime. ## 7.2 ESD Ratings | | | VALUE | UNIT | |--------------------|---|-------|------| | | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾ | ±2000 | V | | V _(ESD) | Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002, all pins ⁽²⁾ | ±500 | v | ⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. ## 7.3 Recommended Operating Conditions Typical values stated where $T_A = 25^{\circ}$ C and VCC = 7.2 V, Min/Max values stated where $T_A = -40^{\circ}$ C to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted) | PARAMETER | | TEST CONDITION | MIN | NOM | MAX | UNIT | |-------------------------|-----------------------------|--|------------------|---------------------------------|----------------------|--------| | V _{CC} | Supply voltage | VC2, PBI | 2.2 | | 26 | V | | V _{SHUTDOWN} - | Shutdown voltage | V _{PACK} < V _{SHUTDOWN} - | 1.8 | 2.0 | 2.2 | V | | V _{SHUTDOWN+} | Start-up voltage | V _{PACK} > V _{SHUTDOWN} - + V _{HYS} | 2.05 | 2.25 | 2.45 | V | | V _{HYS} | Shutdown voltage hysteresis | V _{SHUTDOWN+} - V _{SHUTDOWN} - | | 250 | | mV | | | | SDA, SCL | | | 5.5 | 2
V | | | | TS1 | | | V_{REG} | | | \
 | Input voltage range | SRP, SRN | - 0.2 | | 0.2 | | | V _{IN} | iliput voltage range | VC2 | V _{VC1} | | V _{VC1} + 5 | | | | | VC1 | V _{VSS} | | V _{VSS} + 5 | | | | | PACK | | 2.0 2.2
2.25 2.45
250 5.5 | | | | Vo | Output voltage range | CHG, DSG | | | 26 | V | | C _{PBI} | External PBI capacitor | | 2.2 | | | μF | Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated ⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe
manufacturing with a standard ESD control process. ## 7.3 Recommended Operating Conditions (continued) Typical values stated where T_A = 25°C and VCC = 7.2 V, Min/Max values stated where T_A = -40°C to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted) | PARAMETER | | TEST CONDITION | MIN | NOM | MAX | UNIT | |------------------|-----------------------|----------------|------|-----|-----|------| | T _{OPR} | Operating temperature | | - 40 | | 85 | °C | ### 7.4 Thermal Information | | | BQ28Z610-R1 | | |---------------------------|--|-------------|------| | | THERMAL METRIC(1) | DRZ | UNIT | | | | 12 PINS | | | R _θ JA, High K | Junction-to-ambient thermal resistance | 186.4 | | | R _{θ JC(top)} | Junction-to-case(top) thermal resistance | 90.4 | | | R ₀ JB | Junction-to-board thermal resistance | 110.7 | °C/W | | ΨJT | Junction-to-top characterization parameter | 96.7 | C/VV | | ψ ЈВ | Junction-to-board characterization parameter | 90 | | | R _θ JC(bottom) | Junction-to-case(bottom) thermal resistance | n/a | | ⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics Application Report (SPRA953). ## 7.5 Supply Current Typical values stated where $T_A = 25^{\circ}$ C and VCC = 7.2 V, Min/Max values stated where $T_A = -40^{\circ}$ C to 85°C and VCC = 2.2 V to 7.6 V (unless otherwise noted) | PARAMETER | · | TEST CONDITION | MIN | TYP | MAX | UNIT | |-------------------------|---------------|---|-----|-----|-----|------| | I _{NORMAL} (1) | NORMAL mode | CHG = ON, DSG = ON, No Flash Write | | 250 | | μΑ | | I _{SLEEP} (1) | SLEEP mode | CHG = OFF, DSG = OFF, No Communication on Bus | | 100 | | | | I _{SHUTDOWN} | SHUTDOWN mode | | | 0.5 | 2 | μΑ | ⁽¹⁾ Dependent on the use of the correct firmware (FW) configuration ## 7.6 Power Supply Control Typical values stated where T_A = 25°C and VCC = 7.2 V, Min/Max values stated where T_A = -40°C to 85°C and VCC = 2.2 V to 7.6 V (unless otherwise noted) | PAI | RAMETER | TEST CONDITION | MIN | TYP | MAX | UNIT | |---------------------------|--------------------------------|---|-----|------|-----|------------| | V _{SWITCHOVER} - | VC2 to PACK switchover voltage | V _{VC2} < V _{SWITCHOVER} - | 2.0 | 2.1 | 2.2 | V | | V _{SWITCHOVER+} | PACK to VC2 switchover voltage | V _{VC2} > V _{SWITCHOVER} - + V _{HYS} | 3.0 | 3.1 | 3.2 | V | | V _{HYS} | Switchover voltage hysteresis | V _{SWITCHOVER+} - V _{SWITCHOVER} - | | 1000 | | mV | | | | VC2 pin, VC2 = 0 V, PACK = 25 V | | | 1 | | | I _{LKG} | Input Leakage | PACK pin, VC2 = 25 V, PACK = 0 V | | | 1 | μA | | LKG | current | VC2 and PACK pins, VC2 = 0 V, PACK = 0 V, PBI = 25 V | | | 1 | μ, , | | R _{PACK(PD)} | Internal pulldown resistance | PACK | 30 | 40 | 50 | k Ω | ## 7.7 Low-Voltage General Purpose I/O, TS1 Typical values stated where T_A = 25°C and VCC = 7.2 V, Min/Max values stated where T_A = -40°C to 85°C and VCC = 2.2 V to 7.6 V (unless otherwise noted) | | PARAMETER | TEST CONDITION | MIN | TYP | MAX | UNIT | |------------------|--------------------------|---------------------------|-------------------------|-----|-------------------------|------| | V _{IH} | High-level input | | 0.65 x V _{REG} | · | | V | | V _{IL} | Low-level input | | | | 0.35 x V _{REG} | V | | V _{OH} | Output voltage high | I _{OH} = -1.0 mA | 0.75 x V _{REG} | | | V | | V _{OL} | Output voltage low | I _{OL} = 1.0 mA | | | 0.2 x V _{REG} | V | | C _{IN} | Input capacitance | | | 5 | | pF | | I _{LKG} | Input leakage
current | | | | 1 | μΑ | ## 7.8 Power-On Reset (POR) Typical values stated where T_A = 25°C and VCC = 7.2 V, Min/Max values stated where T_A = -40°C to 85°C and VCC = 2.2 V to 7.6 V (unless otherwise noted) | | PARAMETER | TEST CONDITION | MIN | TYP | MAX | UNIT | |----------------------|------------------------------|--|------|------|------|------| | V _{REGIT} - | Negative-going voltage input | V _{REG} | 1.51 | 1.55 | 1.59 | V | | V _{HYS} | Power-on reset hysteresis | V _{REGIT+} - V _{REGIT} - | 70 | 100 | 130 | mV | | t _{RST} | Power-on reset time | | 200 | 300 | 400 | μs | ## 7.9 Internal 1.8-V LDO Typical values stated where T_A = 25°C and VCC = 7.2 V, Min/Max values stated where T_A = -40°C to 85°C and VCC = 2.2 V to 7.6 V (unless otherwise noted) | ı | PARAMETER | TEST CONDITION | MIN | TYP | MAX | UNIT | |------------------------|---|--|---------|--------|------|------| | V_{REG} | Regulator voltage | | 1.6 | 1.8 | 2.0 | V | | Δ V _{O(TEMP)} | Regulator output over temperature | $\Delta V_{REG} / \Delta T_A$, $I_{REG} = 10 \text{ mA}$ | | ±0.25% | | | | Δ V _{O(LINE)} | Line regulation | $\triangle V_{REG}/\triangle V_{BAT}$, V_{BAT} = 10 mA | - 0 .6% | | 0.5% | | | Δ V _{O(LOAD)} | Load regulation | Δ V _{REG} / Δ I _{REG} , I _{REG} = 0 mA to 10 mA | - 1.5% | | 1.5% | | | I _{REG} | Regulator output current limit | $V_{REG} = 0.9 \text{ x } V_{REG(NOM)}, V_{IN} > 2.2 \text{ V}$ | 20 | | | mA | | I _{SC} | Regulator short-circuit current limit | $V_{REG} = 0 \times V_{REG(NOM)}$ | 25 | 40 | 50 | mA | | PSRR _{REG} | Power supply rejection ratio | Δ V _{BAT} / Δ V _{REG} , I _{REG} = 10 mA, V _{IN} > 2.5 V, f = 10 Hz | | 40 | | dB | | V _{SLEW} | Slew rate enhancement voltage threshold | V _{REG} | 1.58 | 1.65 | | V | Product Folder Links: BQ28Z610-R1 ## 7.10 Current Wake Comparator Typical values stated where T_A = 25°C and VCC = 7.2 V, Min/Max values stated where T_A = -40°C to 85°C and VCC = 2.2 V to 7.6 V (unless otherwise noted) | PARAMETER | ₹ | TEST CONDITION | MIN | TYP | MAX | UNIT | |--------------------------|---|--|------|--------|------|------| | | | V _{WAKE} = V _{SRP} - V _{SRN} WAKE_CONTROL[WK1, WK0] = 0,0 | ±0.3 | ±0.625 | ±0.9 | mV | | V | Wake voltage | V _{WAKE} = V _{SRP} - V _{SRN} WAKE_CONTROL[WK1, WK0] = 0,1 | ±0.6 | ±1.25 | ±1.8 | mV | | V_{WAKE} | threshold | V _{WAKE} = V _{SRP} - V _{SRN} WAKE_CONTROL[WK1, WK0] = 1,0 | ±1.2 | ±2.5 | ±3.6 | mV | | | | V _{WAKE} = V _{SRP} - V _{SRN} WAKE_CONTROL[WK1, WK0] = 1,1 | ±2.4 | ±5.0 | ±7.2 | mV | | V _{WAKE(DRIFT)} | Temperature drift of V _{WAKE} accuracy | | | 0.5% | | °C | | t _{WAKE} | Time from application of current to wake | | | 0.25 | 0.5 | ms | | t _{WAKE(SU)} | Wake up comparator startup time | [WKCHGEN] = 0 and [WKDSGEN] = 0 to
[WKCHGEN] = 1 and [WKDSGEN] = 1 | | 250 | 640 | μs | ## 7.11 Coulomb Counter Typical values stated where $T_A = 25^{\circ}C$ and VCC = 7.2 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 7.6 V (unless otherwise noted) | PARAMETER | TEST CONDITION | MIN | TYP | MAX | UNIT | |----------------------------|---|-------------------------|------|------------------------|--------| | Input voltage range | | - 100 | | 100 | mV | | Full scale range | | - V _{REF1} /10 | | +V _{REF1} /10 | mV | | Differential nonlinearity | 16-bit, no missing codes | | | ±1 | LSB | | Integral nonlinearity | 16-bit, best fit over input voltage range | | ±5.2 | ±22.3 | LSB | | Offset error | 16-bit, post-calibration | | ±1.3 | ±2.6 | LSB | | Offset error drift | 15-bit + sign, post-calibration | | 0.04 | 0.07 | LSB/°C | | Gain error | 15-bit + sign, over input voltage range | | ±131 | ±492 | LSB | | Gain error drift | 15-bit + sign, over input voltage range | | 4.3 | 9.8 | LSB/°C | | Effective input resistance | | 2.5 | | | ΜΩ | ## 7.12 ADC Digital Filter Typical values stated where $T_A = 25^{\circ}C$ and VCC = 7.2 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 7.6 V (unless otherwise noted) | PARAMETER | TEST CONDITION | MIN | TYP | MAX | UNIT | |----------------------|--|-----|-------|-----|------| | | ADCTL[SPEED1, SPEED0] = 0, 0 | | 31.25 | | | | t _{CONV} | ADCTL[SPEED1, SPEED0] = 0, 1 | | 15.63 | | | | | ADCTL[SPEED1, SPEED0] = 1, 0 | | 7.81 | | ms | | | ADCTL[SPEED1, SPEED0] = 1, 1 | | 1.95 | | | | Resolution | No missing codes, ADCTL[SPEED1, SPEED0] = 0, 0 | | 16 | | Bits | | | With sign, ADCTL[SPEED1, SPEED0] = 0, 0 | 14 | 15 | | | | Effective resolution | With sign, ADCTL[SPEED1, SPEED0] = 0, 1 | 13 | 14 | | Bits | | Effective resolution | With sign, ADCTL[SPEED1, SPEED0] = 1, 0 | 11 | 12 | | الم | | | With sign, ADCTL[SPEED1, SPEED0] = 1, 1 | 9 | 10 | | | ## 7.13 ADC Multiplexer Typical values stated where $T_A = 25^{\circ}$ C and VCC = 7.2 V, Min/Max values stated where $T_A = -40^{\circ}$ C to 85°C and VCC = 2.2 V to 7.6 V (unless otherwise noted) | PARAI | METER | TEST CONDITION | MIN | TYP | MAX | UNIT | | |------------------|-----------------------|---|--------|--------|-------------------------|------|--| | | | VC1 - VSS, VC2 - VC1 | 0.1980 | 0.2000 | 0.2020 | | | | K Scaling factor | Scaling factor | VC2 - VSS, PACK - VSS | 0.0485 | 0.050 | 0.051 | _ | | | | | V _{REF1} /2 | 0.490 | 0.500 | 0.510 | | | | | | VC2 - VSS, PACK - VSS | - 0.2 | | 20 | | | | V _{IN} | Input voltage range | TS1 | - 0.2 | | 0.8 × V _{REF1} | V | | | | | TS1 | - 0.2 | | 0.8 × V _{REG} | | | | I _{LKG} | Input leakage current | VC1, VC2 cell balancing off, cell detach detection off, ADC multiplexer off | | | 1 | μА | | ## 7.14 Cell Balancing Support Typical values stated where T_A = 25°C and VCC = 7.2 V, Min/Max values stated where T_A = -40°C to 85°C and VCC = 2.2 V to 7.6 V (unless otherwise noted) | F | ARAMETER | TEST
CONDITION | MIN | TYP | MAX | UNIT | |---|----------------------------------|--|-----|-----|-----|------| | F | Internal cell balance resistance | R _{DS(ON)} for internal FET switch at 2 V < V _{DS} < 4 V | | | 200 | Ω | ## 7.15 Internal Temperature Sensor Typical values stated where T_A = 25°C and VCC = 7.2 V, Min/Max values stated where T_A = -40°C to 85°C and VCC = 2.2 V to 7.6 V (unless otherwise noted) | PARAME' | TER | TEST CONDITION | MIN | TYP | MAX | UNIT | |-------------------|----------------------|--|-------|-------|-------|-------| | V _{TEMP} | Internal temperature | V_{TEMPP} | - 1.9 | - 2.0 | - 2.1 | mV/°C | | | sensor voltage drift | V _{TEMPP} - V _{TEMPN} ⁽¹⁾ | 0.177 | 0.178 | 0.179 | | ⁽¹⁾ Assured by design ## 7.16 NTC Thermistor Measurement Support Typical values stated where $T_A = 25^{\circ}C$ and VCC = 7.2 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 7.6 V (unless otherwise noted) | PARAMETEI | R | TEST CONDITION | MIN | TYP | MAX | UNIT | |-------------------------|-----------------------------------|----------------|-------|-------|-------|------------| | R _{NTC(PU)} | Internal pull-up resistance | TS1 | 14.4 | 18 | 21.6 | k Ω | | R _{NTC(DRIFT)} | Resistance drift over temperature | TS1 | - 360 | - 280 | - 200 | PPM/°C | ## 7.17 High-Frequency Oscillator Typical values stated where T_A = 25°C and VCC = 7.2 V, Min/Max values stated where T_A = -40°C to 85°C and VCC = 2.2 V to 7.6 V (unless otherwise noted) | PARAMET | ER | TEST CONDITION | MIN | TYP | MAX | UNIT | |-----------------------|---------------------|--|--------|--------|------|------| | f _{HFO} | Operating frequency | | | 16.78 | | MHz | | f _{HFO(ERR)} | Frequency error | T _A = -20°C to 70°C, includes frequency drift | - 2.5% | ±0.25% | 2.5% | | | | | T _A = -40°C to 85°C, includes frequency drift | - 3.5% | ±0.25% | 3.5% | | Product Folder Links: BQ28Z610-R1 ## 7.17 High-Frequency Oscillator (continued) Typical values stated where $T_A = 25^{\circ}$ C and VCC = 7.2 V, Min/Max values stated where $T_A = -40^{\circ}$ C to 85°C and VCC = 2.2 V to 7.6 V (unless otherwise noted) | PARAMETER | R | TEST CONDITION | MIN | TYP | MAX | UNIT | |-----------|---|---|-----|-----|-----|------| | t S | | $T_A = -20$ °C to 85°C, Oscillator frequency within +/ -3% of nominal, CLKCTL[HFRAMP] = 1 | | | 4 | ms | | THFO(SU) | • | Oscillator frequency within +/ - 3% of nominal, CLKCTL[HFRAMP] = 0 | | | 100 | μs | ## 7.18 Low-Frequency Oscillator Typical values stated where $T_A = 25^{\circ}$ C and VCC = 7.2 V, Min/Max values stated where $T_A = -40^{\circ}$ C to 85°C and VCC = 2.2 V to 7.6 V (unless otherwise noted) | | o v (unless otherwise i | , | | | | | |-------------------------|---------------------------------------|--|--------|---------|------|------| | PARAMETI | ER | TEST CONDITION | MIN | TYP | MAX | UNIT | | f _{LFO} | Operating frequency | | | 262.144 | | kHz | | f _{LFO(LP)} | Operating frequency in low power mode | | | 247 | | kHz | | f | Frequency error | T _A = -20°C to 70°C, includes frequency drift | - 1.5% | ±0.25% | 1.5% | | | tLFO(ERR) | | T _A = -40°C to 85°C, includes frequency drift | - 2.5% | ±0.25% | 2.5% | | | f _{LFO(LPERR)} | Frequency error in low power mode | | - 5% | | 5% | | | f _{LFO(FAIL)} | Failure detection frequency | | 30 | 80 | 100 | kHz | ## 7.19 Voltage Reference 1 Typical values stated where $T_A = 25^{\circ}$ C and VCC = 7.2 V, Min/Max values stated where $T_A = -40^{\circ}$ C to 85°C and VCC = 2.2 V to 7.6 V (unless otherwise noted) | PARAMETER | | TEST CONDITION | MIN | TYP | MAX | UNIT | |-------------------|----------------------------|--|-------|-------|-------|----------| | V _{REF1} | Internal reference voltage | T _A = 25°C, after trim | 1.215 | 1.220 | 1.225 | V | | V | Internal reference | T _A = 0°C to 60°C, after trim | | ±50 | | PPM/°C | | VREF1(DRIFT) | voltage drift | T _A = -40°C to 85°C, after trim | | ±80 | | PPIVI/ C | ### 7.20 Voltage Reference 2 Typical values stated where $T_A = 25^{\circ}$ C and VCC = 7.2 V, Min/Max values stated where $T_A = -40^{\circ}$ C to 85°C and VCC = 2.2 V to 7.6 V (unless otherwise noted) | PARAMETER | | TEST CONDITION | MIN | TYP | MAX | UNIT | |-------------------|----------------------------|--|-------|-------|-------|----------| | V _{REF2} | Internal reference voltage | T _A = 25°C, after trim | 1.215 | 1.220 | 1.225 | V | | V | Internal reference | T _A = 0°C to 60°C, after trim | | ±50 | | PPM/°C | | VREF2(DRIFT) | voltage drift | T _A = -40°C to 85°C, after trim | | ±80 | | FFIVI/ C | ### 7.21 Instruction Flash Typical values stated where T_A = 25°C and VCC = 7.2 V, Min/Max values stated where T_A = -40°C to 85°C and VCC = 2.2 V to 7.6 V (unless otherwise noted) | PARAMETE | R | TEST CONDITION | MIN | TYP | MAX | UNIT | |----------|--------------------------------|----------------|------|-----|-----|--------| | | Data retention | | 10 | | | Years | | | Flash programming write cycles | | 1000 | | | Cycles | Copyright © 2022 Texas Instruments Incorporated ## 7.21 Instruction Flash (continued) Typical values stated where T_A = 25°C and VCC = 7.2 V, Min/Max values stated where T_A = -40°C to 85°C and VCC = 2.2 V to 7.6 V (unless otherwise noted) | PARAMETER | | TEST CONDITION | MIN | TYP | MAX | UNIT | |-------------------------|-----------------------|--------------------------------|-----|-----|-----|------| | t _{PROGWORD} | Word programming time | $T_A = -40$ °C to 85°C | 40 | | | μs | | t _{MASSERASE} | Mass-erase time | T _A = -40°C to 85°C | | | 40 | ms | | t _{PAGEERASE} | Page-erase time | $T_A = -40$ °C to 85°C | | | 40 | ms | | I _{FLASHREAD} | Flash-read current | $T_A = -40$ °C to 85°C | | | 2 | mA | | I _{FLASHWRITE} | Flash-write current | $T_A = -40$ °C to 85°C | | | 5 | mA | | I _{FLASHERASE} | Flash-erase current | $T_A = -40$ °C to 85°C | | | 15 | mA | ### 7.22 Data Flash Typical values stated where $T_A = 25^{\circ}$ C and VCC = 7.2 V, Min/Max values stated where $T_A = -40^{\circ}$ C to 85°C and VCC = 2.2 V to 7.6 V (unless otherwise noted) | PARAMETE | R | TEST CONDITION | MIN | TYP | MAX | UNIT | |-------------------------|--------------------------------|--|-------|-----|-----|--------| | | Data retention | | 10 | | | Years | | | Flash programming write cycles | | 20000 | | | Cycles | | t _{PROGWORD} | Word programming time | T _A = -40°C to 85°C | | | 40 | μs | | t _{MASSERASE} | Mass-erase time | T _A = -40°C to 85°C | | | 40 | ms | | t _{PAGEERASE} | Page-erase time | T _A = -40°C to 85°C | | | 40 | ms | | I _{FLASHREAD} | Flash-read current | T _A = -40°C to 85°C | | | 1 | mA | | I _{FLASHWRITE} | Flash-write current | $T_A = -40^{\circ}C \text{ to } 85^{\circ}C$ | | | 5 | mA | | I _{FLASHERASE} | Flash-erase current | $T_A = -40^{\circ} C \text{ to } 85^{\circ} C$ | | | 15 | mA | ## 7.23 Current Protection Thresholds Typical values stated where T_A = 25°C and VCC = 7.2 V, Min/Max values stated where T_A = -40°C to 85°C and VCC = 2.2 V to 7.6 V (unless otherwise noted) | PARAME | TER | TEST CONDITION | MIN | TYP | MAX | UNIT | |--------------------|--|--|--------|--------|-------|------| | V | OCD detection threshold voltage range | V _{OCD} = V _{SRP} - V _{SRN} ,
PROTECTION_CONTROL[RSNS] = 1 | - 16.6 | | - 100 | mV | | V _{OCD} | | V _{OCD} = V _{SRP} - V _{SRN} ,
PROTECTION_CONTROL[RSNS] = 0 | - 8.3 | | - 50 | IIIV | | △ V _{OCD} | OCD detection threshold voltage program step | V _{OCD} = V _{SRP} - V _{SRN} ,
PROTECTION_CONTROL[RSNS] = 1 | | - 5.56 | | mV | | | | V _{OCD} = V _{SRP} - V _{SRN} ,
PROTECTION_CONTROL[RSNS] = 0 | | - 2.78 | | IIIV | | ∆ V _{SCC} | SCC detection threshold | V _{SCC} = V _{SRP} - V _{SRN} ,
PROTECTION_CONTROL[RSNS] = 1 | 44.4 | | 200 | mV | | ∆ VSCC | voltage range | $V_{SCC} = V_{SRP} - V_{SRN}$
PROTECTION_CONTROL[RSNS] = 0 | 22.2 | | 100 | 1117 | | A.V/ | SCC detection threshold voltage program step | V _{SCC} = V _{SRP} - V _{SRN} ,
PROTECTION_CONTROL[RSNS] = 1 | | 22.2 | | mV | | ∆ V _{SCC} | | V _{SCC} = V _{SRP} - V _{SRN} ,
PROTECTION_CONTROL[RSNS] = 0 | | 11.1 | | 1111 | Product Folder Links: BQ28Z610-R1 ## 7.23 Current Protection Thresholds (continued) Typical values stated where T_A = 25°C and VCC = 7.2 V, Min/Max values stated where T_A = -40°C to 85°C and VCC = 2.2 V to 7.6 V (unless otherwise noted) | PARAME | TER | TEST CONDITION | MIN | TYP | MAX | UNIT | |--------------------|---|---|--------|--------|-------|------| | V _{SCD1} | SCD1 detection threshold voltage range | V _{SCD1} = V _{SRP} - V _{SRN} ,
PROTECTION_CONTROL[RSNS] = 1 | - 44.4 | | - 200 | mV | | V SCDT | | V _{SCD1} = V _{SRP} - V _{SRN} ,
PROTECTION_CONTROL[RSNS] = 0 | - 22.2 | | - 100 | IIIV | | ΔV _{SCD1} | SCD1 detection threshold voltage program step | V _{SCD1} = V _{SRP} - V _{SRN} ,
PROTECTION_CONTROL[RSNS] = 1 | | - 22.2 | | mV | | | | V _{SCD1} = V _{SRP} - V _{SRN} ,
PROTECTION_CONTROL[RSNS] = 0 | | - 11.1 | | "" | | Vassa | SCD2 detection threshold | V _{SCD2} = V _{SRP} - V _{SRN} ,
PROTECTION_CONTROL[RSNS] = 1 | - 44.4 | | - 200 | mV | | V _{SCD2} | voltage range | V _{SCD2} = V _{SRP} - V _{SRN} ,
PROTECTION_CONTROL[RSNS] = 0 | - 22.2 | | - 100 | IIIV | | ΔV _{SCD2} | SCD2
detection threshold voltage program step | V _{SCD2} = V _{SRP} - V _{SRN} ,
PROTECTION_CONTROL[RSNS] = 1 | | - 22.2 | | mV | | | | V _{SCD2} = V _{SRP} - V _{SRN} ,
PROTECTION_CONTROL[RSNS] = 0 | | - 11.1 | | IIIV | # 7.24 Current Protection Timing Typical values stated where T_A = 25°C and VCC = 7.2 V, Min/Max values stated where T_A = -40°C to 85°C and VCC = 2.2 V to 7.6 V (unless otherwise noted) | PARAME | TER | TEST CONDITION | MIN | NOM | MAX | UNIT | |---------------------|--|---|-------|------|------|------| | t _{OCD} | OCD detection delay time | | 1 | | 31 | ms | | ∆ t _{OCD} | OCD detection delay time program step | | | 2 | | ms | | t _{SCC} | SCC detection delay time | | 0 | | 915 | μs | | ∆ t _{SCC} | SCC detection delay time program step | | | 61 | | μs | | | SCD1 detection delay time | PROTECTION_CONTROL[SCDDx2] = 0 | 0 | | 915 | μs | | t _{SCD1} | | PROTECTION_CONTROL[SCDDx2] = 1 | 0 | | 1850 | | | | SCD1 detection delay time program step | PROTECTION_CONTROL[SCDDx2] = 0 | | 61 | | | | ∆ t _{SCD1} | | PROTECTION_CONTROL[SCDDx2] = 1 | | 121 | | μs | | | SCD2 detection delay | PROTECTION_CONTROL[SCDDx2] = 0 | 0 | | 458 | | | t _{SCD2} | time | PROTECTION_CONTROL[SCDDx2] = 1 | 0 | | 915 | μs | | | SCD2 detection delay | PROTECTION_CONTROL[SCDDx2] = 0 | | 30.5 | | | | ∆ t _{SCD2} | time program step | PROTECTION_CONTROL[SCDDx2] = 1 | | 61 | | μs | | t _{DETECT} | Current fault detect time | V_{SRP} - V_{SRN} = V_{T} - 3 mV for OCD, SCD1, and SC2, V_{SRP} - V_{SRN} = V_{T} + 3 mV for SCC | | | 160 | μs | | t _{ACC} | Current fault delay time accuracy | Max delay setting | - 10% | | 10% | | ## 7.25 N-CH FET Drive (CHG, DSG) Typical values stated where $T_A = 25^{\circ}C$ and VCC = 7.2 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 7.6 V (unless otherwise noted) | PARAMET | ER | TEST CONDITION | MIN | TYP | MAX | UNIT | |----------------------|------------------------------------|--|-------|-------|-------|------| | | Output voltage ratio | Ratio _{DSG} = (V _{DSG} - V _{VC2})/V _{VC2} , 2.2 V < V _{VC2} < 4.07 V, 10 M $^{\Omega}$ between PACK and DSG | 2.133 | 2.333 | 2.467 | | | | Output voltage ratio | Ratio _{CHG} = (V _{CHG} - V _{VC2})/V _{VC2} , 2.2 V < V _{VC2} < 4.07 V, 10 M Ω between BAT and CHG | 2.133 | 2.333 | 2.467 | _ | | V | Output voltage,
CHG and DSG on | $V_{DSG(ON)}$ = V_{DSG} $^ V_{VC2}, 4.07$ V \leqslant V_{VC2} \leqslant 18 V, 10 M Ω between PACK and DSG | 8.75 | 9.5 | 10.25 | V | | V _(FETON) | | $V_{CHG(ON)}$ = V_{CHG} - V_{VC2} , 4.07 V \leqslant V_{VC2} \leqslant 18 V, 10 M Ω between VC2 and CHG | 8.75 | 9.5 | 10.25 | V | | $V_{(FETOFF)}$ | Output voltage,
CHG and DSG off | $V_{DSG(OFF)}$ = V_{DSG} - V_{PACK} , 10 M Ω between PACK and DSG | - 0.4 | | 0.4 | V | | | | $V_{\text{CHG}(\text{OFF})}$ = V_{CHG} - V_{BAT} , 10 M Ω between VC2 and CHG | - 0.4 | | 0.4 | | | | - | V_{DSG} from 0% to 35% $V_{DSG~(ON)(TYP)}$, $V_{BAT} \geqslant 2.2$ V, C_L = 4.7 nF between DSG and PACK, 5.1 k Ω between DSG and C_L , 10 M Ω between PACK and DSG | | 200 | 500 | μs | | t _R | Rise time | V_{CHG} from 0% to 35% $V_{CHG~(ON)(TYP)}$, $V_{VC2} \geqslant 2.2$ V, C_L = 4.7 nF between CHG and VC2, 5.1 k Ω between CHG and C_L , 10 M Ω between VC2 and CHG | | 200 | 500 | μο | | t _F | Fall time | V_{DSG} from $V_{DSG(ON)(TYP)}$ to 1 V, $V_{VC2} \geqslant 2.2$ V, C_L = 4.7 nF between DSG and PACK, 5.1 kΩ between DSG and C_L , 10 M Ω between PACK and DSG | | 40 | 300 | II.e | | | | V_{CHG} from $V_{CHG(ON)(TYP)}$ to 1 V, $V_{VC2} \geqslant 2.2$ V, C_L = 4.7 nF between CHG and VC2, 5.1 kΩ between CHG and C_L , 10 MΩ between VC2 and CHG | | 40 | 200 | μs | ## 7.26 I²C Interface I/O Typical values stated where $T_A = 25^{\circ}C$ and VCC = 7.2 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 7.6 V (unless otherwise noted) | PARAM | ETER | TEST CONDITION | MIN | TYP | MAX | UNIT | |------------------|-----------------------|--|------------------------|-----|------------------------|------| | V _{IH} | Input voltage high | SCL, SDA (STANDARD and FAST modes) | 0.7 × V _{REG} | | | V | | V _{IL} | Input voltage low | SCL, SDA (STANDARD and FAST modes) | - 0.5 | | 0.3 × V _{REG} | V | | V _{OL} | Output low voltage | SCL, SDA, I _{OL} = 1 mA (STANDARD and FAST modes) | | | 0.2 × V _{REG} | V | | C _{IN} | Input capacitance | | | | 10 | pF | | I _{LKG} | Input leakage current | | | 1 | | μA | | R _{PD} | Pull-down resistance | | | 3.3 | | kΩ | # 7.27 I²C Interface Timing Typical values stated where T_A = 25°C and VCC = 7.2 V, Min/Max values stated where T_A = -40°C to 85°C and VCC = 2.2 V to 7.6 V (unless otherwise noted) | | PARAMETER | TEST CONDITION | MIN | NOM | MAX | UNIT | |-------------------|-------------------|----------------|-----|-----|-----|------| | t _R | Clock rise time | 10% to 90% | | | 300 | ns | | t _F | Clock fall time | 90% to 10% | | | 300 | ns | | t _{HIGH} | Clock high period | | 600 | | | ns | | t _{LOW} | Clock low period | | 1.3 | | | μs | Product Folder Links: BQ28Z610-R1 # 7.27 I²C Interface Timing (continued) Typical values stated where T_A = 25°C and VCC = 7.2 V, Min/Max values stated where T_A = -40°C to 85°C and VCC = 2.2 V to 7.6 V (unless otherwise noted) | P | ARAMETER | TEST CONDITION | MIN | NOM | MAX | UNIT | |------------------------|--|--------------------------------|-----|-----|-----|------| | t _{SU(START)} | Repeated start setup time | | 600 | | | ns | | t _{d(START)} | Start for first falling edge to SCL | | 600 | | | ns | | t _{SU(DATA)} | Data setup time | | 100 | | | ns | | t _{HD(DATA)} | Data hold time | | 0 | | | μs | | t _{SU(STOP)} | Stop setup time | | 600 | | | ns | | t _{BUF} | Bus free time
between stop and
start | | 1.3 | | | μs | | f _{SW} | Clock operating frequency | SLAVE mode, SCL 50% duty cycle | | | 400 | kHz | 图 7-1. I²C Timing ## 7.28 Typical Characteristics ## 7.28 Typical Characteristics (continued) Threshold setting is 88.8 mV. 图 7-8. Short Circuit Charge Protection Threshold vs Temperature Threshold setting is - 177.7 mV. 图 7-10. Short Circuit Discharge 2 Protection Threshold vs Temperature Threshold setting is 465 µs. 图 7-12. Short Circuit Charge Current Delay Time vs Temperature Threshold setting is - 88.8 mV. 图 7-9. Short Circuit Discharge 1 Protection Threshold vs Temperature Threshold setting is 11 ms. 图 7-11. Overcurrent Delay Time vs Temperature Threshold setting is 465 µs (including internal delay). 图 7-13. Short Circuit Discharge 1 Delay Time vs Temperature ## 7.28 Typical Characteristics (continued) This is the V_{CELL} average for single cell. 图 7-16. V_{CELL} Measurement at 4.25-V vs Temperature Temperature (°C) I_{SET} = 100 mA, RSNS= 1 Ω Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated ## 8 Detailed Description ### 8.1 Overview The BQ28Z610-R1 gas gauge is a fully integrated battery manager that employs flash-based firmware and integrated hardware protection to provide a complete solution for battery-stack architectures composed of 1- to 2-series cells. The BQ28Z610-R1 device interfaces with a host system via an I^2C protocol. High-performance, integrated analog peripherals enable support for a sense resistor down to 1 m Ω and simultaneous current/ voltage data conversion for instant power calculations. The following sections detail all of the major component blocks included as part of the BQ28Z610-R1 device. ### 8.2 Functional Block Diagram The *Functional Block Diagram* depicts the analog (AFE) and digital (AGG) peripheral content in the BQ28Z610-R1 device. ### 8.3 Feature Description ### 8.3.1 Battery Parameter Measurements The BQ28Z610-R1 device measures cell voltage and current simultaneously, and measures temperature to calculate the information related to remaining capacity, full charge capacity, state-of-health, and other gauging parameters. #### 8.3.1.1 BQ28Z610-R1 Processor The BQ28Z610-R1 device uses a custom TI-proprietary processor design that features a Harvard architecture and operates at frequencies up to 4.2 MHz. Using an adaptive, three-stage instruction pipeline, the BQ28Z610-R1 processor supports variable instruction length of 8, 16, or 24 bits. ### 8.3.2 Coulomb Counter (CC) The first ADC is an integrating converter designed specifically for coulomb counting. The converter resolution is a function of its full-scale range and number of bits, yielding a 3.74-µV resolution. ### 8.3.3 CC Digital Filter The CC digital filter generates a 16-bit conversion value from the delta-sigma CC front-end. Its FIR filter uses the LFO clock output, which allows it to stop the HFO clock during conversions. New conversions are available every 250 ms while CCTL[CC_ON] = 1. Proper use of this peripheral requires turning on the CC modulator in the AFE. ## 8.3.4 ADC Multiplexer The ADC multiplexer provides selectable connections to the VCx inputs, TS1 inputs, internal temperature sensor, internal reference voltages, internal 1.8-V regulator, PACK input, and VSS ground reference input. In addition, the multiplexer can independently enable the TS1 input connection to the internal thermistor biasing circuitry, and enables the user to short the multiplexer inputs for test and calibration purposes. #### 8.3.5 Analog-to-Digital Converter (ADC) The second ADC is a 16-bit delta-sigma converter designed for general-purpose
measurements. The ADC automatically scales the input voltage range during sampling based on channel selection. The converter resolution is a function of its full-scale range and number of bits, yielding a 38-µV resolution. The default conversion time of the ADC is 31.25 ms, but is user-configurable down to 1.95 ms. Decreasing the conversion time presents a tradeoff between conversion speed and accuracy, as the resolution decreases for faster conversion times. #### 8.3.6 ADC Digital Filter The ADC digital filter generates a 24-bit conversion result from the delta-sigma ADC front end. Its FIR filter uses the LFO clock, which allows it to stop the HFO clock during conversions. The ADC digital filter is capable of providing two 24-bit results: one result from the delta-sigma ADC front-end and a second synchronous result from the delta-sigma CC front-end. #### 8.3.7 Internal Temperature Sensor An internal temperature sensor is available on the BQ28Z610-R1 device to reduce the cost, power, and size of the external components necessary to measure temperature. It is available for connection to the ADC using the multiplexer, and is ideal for quickly determining pack temperature under a variety of operating conditions. ### 8.3.8 External Temperature Sensor Support The TS1 input is enabled with an internal 18-k Ω (Typ.) linearization pull-up resistor to support the use of a 10-k Ω (25°C) NTC external thermistor, such as the Semitec 103AT-2. The NTC thermistor should be connected between VSS and the individual TS1 pin. The analog measurement is then taken via the ADC through its input multiplexer. If a different thermistor type is required, then changes to configurations may be required. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 图 8-1. External Thermistor Biasing ### 8.3.9 Power Supply Control The BQ28Z610-R1 device manages its supply voltage dynamically according to operating conditions. When $V_{VC2} > V_{SWITCHOVER}$ + V_{HYS} , the AFE connects an internal switch to BAT and uses this pin to supply power to its internal 1.8-V LDO, which subsequently powers all device logic and flash operations. Once VC2 decreases to $V_{VC2} < V_{SWITCHOVER}$ - , the AFE disconnects its internal switch from VC2 and connects another switch to PACK, allowing sourcing of power from a charger (if present). An external capacitor connected to PBI provides a momentary supply voltage to help guard against system brownouts due to transient short-circuit or overload events that pull VC2 below $V_{SWITCHOVER}$ - . #### 8.3.10 Power-On Reset In the event of a power-cycle, the BQ28Z610-R1 AFE holds its internal RESET output pin high for t_{RST} duration to allow its internal 1.8-V LDO and LFO to stabilize before running the AGG. The AFE enters power-on reset when the voltage at V_{REG} falls below V_{REGIT} and exits reset when V_{REG} rises above V_{REGIT} + V_{HYS} for t_{RST} time. After t_{RST} , the BQ28Z610-R1 AGG will write its trim values to the AFE. 图 8-2. POR Timing Diagram ### 8.3.11 Bus Communication Interface The BQ28Z610-R1 device has an I²C bus communication interface. This device has the option to broadcast information to a smart charger to provide key information to adjust the charging current and charging voltage based on the temperature or individual cell voltages. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback #### CAUTION If the device is configured as a single-master architecture (an application processor) and an occasional NACK is detected in the operation, the master can resend the transaction. However, in a multi-master architecture, an incorrect ACK leading to accidental loss of bus arbitration can cause a master to wait incorrectly for another master to clear the bus. If this master does not get a bus-free signal, then it must have in place a method to look for the bus and assume it is free after some period of time. Also, if possible, set the clock speed to be 100 kHz or less to significantly reduce the issue described above for multi-mode operation. #### 8.3.12 I²C Timeout The I^2C engine will release both SDA and SCL if the I^2C bus is held low for \sim 2 seconds. If the BQ28Z610-R1 device were holding the lines, releasing them frees the master to drive the lines. Note: that the low time setting can be under firmware control but the HW default is 2 seconds. ### 8.3.13 Cell Balancing Support The integrated cell balancing FETs included in the BQ28Z610-R1 device enable the AFE to bypass cell current around a given cell or numerous cells to effectively balance the entire battery stack. External series resistors placed between the cell connections and the VCx input pins set the balancing current magnitude. The cell balancing circuitry can be enabled or disabled via the *CELL_BAL_DET[CB2, CB1]* control register. Series input resistors between 100 Ω and 1 k Ω are recommended for effective cell balancing. 图 8-3. Internal Cell Balancing #### 8.3.14 N-Channel Protection FET Drive The BQ28Z610-R1 device controls two external N-Channel MOSFETs in a back-to-back configuration for battery protection. The charge (CHG) and discharge (DSG) FETs are automatically disabled if a safety fault (AOLD, ASSC, ASCD, SOV) is detected, and can also be manually turned off using **AFE_CONTROL[CHGEN, DSGEN]** = 0, 0. When the gate drive is disabled, an internal circuit discharges CHG to VC2 and DSG to PACK. ## 8.3.15 Low Frequency Oscillator The BQ28Z610-R1 AFE includes a low frequency oscillator (LFO) running at 262.144 kHz. The AFE monitors the LFO frequency and indicates a failure via *LATCH_STATUS[LFO]* if the output frequency is much lower than normal. ### 8.3.16 High Frequency Oscillator The BQ28Z610-R1 AGG includes a high frequency oscillator (HFO) running at 16.78 MHz. It is synthesized from the LFO output and scaled down to 8.388 MHz with 50% duty cycle. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated ### 8.3.17 1.8-V Low Dropout Regulator The BQ28Z610-R1 AFE contains an integrated 1.8-V LDO that provides regulated supply voltage for the device CPU and internal digital logic. #### 8.3.18 Internal Voltage References The BQ28Z610-R1 AFE provides two internal voltage references with V_{REF1} , used by the ADC and CC, while V_{REF2} is used by the LDO, LFO, current wake comparator, and OCD/SCC/SCD1/SCD2 current protection circuitry. ### 8.3.19 Overcurrent in Discharge Protection The overcurrent in discharge (OCD) function detects abnormally high current in the discharge direction. The overload in discharge threshold and delay time are configurable via the OCD_CONTROL register. The thresholds and timing can be fine-tuned even further based on a sense resistor with lower resistance or wider tolerance via the PROTECTION_CONTROL register. The detection circuit also incorporates a filtered delay before disabling the CHG and DSG FETs. When an OCD event occurs, the **LATCH_STATUS[OCD]** bit is set to 1 and is latched until it is cleared and the fault condition has been removed. ### 8.3.20 Short-Circuit Current in Charge Protection The short-circuit current in charge (SCC) function detects catastrophic current conditions in the charge direction. The short-circuit in charge threshold and delay time are configurable via the SCC_CONTROL register. The thresholds and timing can be fine-tuned even further based on a sense resistor with lower resistance or wider tolerance via the PROTECTION_CONTROL register. The detection circuit also incorporates a blanking delay before disabling the CHG and DSG FETs. When an SCC event occurs, the **LATCH_STATUS[SCC]** bit is set to 1 and is latched until it is cleared and the fault condition has been removed. ### 8.3.21 Short-Circuit Current in Discharge 1 and 2 Protection The short-circuit current in discharge (SCD) function detects catastrophic current conditions in the discharge direction. The short-circuit in discharge thresholds and delay times are configurable via the SCD1_CONTROL and SCD2_CONTROL registers. The thresholds and timing can be fine-tuned even further based on a sense resistor with lower resistance or wider tolerance via the PROTECTION_CONTROL register. The detection circuit also incorporates a blanking delay before disabling the CHG and DSG FETs. When an SCD event occurs, the *LATCH_STATUS[SCD1]* or *LATCH_STATUS[SCD2]* bit is set to 1 and is latched until it is cleared and the fault condition has been removed. ### 8.3.22 Primary Protection Features The BQ28Z610-R1 gas gauge supports the following battery and system level protection features, which can be configured using firmware: - · Cell Undervoltage Protection - · Cell Overvoltage Protection - Overcurrent in CHARGE Mode Protection - Overcurrent in DISCHARGE Mode Protection - Overload in DISCHARGE Mode Protection - Short Circuit in CHARGE Mode Protection - Overtemperature in CHARGE Mode Protection - Overtemperature in DISCHARGE Mode Protection - Precharge Timeout Protection - Fast Charge Timeout Protection #### 8.3.23 Gas Gauging This device uses the Impedance Track[™] technology to measure and determine the available charge in battery cells. The accuracy achieved using this method is better than 1% error over the lifetime of the battery. There is no full charge/discharge learning cycle required. See the *Theory and Implementation of Impedance Track Battery Fuel-Gauging Algorithm Application Report* for further details. Copyright © 2022 Texas Instruments Incorporated ### 8.3.24 Charge Control Features This device supports charge control features, such as: - Reports charging voltage and charging current based on the active temperature range—JEITA temperature ranges T1, T2, T3, T4, T5, and T6 - Provides more complex charging profiles, including sub-ranges within a standard temperature range - Reports the appropriate charging current required for constant current charging and the appropriate charging voltage needed
for constant voltage charging to a smart charger, using the bus communication interface - Selects the chemical state-of-charge of each battery cell using the Impedance Track method, and reduces the voltage difference between cells when cell balancing multiple cells in a series - Provides pre-charging/zero-volt charging - · Employs charge inhibit and charge suspend if battery pack temperature is out of programmed range - · Reports charging faults and indicates charge status via charge and discharge alarms #### 8.3.25 Authentication This device supports security by: - · Authentication by the host using the SHA-1 method - The gas gauge requires SHA-1 authentication before the device can be unsealed or allow full access. #### 8.4 Device Functional Modes This device supports three modes, but the current consumption varies, based on firmware control of certain functions and modes of operation: - NORMAL mode: In this mode, the device performs measurements, calculations, protections, and data updates every 250-ms intervals. Between these intervals, the device is operating in a reduced power stage to minimize total average current consumption. - SLEEP mode: In this mode, the device performs measurements, calculations, protections, and data updates in adjustable time intervals. Between these intervals, the device is operating in a reduced power stage to minimize total average current consumption. - SHUTDOWN mode: The device is completely disabled. ## 8.4.1 Lifetime Logging Features The device supports data logging of several key parameters for warranty and analysis: - · Maximum and minimum cell temperature - Maximum current in CHARGE or DISCHARGE mode - · Maximum and minimum cell voltages ### 8.4.2 Configuration The device supports accurate data measurements and data logging of several key parameters. #### 8.4.2.1 Coulomb Counting The device uses an integrating delta-sigma analog-to-digital converter (ADC) for current measurement. The ADC measures charge/discharge flow of the battery by measuring the voltage across a very small external sense resistor. The integrating ADC measures a bipolar signal from a range of -100 mV to 100 mV, with a positive value when $V_{(SRP)} - V_{(SRN)}$, indicating charge current and a negative value indicating discharge current. The integration method uses a continuous timer and internal counter, which has a rate of 0.65 nVh. #### 8.4.2.2 Cell Voltage Measurements The BQ28Z610-R1 measures the individual cell voltages at 250-ms intervals using an ADC. This measured value is internally scaled for the ADC and is calibrated to reduce any errors due to offsets. This data is also used for calculating the impedance of the individual cell for Impedance Track gas gauging. Product Folder Links: BQ287610-R1 #### 8.4.2.3 Current Measurements The current measurement is performed by measuring the voltage drop across the external sense resistor (1 m Ω to 3 m Ω) and the polarity of the differential voltage determines if the cell is in the CHARGE or DISCHARGE mode. ## 8.4.2.4 Auto Calibration The auto-calibration feature helps to cancel any voltage offset across the SRP and SRN pins for accurate measurement of the cell voltage, charge/discharge current, and thermistor temperature. The auto-calibration is performed when there is no communication activity for a minimum of 5 s on the bus lines. ### 8.4.2.5 Temperature Measurements This device has an internal sensor for on-die temperature measurements, and the ability to support external temperature measurements via the external NTC on the TS1 pin. These two measurements are individually enabled and configured. ## 9 Applications and Implementation #### 备注 以下应用部分中的信息不属于 TI 器件规格的范围, TI 不担保其准确性和完整性。TI 的客户应负责确定器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。 ## 9.1 Application Information The BQ28Z610-R1 gas gauge is a primary protection device that can be used with a 1- to 2-series Li-ion/Li-polymer battery pack. To implement and design a comprehensive set of parameters for a specific battery pack, the user needs Battery Management Studio (BQSTUDIO), which is a graphical user-interface tool installed on a PC during development. The firmware installed in the product has default values, which are summarized in the BQ28Z610-R1 Technical Reference Manual (SLUUC81) for this product. Using the BQSTUDIO tool, these default values can be changed to cater to specific application requirements during development once the system parameters, such as fault trigger thresholds for protection, enable/disable of certain features for operation, configuration of cells, chemistry that best matches the cell used, and more are known. This data can be referred to as the "golden image." ## 9.2 Typical Applications 图 9-1 shows the BQ28Z610-R1 application schematic for the 2-series configuration. 图 9-2 shows a wireless (Bluetooth) speaker application block diagram. Note: The input filter capacitors of $0.1~\mu F$ for the SRN and SRP pins must be located near the pins of the device. 图 9-1. BQ28Z610-R1 2-Series Cell Typical Implementation Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 图 9-2. Wireless (Bluetooth) Speaker Application Block Diagram ### 9.2.1 Design Requirements (Default) | DESIGN PARAMETER | EXAMPLE | | | | | | |--|--|--|--|--|--|--| | Cell Configuration | 2s1p (2-series with 1 parallel) | | | | | | | Design Capacity | 4400 mAh | | | | | | | Device Chemistry | 100 (LiCoO ₂ /graphitized carbon) | | | | | | | Cell Overvoltage at Standard Temperature | 4300 mV | | | | | | | Cell Undervoltage | 2500 mV | | | | | | | Shutdown Voltage | 2300 mV | | | | | | | Overcurrent in CHARGE Mode | 6000 mA | | | | | | | Overcurrent in DISCHARGE Mode | - 6000 mA | | | | | | | Short Circuit in CHARGE Mode | 0.1 V/Rsense across SRP, SRN | | | | | | | Short Circuit in DISCHARGE 1 Mode | - 0.1 V/Rsense across SRP, SRN | | | | | | | Safety Over Voltage | 4500 mV | | | | | | | Cell Balancing | Disabled | | | | | | | Internal and External Temperature Sensor | Enabled | | | | | | | Under Temperature Charging | 0°C | | | | | | | Under Temperature Discharging | 0°C | | | | | | | BROADCAST Mode | Enabled | | | | | | ### 9.2.2 Detailed Design Procedure ## 9.2.2.1 Setting Design Parameters For the firmware settings needed for the design requirements, refer to the BQ28Z610-R1 Technical Reference Manual. - To set the 2s1p battery pack, go to data flash Configuration: DA Configuration register's bit 0 (CC0) = 1. - To set design capacity, set the data flash value to 4400 in the Gas Gauging: Design: Design Capacity register. - To set device chemistry, go to data flash SBS Configuration: Data: Device Chemistry. The BQSTUDIO software automatically populates the correct chemistry identification. This selection is derived from using the BQCHEM feature in the tools and choosing the option that matches the device chemistry from the list. - To protect against cell overvoltage, set the data flash value to 4300 in Protections: COV: Standard Temp. - To protect against cell undervoltage, set the data flash value to 2500 in the *Protections: CUV* register. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback - To set the shutdown voltage to prevent further pack depletion due to low pack voltage, program **Power: Shutdown:** Shutdown voltage = 2300. - To protect against large charging currents when the AC adapter is attached, set the data flash value to 6000 in the *Protections: OCC: Threshold* register. - To protect against large discharging currents when heavy loads are attached, set the data flash value to 6000 in the *Protections: OCD: Threshold* register. - Program a short circuit delay timer and threshold setting to enable the operating the system for large short transient current pulses. These two parameters are under *Protections: ASCC: Threshold* = 100 for charging current. The discharge current setting is *Protections: ASCD:Threshold* = -100 mV. - To prevent the cells from overcharging and adding a second level of safety, there is a register setting that will shut down the device if any of the cells voltage measurement is greater than the Safety Over Voltage setting for greater than the delay time. Set this data flash value to 4500 in **Permanent Fail: SOV: Threshold**. - To disable the cell balancing feature, set the data flash value to 0 in **Settings: Configuration: Balancing Configuration**: bit 0 (CB). - To enable the internal temperature and the external temperature sensors: Set **Settings:Configuration: Temperature Enable**: Bit 0 (TSInt) = 1 for the internal sensor; set Bit 1 (TS1) = 1 for the external sensor. - To prevent charging of the battery pack if the temperature falls below 0°C, set **Protections: UTC:Threshold** = 0. - To prevent discharging of the battery pack if the temperature falls below 0°C, set *Protections: UTD:Threshold* = 0. - To provide required information to the smart chargers, the gas gauge must operate in BROADCAST mode. To enable this, set the [BCAST] bit in *Configuration: SBS Configuration* 2: Bit 0 [BCAST] = 1. Each parameter listed for fault trigger thresholds has a delay timer setting associated for any noise filtering. These values, along with the trigger thresholds for fault detection, may be changed based upon the application requirements using the data flash settings in the appropriate register stated in the BQ28Z610-R1 Technical Reference Manual. #### 9.2.2.2 Calibration Process The calibration of current, voltage, and temperature readings is accessible by writing 0xF081 or 0xF082 to *ManufacturerAccess()*. A detailed procedure is included in the *BQ28Z610-R1 Technical Reference Manual* in the *Calibration* section. The description allows for calibration of cell voltage measurement offset, battery voltage, pack voltage, current calibration, coulomb counter offset, PCB offset, CC gain/capacity gain, and temperature measurement for both internal and
external sensors. ## 9.2.2.3 Gauging Data Updates When a battery pack enabled with the BQ28Z610-R1 device is first cycled, the value of *FullChargeCapacity()* updates several times. Solution 9-3 shows *RemainingCapacity()* and *FullChargeCapacity()*, and where those updates occur. As part of the Impedance Track algorithm, it is expected that *FullChargeCapacity()* may update at the end of charge, at the end of discharge, and at rest. Product Folder Links: BQ287610-R1 ## 9.2.3 Application Curve 图 9-3. Elapsed Time(s) # 10 Power Supply Recommendations There are two inputs for this device, the PACK input and VC2. The PACK input can be an unregulated input from a typical AC adapter. This input should always be greater than the maximum voltage associated with the number of series cells configured. The input voltage for the VC2 pin will have a minimum of 2.2 V to a maximum of 26 V with the recommended external RC filter. ## 11 Layout ## 11.1 Layout Guidelines - The layout for the high-current path begins at the PACK+ pin of the battery pack. As charge current travels through the pack, it finds its way through protection FETs, a chemical fuse, the Li-ion cells and cell connections, and the sense resistor, and then returns to the PACK pin. In addition, some components are placed across the PACK+ and PACK pins to reduce effects from electrostatic discharge. - The N-channel charge and discharge FETs must be selected for a given application. Most portable battery applications are a good option for the CSD16412Q5A. These FETs are rated at 14-A, 25-V device with Rds(on) of 11 m Ω when the gate drive voltage is 10 V. The gates of all protection FETs are pulled to the source with a high-value resistor between the gate and source to ensure they are turned off if the gate drive is open. The capacitors (both 0.1 μF values) placed across the FETs are to help protect the FETs during an ESD event. The use of two devices ensures normal operation if one of them becomes shorted. For effective ESD protection, the copper trace inductance of the capacitor leads must be designed to be as short and wide as possible. Ensure that the voltage rating of both these capacitors is adequate to hold off the applied voltage if one of the capacitors becomes shorted. - The quality of the Kelvin connections at the sense resistor is critical. The sense resistor must have a temperature coefficient no greater than 50 ppm in order to minimize current measurement drift with temperature. Choose the value of the sense resistor to correspond to the available overcurrent and short-circuit ranges of the BQ28Z610-R1. Select the smallest value possible in order to minimize the negative voltage generated on the BQ28Z610-R1 VSS node(s) during a short circuit. This pin has an absolute minimum of -0.3 V. Parallel resistors can be used as long as good Kelvin sensing is ensured. The device is designed to support a 1-m Ω to 3-m Ω sense resistor. - A pair of series 0.1- μ F ceramic capacitors is placed across the PACK+ and PACK pins to help in the mitigation of external electrostatic discharges. The two devices in series ensure continued operation of the pack if one of the capacitors becomes shorted. Optionally, a transorb such as the SMBJ2A can be placed across the pins to further improve ESD immunity. - In reference to the gas gauge circuit the following features require attention for component placement and layout: Differential Low-Pass Filter, I²C communication, and PBI (Power Backup Input). - The BQ28Z610-R1 uses an integrating delta-sigma ADC for current measurements. Add a 100-Ω resistor from the sense resistor to the SRP and SRN inputs of the device. Place a 0.1- μ F filter capacitor across the SRP and SRN inputs. Optional 0.1- μ F filter capacitors can be added for additional noise filtering for each sense input pin to ground, if required for your circuit. Place all filter components as close as possible to the device. Route the traces from the sense resistor in parallel to the filter circuit. Adding a ground plane around the filter network can add additional noise immunity. 图 11-1. BQ28Z610-R1 Differential Filter The BQ28Z610-R1 has an internal LDO that is internally compensated and does not require an external decoupling capacitor. The PBI pin is used as a power supply backup input pin, providing power during brief transient power outages. A standard 2.2- µ F ceramic capacitor is connected from the PBI pin to ground, as shown in application example. The I²C clock and data pins have integrated high-voltage ESD protection circuits; however, adding a Zener diode and series resistor provides more robust ESD performance. The I²C clock and data lines have an internal pull-down. When the gas gauge senses that both lines are low (such as during removal of the pack), the device performs auto-offset calibration and then goes into SLEEP mode to conserve power. ### 11.2 Layout Example - O Via connects to Power Ground - O Via connects between two layers 图 11-2. BQ28Z610-R1 Board Layout ## 12 Device and Documentation Support ## 12.1 第三方产品免责声明 TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类产品或服务单独或与任何 TI 产品或服务一起的表示或认可。 ## 12.2 Documentation Support - BQ28Z610-R1 Technical Reference Manual - Theory and Implementation of Impedance Track Battery Fuel-Gauging Algorithm Application Report ## 12.3 接收文档更新通知 要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击 订阅更新 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。 ## 12.4 支持资源 TI E2E™ 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题可获得所需的快速设计帮助。 链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。 #### 12.5 Trademarks Impedance Track[™] and TI E2E[™] are trademarks of Texas Instruments. Windows® is a registered trademark of Microsoft. Bluetooth® is a registered trademark of Bluetooth SIG, Inc. 所有商标均为其各自所有者的财产。 #### 12.6 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. #### 12.7 术语表 TI术语表本术语表列出并解释了术语、首字母缩略词和定义。 ## 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Product Folder Links: BQ28Z610-R1 www.ti.com 30-Jun-2021 #### PACKAGING INFORMATION | Orderable Device | Status
(1) | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking
(4/5) | Samples | |------------------|---------------|--------------|--------------------|------|----------------|--------------|-------------------------------|---------------------|--------------|-------------------------|---------| | BQ28Z610DRZR-R1 | ACTIVE | SON | DRZ | 12 | 3000 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -40 to 85 | 28Z6
10R1 | Samples | | BQ28Z610DRZT-R1 | ACTIVE | SON | DRZ | 12 | 250 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -40 to 85 | 28Z6
10R1 | Samples | (1) The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as
to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. # **PACKAGE OPTION ADDENDUM** www.ti.com 30-Jun-2021 # **PACKAGE MATERIALS INFORMATION** www.ti.com 20-Apr-2023 ## TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | ### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |-----------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | BQ28Z610DRZR-R1 | SON | DRZ | 12 | 3000 | 330.0 | 12.4 | 2.8 | 4.3 | 1.2 | 4.0 | 12.0 | Q2 | | BQ28Z610DRZT-R1 | SON | DRZ | 12 | 250 | 180.0 | 12.4 | 2.8 | 4.3 | 1.2 | 4.0 | 12.0 | Q2 | www.ti.com 20-Apr-2023 ### *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |-----------------|--------------|-----------------|------|------|-------------|------------|-------------| | BQ28Z610DRZR-R1 | SON | DRZ | 12 | 3000 | 552.0 | 346.0 | 36.0 | | BQ28Z610DRZT-R1 | SON | DRZ | 12 | 250 | 552.0 | 185.0 | 36.0 | # **PACKAGE MATERIALS INFORMATION** www.ti.com 20-Apr-2023 ## **TUBE** ### *All dimensions are nominal | Device | Package Name | Package Type | Pins | SPQ | L (mm) | W (mm) | T (µm) | B (mm) | |-----------------|--------------|--------------|------|------|--------|--------|--------|--------| | BQ28Z610DRZR-R1 | DRZ | VSON | 12 | 3000 | 381.51 | 4.22 | 2286 | 0 | | BQ28Z610DRZT-R1 | DRZ | VSON | 12 | 250 | 381.51 | 4.22 | 2286 | 0 | PLASTIC QUAD FLATPACK- NO LEAD ## NOTES: - All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. - 2. This drawing is subject to change without notice. - 3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance. PLASTIC QUAD FLATPACK- NO LEAD NOTES: (continued) - This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). - Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. PLASTIC QUAD FLATPACK- NO LEAD NOTES: (continued) 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. ## 重要声明和免责声明 TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。 这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。 这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。 TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 TI 反对并拒绝您可能提出的任何其他或不同的条款。 邮寄地址: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023,德州仪器 (TI) 公司