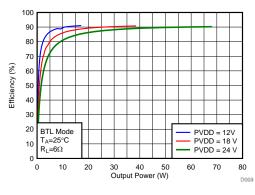


TAS5755M


ZHCSH30C -AUGUST 2017-REVISED APRIL 2018

具有集成音频处理器且支持 2.1 模式的 TAS5755M 2 × 50W (2 × 19W + 1 × 50W) 数字输入音频放大器

1 特性

- 解决方案尺寸更小
 - 支持单芯片 2.1、2.0 和单声道模式
 - 单声道 (PBTL) 模式采用单滤波器。
 - 焊盘朝上封装和 80mΩ R_{DSON} 增强热性能
- 支持高输出功率:
 - 2.1 模式
 可提供 2 × 19W +1 × 50W 的输出功率(2 × 4Ω + 1 × 6Ω, 24V)
 - 2.0 模式可提供 2 × 50W 的输出功率 (2 × 6Ω, 24V)
 - 单声道模式可提供 1 × 100W 的输出功率(1 × 2Ω, 24V)
 - 宽电源电压范围: 8V 至 26.4V
- 音频性能:
 - 频率为 1kHz 时, THD+N ≤ 0.05% (R_{SPK} = 8Ω, POUT = 1W, PVDD = 18V)
 - ICN ≤ 50µVRMS
 - 串扰 ≤ 67dB
 - SNR ≥ 104dB
 - 提供 BD 调制功能,提高音频性能和效率。
- 集成式音频处理:
 - 2×8+1×2双二阶滤波器
 - 双频带 + 单频带可配置动态范围控制 (DRC)
 - 免许可证的 3D 音效
 - 信号混合和直流阻断滤波器
 - 自动速率检测
- 集成式自保护
 - 热保护
 - 过流限制保护
 - 欠压保护

效率与总输出功率间的关系

2 应用

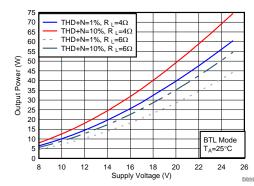
- DTV、UHD 和多功能监控器
- 条形音箱、电脑音频
- 通用音频设备

3 说明

TAS5755M 是具有集成式处理功能的单芯片灵活数字音频解决方案,支持 2.1(2 个扬声器 + 1 个低音炮)、2.0 或立体声(2 个扬声器)和单声道(高功率扬声器)模式。

该器件具有高效率, R_{DSON} 低至 80mΩ,并且采用焊盘朝上封装,输出功率高达 $2 \times 50W$ 或 $1 \times 100W$ 。

TAS5755M 的立体声模式中的每个通道都使用 2 个全 H 桥。在 2.1 模式中,TAS5755M 使用 2 个半桥驱动 2 个独立的扬声器通道,同时使用 1 个全桥驱动低音 炮。此外,在单声道模式中,TAS5755M 使用单级滤波器支持预滤波并联桥接式负载 (PBTL),减少了系统总尺寸并降低了成本。


TAS5755M 具有集成式音频处理功能。它包括:信号混合、直流阻断滤波器、2×8+1×2双二阶滤波器,从而实现均衡。通过双频带对数式 DRC 和用于低音炮通道的单独单频带 DRC 实现功率限制。

器件信息(1)

器件型号	封装	封装尺寸 (标称值)		
TAS5755M	DFD	14mm × 6.1mm		

(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。

输出功率与电源电压间的关系

_	
	— .
	77.
	1

1	特性 1	8	Parameter Measurement Information	2
2	应用 1	9	Detailed Description	2
3	说明 1		9.1 Overview	2 ⁻
4	修订历史记录 2		9.2 Functional Block Diagrams	2 ²
5	Device Comparison Table 4		9.3 Feature Description	24
6	Pin Configuration and Functions 5		9.4 Device Functional Modes	34
7	Specifications		9.5 Programming	30
•	7.1 Absolute Maximum Ratings		9.6 Register Maps	4 ²
	7.2 ESD Ratings	10	Application and Implementation	59
	7.3 Recommended Operating Conditions		10.1 Application Information	59
	7.4 Thermal Information		10.2 Typical Applications	59
	7.5 PWM Operation at Recommended Operating	11	Power Supply Recommendations	68
	Conditions 8		11.1 DVDD and AVDD Supplies	68
	7.6 DC Electrical Characteristics 8		11.2 PVDD Power Supply	68
	7.7 AC Electrical Characteristics (BTL, PBTL)9	12	Layout	68
	7.8 Electrical Characteristics - PLL External Filter		12.1 Layout Guidelines	68
	Components9		12.2 Layout Examples	69
	7.9 Electrical Characteristic - I ² C Serial Control Port	13	器件和文档支持	7 ′
	Operation		13.1 器件支持	
	7.10 Timing Requirements - PLL Input Parameters 10		13.2 文档支持	7 [.]
	7.11 Timing Requirements - Serial Audio Ports Slave Mode		13.3 社区资源	7 [.]
	7.12 Timing Requirements - I ² C Serial Control Port		13.4 商标	7 [.]
	Operation		13.5 静电放电警告	7
	7.13 Timing Requirements - Reset (RESET)		13.6 术语表	
	7.14 Typical Characteristics			

4 修订历史记录

注: 之前版本的页码可能与当前版本有所不同。

Changes from Revision B (January 2018) to Revision C

Page

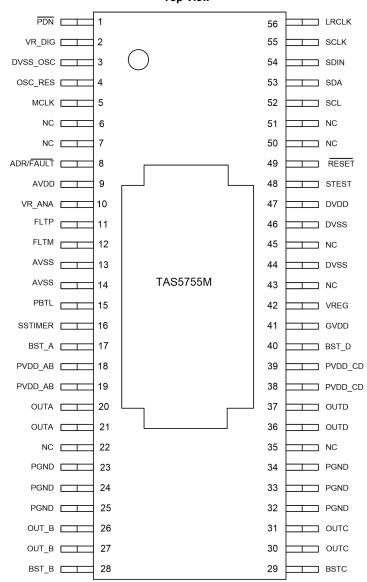
•	Changed "DVSSO" in OSC_RES Pin Description to "DVSS_OSC ground."	. 6
•	Added R _{0JA} in Thermal Information Table	8
	Changed R _{0JC(top)} in Thermal Information Table	
	Added R _{B,B} in Thermal Information Table	
	Added Ψ _{JT} in Thermal Information Table	
	Added R _{B,IC/both} in Thermal Information Table	

Changes from Revision A (November 2017) to Revision B

Page

	Changed SE Mode, PVDD = 24 V, R_L = 4 Ω , 7% THD from 17.1 W to 17.6 W in AC Electrical Characteristics (BTL, PBTL)	9
•	Changed SE Mode, PVDD = 24 V, R_L = 4Ω , 10% THD from 18.1 W to 19 W in AC Electrical Characteristics (BTL, PBTL)	
•	Changed 图 6 and 图 7	13
•	Changed 图 19, 图 20, and 图 21	16
•	Changed 图 33, 图 34, and 图 35	19

Ch	nanges from Original (August 2017) to Revision A	Page
•	将器件发布为生产数据	1


5 Device Comparison Table

	TAS5755M	TAS5731M	TAS5729MD	TAS5721	TAS5717	TAS5711
Max Power to Single- Ended Load	19	18		10		16
Max Power to Bridge Tied Load	50	37	20	15	10	20
Max Power to Parallel Bridge Tied Load	100	70	40	30		40
Min Supported Single- Ended Load	2	2		4		4
Min Supported Bridge Tied Load	4	4	4	8	4	6
Min Supported Parallel Bridge Tied Load	2	2	4	4		4
Closed/Open Loop	Open	Open	Open	Open	Open	Open
Max Speaker Outputs	3	3	2	3	2	3
Headphone Channels			Yes	Yes	Yes	
Architecture	Class D	Class D	Class D	Class D	Class D	Class D
Dynamic Range Control (DRC)	2-Band	2-Band	2-Band AGL	2-Band	2-Band AGL	Single-Band
Biquads (EQ)	21	21	28	21	28	21

6 Pin Configuration and Functions

HTSSOP Package 56-Pin DFD Top View

Pin Functions

PIN		TYPE(1)	DESCRIPTION			
NAME	NO.	ITPE\/	DESCRIPTION			
ADR/FAULT	8	DIO	Dual function terminal which sets the LSB of the 7-bit I2C address to "0" if pulled to GND and to "1" if pulled to DVDD. If configured to be a fault output by the methods described in I²C Address Selection and Fault Output, this terminal is pulled low when an internal fault occurs. A pull-up or pull-down resistor is required, as is shown in the Typical Application Circuit Diagrams. If pulled high (to DVDD), a 15-KΩ resistor must be used to minimize in-rush current at power up and to isolate the net if the pin is used as a fault output, as described above.			
AVDD 9		Р	3.3-V analog power supply			
AVSS	13,14	Р	Analog 3.3-V supply ground			
BST_A 17		Р	High-side bootstrap supply for half-bridge A			
BST_B	28	Р	High-side bootstrap supply for half-bridge B			

(1) TYPE: A = analog; D = 3.3-V digital; P = power/ground/decoupling; I = input; O = output

Pin Functions (continued)

PIN		(4)			
NAME	NO.	TYPE ⁽¹⁾	DESCRIPTION		
BST_C	29	Р	High-side bootstrap supply for half-bridge C		
BST_D	40	Р	High-side bootstrap supply for half-bridge D		
DVDD	47	Р	3.3-V digital power supply		
DVSS	44,46	Р	Digital ground		
DVSS_OSC	3	Р	Oscillator ground		
GVDD	41	Р	Gate drive internal regulator output		
LRCLK	56	Р	Input serial audio data left/right clock (sample-rate clock)		
MCLK	5	DI	Master clock input		
NC	6,7,22,35, 43,45,50,5 1	_	No connect		
OSC_RES	4	AO	Oscillator trim resistor. Connect an 18.2-kΩ, 1% resistor to DVSS_OSC ground.		
OUT_A	20,21	0	Output, half-bridge A		
OUT_B	26,27	0	Output, half-bridge B		
OUT_C	30,31	0	Output, half-bridge C		
OUT_D	36,37	0	Output, half-bridge D		
PBTL	15	DI	Low means BTL mode; high means PBTL mode. Information goes directly to power stage.		
PDN	1	DI	Power down, active-low. PDN prepares the device for loss of power supplies by shutting down the noise shaper and initiating the PWM stop sequence.		
PGND	23,24,25, 32,33,34	Р	Power ground for half-bridges A and B		
FLTM	12	AO	PLL negative loop-filter terminal		
FLTP	11	AO	PLL positive loop-filter terminal		
PVDD_AB	18,19	Р	Power-supply input for half-bridge output A and B		
PVDD_CD	38,39	Р	Power-supply input for half-bridge output C and D		
RESET	49	DI	Reset, active-low. A system reset is generated by applying a logic low to this pin. RESET is an asynchronous control signal that restores the DAP to its default conditions and places the PWM in the hard-mute (high-impedance) state.		
SCL	52	DI	I ² C serial control clock input		
SCLK	55	DI	Serial audio-data clock (shift clock). SCLK is the serial-audio-port input-data bit clock.		
SDA	53	DIO	I ² C serial control data interface input/output		
SDIN	54	DI	Serial audio data input. SDIN supports three discrete (stereo) data formats.		
SSTIMER	16	Al	Controls ramp time of OUT_x to minimize pop. Leave this pin floating for BD mode. Requires capacitor of 2.2 nF to GND in AD mode. The capacitor determines the ramp time.		
STEST	48	DI	Factory test pin. Connect directly to DVSS.		
VR_ANA	10	Р	Internally regulated 1.8-V analog supply voltage. This pin must not be used to power external devices.		
VR_DIG	2	Р	Internally regulated 1.8-V digital supply voltage. This pin must not be used to power external devices.		
VREG	42	Р	Digital regulator output. Not to be used for powering external circuitry.		
PowerPAD™	1	Р	Connect to GND for best system performance. If not connected to GND, leave floating.		

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
Commissional	DVDD, AVDD	-0.3	4.2	V
Supply voltage	PVDD_x	-0.3	30	V
	3.3-V digital input	-0.5	DVDD + 0.5	
Input voltage	5-V tolerant ⁽²⁾ digital input (except MCLK)	-0.5	DVDD + 2.5 ⁽³⁾	V
	5-V tolerant MCLK input	-0.5	AVDD + 2.5 ⁽³⁾	
OUT_x to PGND_x	DUT_x to PGND_x		32 ⁽⁴⁾	V
BST_x to PGND_x			39 ⁽⁴⁾	V
Input clamp current, I _{IK}		-20	20	mA
Output clamp current, IO	К	-20	20	mA
Operating free-air temperature		0	85	°C
Operating junction temperature		0	150	°C
Storage temperature, T _s	tg	-40	125	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±1000	V
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±250	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	NOM	MAX	UNIT
	Digital/analog supply voltage	DVDD, AVDD	3	3.3	3.6	V
	Half-bridge supply voltage	PVDD_x	8		26.4 ⁽¹⁾	V
V_{IH}	High-level input voltage	5-V tolerant	2			V
V_{IL}	Low-level input voltage	5-V tolerant			8.0	V
T _A	Operating ambient temperature range		0		85	°C
T _J (2)	Operating junction temperature range		0		125	°C
R _L (PBTL)	Load impedance	Output filter: L = 15 μH, C = 680 nF	2			Ω
R _L (BTL)	Load impedance	Output filter: L = 15 μH, C = 680 nF	4			Ω
R _L (SE)	Load impedance	Output filter: L = 15 μH, C = 680 nF	2			Ω
Lo	Output-filter inductance	Minimum output inductance under short-circuit condition	10			μН

⁽¹⁾ For operation at PVDD_x levels greater than 18 V, the modulation limit must be set to 93.8% through the control port register 0x10.

^{(2) 5-}V tolerant inputs are PDN, RESET, SCLK, LRCLK, MCLK, SDIN, SDA, and SCL.

⁽³⁾ Maximum pin voltage must not exceed 6 V.

⁽⁴⁾ DC voltage + peak ac waveform measured at the pin must be below the allowed limit for all conditions.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

⁽²⁾ Continuous operation above the recommended junction temperature may result in reduced reliability and/or lifetime of the device.

7.4 Thermal Information

	THERMAL METRIC ⁽¹⁾	DFD HTSSOP	UNIT
		56-PIN	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	50.9	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	1.3	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	26.9	°C/W
ΨЈТ	Junction-to-top characterization parameter	3.1	°C/W
ΨЈВ	Junction-to-board characterization parameter	26.7	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	_	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.5 PWM Operation at Recommended Operating Conditions

PARAMETER	TEST CONDITIONS	VALUE	UNIT
Output PWM switch frequency	11.025/22.05/44.1-kHz data rate ±2%	352.8	kHz
	48/24/12/8/16/32-kHz data rate ±2%	384	KIIZ

7.6 DC Electrical Characteristics

 $T_A = 25^\circ$, PVDD_x = 18 V, DVDD = AVDD = 3.3 V, $R_L = 8 \Omega$, BTL AD mode, $f_S = 48$ kHz (unless otherwise noted)

,,	PARAMETER	= 3.3 V, K _L = 0 \(\Omega\), BIL AD II	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	PARAMETER		TEST CONDITIONS	IVIIIV	ITP	WAX	UNII
V _{OH}	High-level output voltage	ADR/FAULT and SDA	I _{OH} = -4 mA DVDD = 3 V	2.4			V
V _{OL}	Low-level output voltage	ADR/FAULT and SDA	I _{OL} = 4 mA DVDD = 3 V			0.5	V
I _{IL}	Low-level input current		$V_1 < V_{1L}$; DVDD = AVDD = 3.6 V			75	μΑ
I _{IH}	High-level input current		$V_I > V_{IH}$; DVDD = AVDD = 3.6 V			75 ⁽¹⁾	μА
		2.2.1/ 2007 10.00 142 22. (D)/DD	Normal mode		49	68	
I _{DD}	3.3-V supply current	3.3-V supply voltage (DVDD, AVDD)	Reset (RESET = low, PDN = high)		23	38	mA
			Normal mode		32	50	
I _{PVDD}	Supply current	No load (PVDD_x)	Reset (RESET = low, PDN = high)		4	8	mA
(2)	Drain-to-source resistance, LS	T _J = 25°C, includes metallization	n resistance		80		0
r _{DS(on)} (2)	Drain-to-source resistance, HS	T _J = 25°C, includes metallization	n resistance		80		mΩ
I/O PROTECTIO	N					•	
V_{uvp}	Undervoltage protection limit	PVDD falling			6.4		V
V _{uvp,hyst}	Undervoltage protection limit	PVDD rising			7.1		V
OTE ⁽³⁾	Overtemperature error				150		°C
OTE _{HYST} (3)	Extra temperature drop required to recover from error				30		°C
loc	Overcurrent limit protection	Output to output short in BTL m	node		6		Α
I _{OCT}	Overcurrent response time				150		ns

¹⁾ I_{IH} for the PBTL pin has a maximum limit of 200 μA due to an internal pulldown on the pin.

⁽²⁾ This does not include bond-wire or pin resistance.

⁽³⁾ Specified by design.

7.7 AC Electrical Characteristics (BTL, PBTL)

PVDD_x = 18 V, BTL AD mode, f_S = 48 kHz, R_L = 8 Ω , C_{BST} = 10 nF, audio frequency = 1 kHz, AES17 filter, f_{PWM} = 384 kHz, T_A = 25°C (unless otherwise noted). All performance is in accordance with recommended operating conditions (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
		BTL mode, PVDD = 8 V, R_L = 8 Ω , 7% THD	3.9	
		BTL mode, PVDD = 8 V, $R_L = 8 \Omega$,10% THD	4.2	
		BTL mode, PVDD = 12 V, $R_L = 8 \Omega$, 7% THD	8	
		BTL mode, PVDD = 12 V, $R_L = 8 \Omega$,10% THD	9.6	
		BTL mode, PVDD = 18 V, $R_L = 8 \Omega$, 7% THD	18.7	
		BTL mode, PVDD = 18 V, $R_L = 8 \Omega$, 10% THD	21.2	
		BTL mode, PVDD = 24 V, R_L = 8 Ω , 7% THD	32.6	
		BTL mode, PVDD = 24 V, R_L = 8 Ω , 10% THD	37.2	
		BTL mode, PVDD = 24 V, R_L = 6 Ω , 10% THD	50	
		PBTL mode, PVDD = 12 V, $R_L = 4 \Omega$, 7% THD	16.5	
Po	Power output per channel	PBTL mode, PVDD = 12 V, $R_L = 4 \Omega$, 10% THD	17.9	W
		PBTL mode, PVDD = 18 V, $R_L = 4 \Omega$, 7% THD	37	
		PBTL mode, PVDD = 18 V, $R_L = 4 \Omega$, 10% THD	39.6	
		PBTL mode, PVDD = 24 V, $R_L = 4 \Omega$, 10% THD	66	
		PBTL mode, PVDD = 24 V, $R_L = 4 \Omega$, 10% THD	69.6	
		SE Mode, PVDD = 12 V, RL = 4 Ω , 7% THD	4.2	
		SE Mode, PVDD = 12 V, RL = 4 Ω , 10% THD	4.6	
		SE Mode, PVDD = 18 V, RL = 4 Ω , 7% THD	9.6	
		SE Mode, PVDD = 18 V, RL = 4 Ω , 10% THD	10.2	
		SE Mode, PVDD = 24 V, RL = 4 Ω , 7% THD	17.6	
		SE Mode, PVDD = 24 V, RL = 4 Ω , 10% THD	19	
		PVDD = 8 V, P _O = 1 W	0.15%	
THD+N	Total harmonic distortion + noise	PVDD = 12 V, P _O = 1 W	0.03%	
I HD+N	Total Harmonic distortion + noise	PVDD = 18 V, P _O = 1 W	0.04%	
		PVDD = 24 V, P _O = 1 W	0.1%	
V _n	Output integrated noise (rms)	A-weighted	46	μV
	Cross-talk	P _O = 0.25 W, f = 1 kHz (AD Mode)	-67	dB
SNR	Signal-to-noise ratio ⁽¹⁾	A-weighted, f = 1 kHz, maximum power at THD < 1%	104	dB

⁽¹⁾ SNR is calculated relative to 0-dBFS input level.

7.8 Electrical Characteristics - PLL External Filter Components

	• • • • • • • • • • • • • • • • • • •			
PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
External PLL filter capacitor C1	SMD 0603 X7R	47		nF
External PLL filter capacitor C2	SMD 0603 X7R	4.7		nF
External PLL filter resistor R	SMD 0603, metal film	470		Ω

7.9 Electrical Characteristic - I²C Serial Control Port Operation

for I²C Interface signals over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Cı	Load capacitance for each bus line				400	pF

7.10 Timing Requirements - PLL Input Parameters

		MIN	NOM	MAX	UNIT
f _{MCLKI}	MCLK frequency	2.8224		24.576	MHz
	MCLK duty cycle	40%	50%	60%	
t _r /t _{f(MCLK)}	Rise/fall time for MCLK			5	ns
	LRCLK allowable drift before LRCLK reset			4	MCLKs

7.11 Timing Requirements - Serial Audio Ports Slave Mode

over recommended operating conditions (unless otherwise noted)

			MIN	NOM	MAX	UNIT
f _{SCLKIN}	Frequency, SCLK 32 × f _S , 48 × f _S , 64 × f _S	C _L = 30 pF	1.024		12.288	MHz
t _{su1}	Setup time, LRCLK to SCLK rising edge		10			ns
t _{h1}	Hold time, LRCLK from SCLK rising edge		10			ns
t _{su2}	Setup time, SDIN to SCLK rising edge		10			ns
t _{h2}	Hold time, SDIN from SCLK rising edge		10			ns
	LRCLK frequency		8	48	48	kHz
	SCLK duty cycle		40%	50%	60%	
	LRCLK duty cycle		40%	50%	60%	
	SCLK rising edges between LRCLK rising edge	s	32		64	SCLK edges
t _(edge)	LRCLK clock edge with respect to the falling ed	ge of SCLK	-1/4		1/4	SCLK period
t _r /t _f	Rise/fall time for SCLK/LRCLK				8	ns

7.12 Timing Requirements - I²C Serial Control Port Operation

for I²C Interface signals over recommended operating conditions (unless otherwise noted)

			MIN	NOM	MAX	UNIT
f _{SCL}	Frequency, SCL	No wait states			400	kHz
t _{w(H)}	Pulse duration, SCL high		0.6			μS
t _{w(L)}	Pulse duration, SCL low		1.3			μS
t _r	Rise time, SCL and SDA				300	ns
t _f	Fall time, SCL and SDA				300	ns
t _{su1}	Setup time, SDA to SCL		100			ns
t _{h1}	Hold time, SCL to SDA		0			ns
t _(buf)	Bus free time between stop and start conditions		1.3			μS
t _{su2}	Setup time, SCL to start condition		0.6			μS
t _{h2}	Hold time, start condition to SCL		0.6			μS
t _{su3}	Setup time, SCL to stop condition		0.6			μS

7.13 Timing Requirements - Reset (RESET)

Control signal parameters over recommended operating conditions (unless otherwise noted).

		MIN	NOM MAX	UNIT
t _{w(RESET)}	Pulse duration, RESET active	100		μS
t _{d(I2C_ready)}	Time to enable I ² C		12	ms

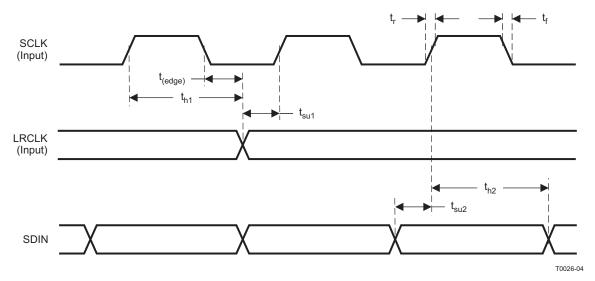


图 1. Slave-Mode Serial Data-Interface Timing

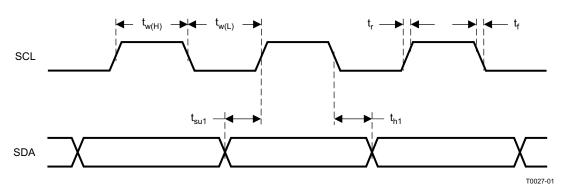


图 2. SCL and SDA Timing

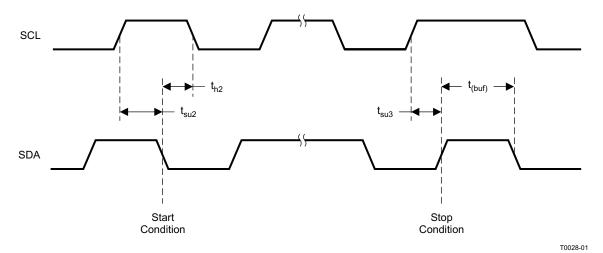
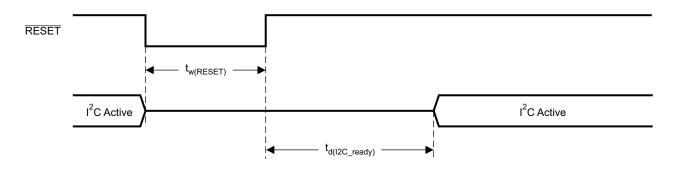



图 3. Start and Stop Conditions Timing

System Initialization.

Enable via I²C.

T0421-01

NOTES: On power up, it is recommended that the TAS5755M $\overline{\text{RESET}}$ be held LOW for at least 100 μs after DVDD has reached 3 V.

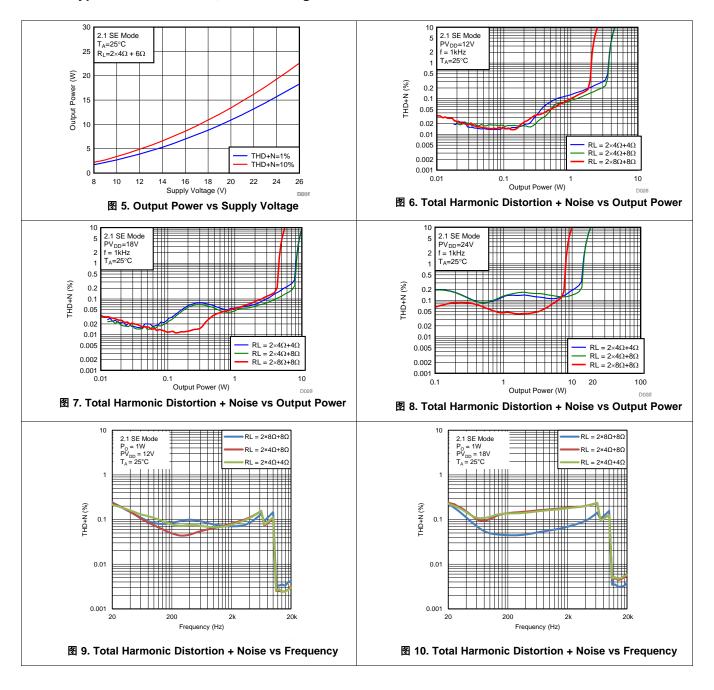
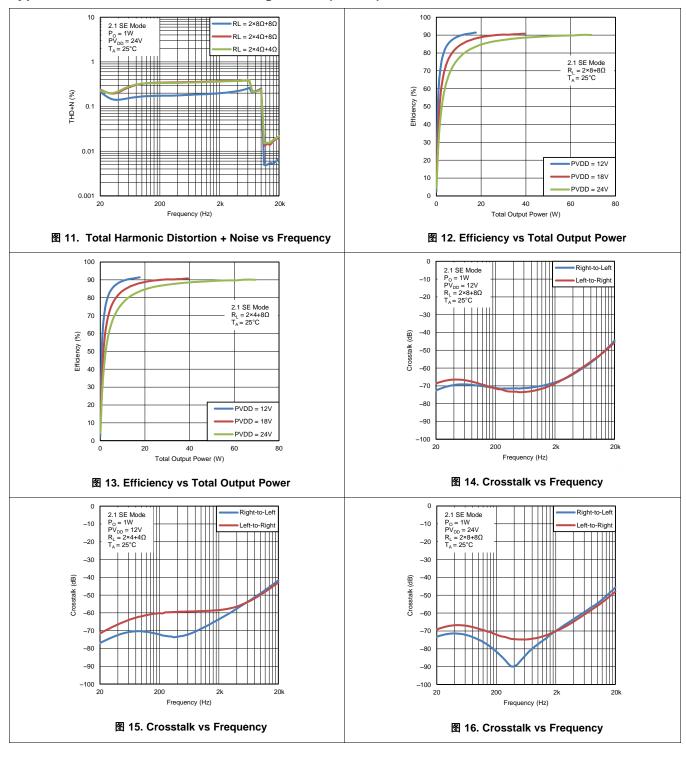
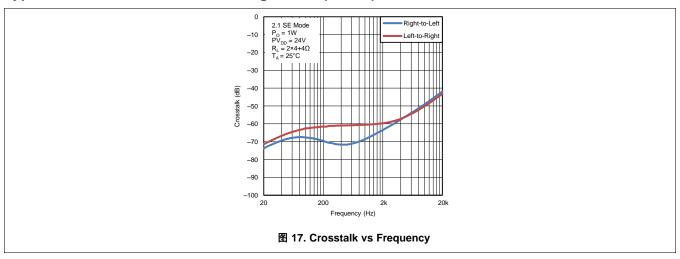

If $\overline{\text{RESET}}$ is asserted LOW while $\overline{\text{PDN}}$ is LOW, then $\overline{\text{RESET}}$ must continue to be held LOW for at least 100 μ s after $\overline{\text{PDN}}$ is deasserted (HIGH).

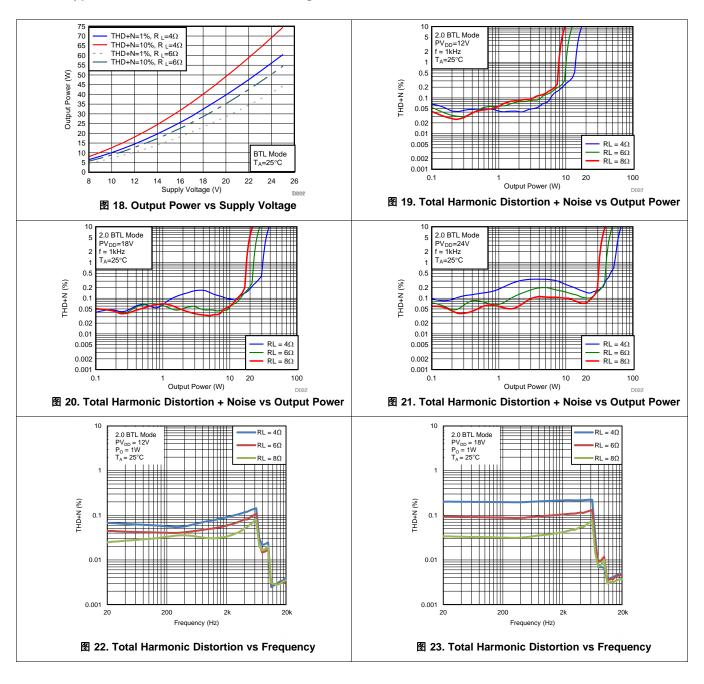
图 4. Reset Timing


7.14 Typical Characteristics

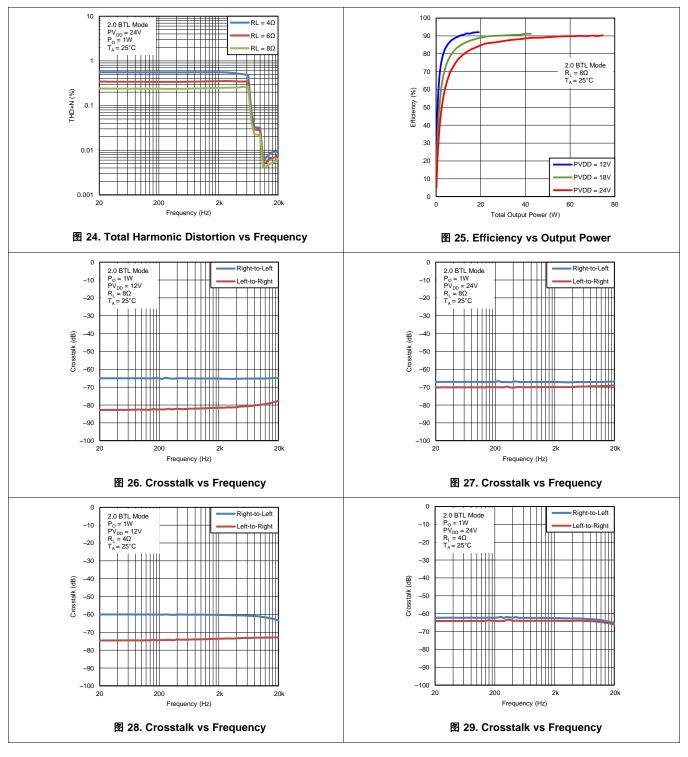
7.14.1 Typical Characteristics, 2.1 SE Configuration


TEXAS INSTRUMENTS

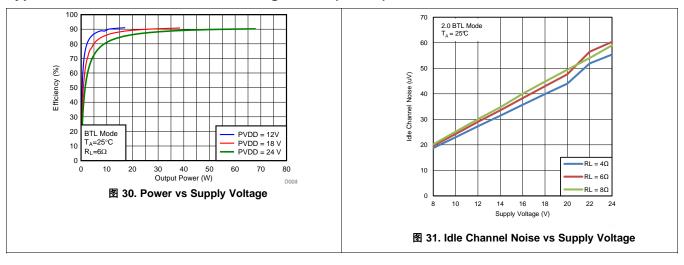
Typical Characteristics, 2.1 SE Configuration (接下页)



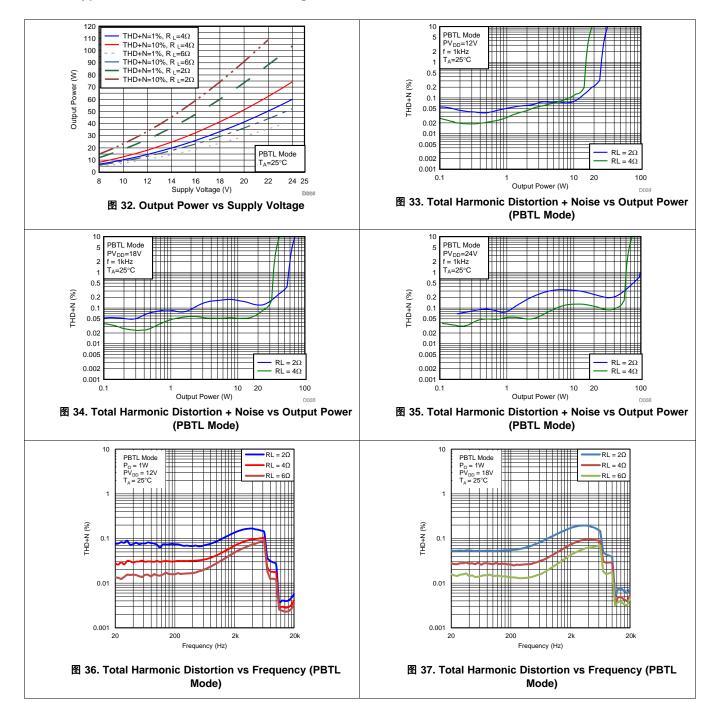
Typical Characteristics, 2.1 SE Configuration (接下页)



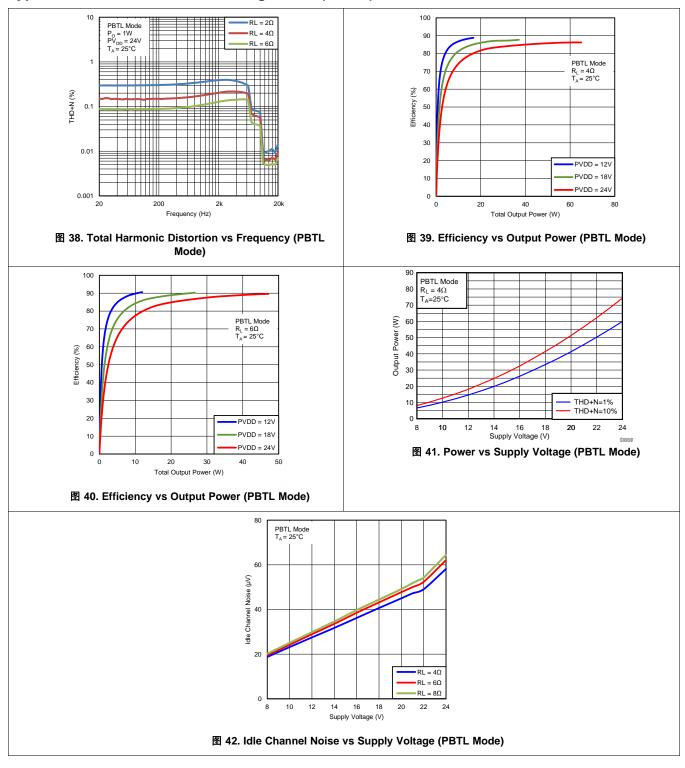
7.14.2 Typical Characteristics, 2.0 BTL Configuration



Typical Characteristics, 2.0 BTL Configuration (接下页)


TEXAS INSTRUMENTS

Typical Characteristics, 2.0 BTL Configuration (接下页)



7.14.3 Typical Characteristics, PBTL Configuration

TEXAS INSTRUMENTS

Typical Characteristics, PBTL Configuration (接下页)

8 Parameter Measurement Information

All parameters are measured according to the conditions described in the *Specifications* section.

9 Detailed Description

9.1 Overview

The TAS5755M is an efficient 50-W stereo I²S input Class-D audio power amplifier. The digital auto processor of the device uses noise shaping and customized correction algorithms to achieve a great power efficiency and high audio performance. Also, the device has up to eight Equalizers per channel and two -band configurable Dynamic Range Control (DRC).

The device needs only a single DVDD supply in addition to the higher-voltage PVDD power supply. An internal voltage regulator provides suitable voltage levels for the gate drive circuit. The wide PVDD power supply range of the device enables its use in a multitude of applications.

The TAS5755M is a slave-only device that is controlled by a bidirectional I²C interface that supports both 100-kHz and 400-kHz data transfer rates for single- and multiple-byte write and read operations. This control interface is used to program the registers of the device and read the device status.

The PWM of this device operates with a carrier frequency between 384 kHz and 354 kHz, depending the sampling rate. This device allows the use of the same clock signal for both MCLK and BCLK (64xFs) when using a sampling frequency of 44.1 kHz or 48 kHz.

This device can be used in three different modes of operation, Stereo BTL mode, Single filter PBTL mono mode, and 2.1 mode.

9.2 Functional Block Diagrams

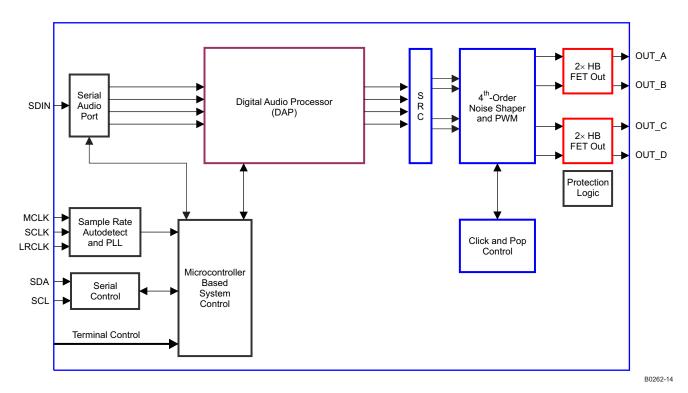


图 43. Functional Block Diagram

TEXAS INSTRUMENTS

Functional Block Diagrams (接下页)

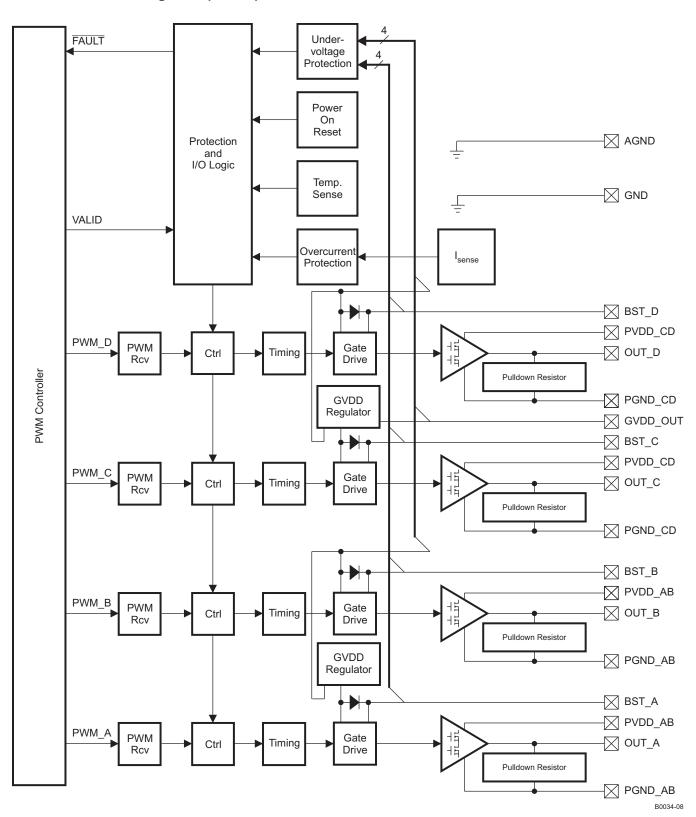


图 44. Power-Stage Functional Block Diagram

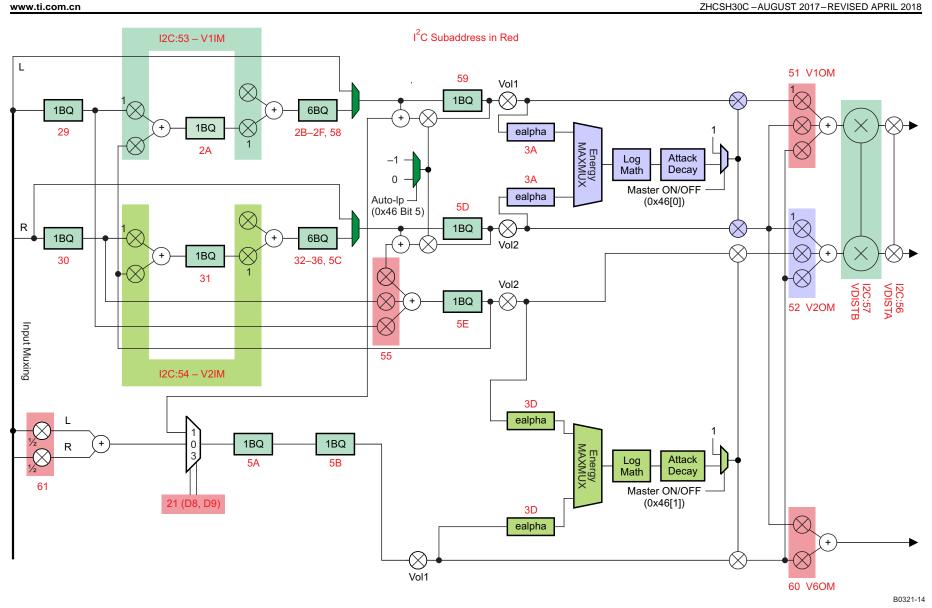


图 45. DAP Process Structure

9.3 Feature Description

9.3.1 Power Supply

To facilitate system design, the TAS5755M needs only a 3.3-V supply in addition to the PVDD power-stage supply. An internal voltage regulator provides suitable voltage levels for the gate drive circuitry. Additionally, all circuitry requiring a floating voltage supply, for example, the high-side gate drive, is accommodated by built-in bootstrap circuitry requiring only a few external capacitors.

In order to provide good electrical and acoustical characteristics, the PWM signal path for the output stage is designed as identical half-bridges with separate bootstrap pins (BST_x). The gate-drive voltage (GVDD_OUT) is derived from the PVDD voltage. Special attention must be paid to placing all decoupling capacitors as close to their associated pins as possible. Inductance between the power-supply pins and decoupling capacitors must be avoided.

For a properly functioning bootstrap circuit, a small ceramic capacitor must be connected from each bootstrap pin (BST_x) to the power-stage output pin (OUT_x). When the power-stage output is low, the bootstrap capacitor is charged through an internal diode connected between the gate-drive regulator output pin (GVDD_OUT) and the bootstrap pin. When the power-stage output is high, the bootstrap capacitor potential is shifted above the output potential and thus provides a suitable voltage supply for the high-side gate driver. In an application with PWM switching frequencies in the range from 288 kHz to 384 kHz, it is recommended to use 10-nF, X7R ceramic capacitors, size 0603 or 0805, for the bootstrap supply. These 10-nF capacitors ensure sufficient energy storage, even during minimal PWM duty cycles, to keep the high-side power-stage FET (LDMOS) fully turned on during the remaining part of the PWM cycle.

Special attention must be paid to the power-stage power supply; this includes component selection, PCB placement, and routing. As indicated, each half-bridge has independent power-stage supply pins (PVDD_x). For optimal electrical performance, EMI compliance, and system reliability, it is important that each PVDD_x pin is decoupled with a 100-nF, X7R ceramic capacitor placed as close as possible to each supply pin.

The TAS5755M is fully protected against erroneous power-stage turnon due to parasitic gate charging.

9.3.2 I²C Address Selection and Fault Output

ADR/ \overline{FAULT} is an input pin during power up. It can be pulled HIGH or LOW through a resistor as shown in the *Typical Applications* sections in order to set the I²C address. Pulling this pin HIGH through the resistor results in setting the I²C 7-bit address to 0011011 (0x36), and pulling it LOW through the resistor results in setting the address to 0011010 (0x34).

During power up, the address of the device is latched in, freeing up the ADR/FAULT pin to be used as a fault notification output. When configured as a fault output, the pin will go low when a fault occurs and will return to its default state when register 0x02 is cleared. The behavior of the pin in response to a fault condition is to be pulled low immediately upon an error. The device then waits for a period of time determined by BKND_ERR Register (0x1C) before attempting to resume playback. If the error has been cleared when the device attempts to resume playback, playback will resume, the ADR/FAULT pin will remain high, and normal operation will resume. If the error has not been removed, then the device will immediately re-enter the protected state and wait again for the predetermined period of time to pass. The device will pull the fault pin low for over-current, over-temperature, and under-voltage lock-out.

9.3.3 Single-Filter PBTL Mode

The TAS5755M supports parallel BTL (PBTL) mode with OUT_A/OUT_B (and OUT_C/OUT_D) connected before the LC filter. In addition to connecting OUT_A/OUT_B and OUT_C/OUT_D, BST_A/BST_B and BST_C/BST_D must also be connected before the LC filter, as shown in the 🗵 71. In order to put the part in PBTL configuration, drive PBTL (pin 8) HIGH. This synchronizes the turnoff of half-bridges A and B (and similarly C/D) if an overcurrent condition is detected in either half-bridge. There is a pulldown resistor on the PBTL pin that configures the part in BTL mode if the pin is left floating.

PWM output multiplexers register (0x25) and PWM Shutdown Group Register (0x19) must be updated to set the device in PBTL mode. Must follow one of below listed configurations for PBTL mode.

- Register (0x25) be written with a value of 0x0110 3245, Register (0x19) be written with a value of 0x35
- Register (0x25) be written with a value of 0x0101 2345, Register (0x19) be written with a value of 0x3A

24

9.3.4 Device Protection System

9.3.4.1 Overcurrent (OC) Protection With Current Limiting

The device has independent, fast-reacting current detectors on all high-side and low-side power-stage FETs. The detector outputs are closely monitored by a protection system. If the high-current condition situation persists, that is, the power stage is being overloaded, a protection system triggers a latching shutdown, resulting in the power stage being set in the high-impedance (Hi-Z) state. The device returns to normal operation once the fault condition (that is, a short circuit on the output) is removed. Current-limiting and overcurrent protection are not independent for half-bridges. That is, if the bridge-tied load between half-bridges A and B causes an overcurrent fault, half-bridges A, B, C, and D are shut down.

9.3.4.2 Overtemperature Protection

The TAS5755M has an overtemperature-protection system. If the device junction temperature exceeds 150°C (nominal), the device is put into thermal shutdown, resulting in all half-bridge outputs being set in the high-impedance (Hi-Z) state. The TAS5755M recovers automatically once the temperature drops approximately 30°C.

9.3.4.3 Undervoltage Protection (UVP) and Power-On Reset (POR)

The UVP and POR circuits of the TAS5755M fully protect the device in any power-up/down and brownout situation. While powering up, the POR circuit resets the overload circuit (OLP) and ensures that all circuits are fully operational when the PVDD and AVDD supply voltages reach 7.6 V and 2.7 V, respectively. Although PVDD and AVDD are independently monitored, a supply-voltage drop below the UVP threshold on AVDD or either PVDD pin results in all half-bridge outputs immediately being set in the high-impedance (Hi-Z) state.

9.3.5 SSTIMER Functionality

The SSTIMER pin uses a capacitor connected between this pin and ground to control the output duty cycle when exiting all-channel shutdown. The capacitor on the SSTIMER pin is slowly charged through an internal current source, and the charge time determines the rate at which the output transitions from a near-zero duty cycle to the desired duty cycle. This allows for a smooth transition that minimizes audible pops and clicks. When the part is shut down, the drivers are placed in the high-impedance state and transition slowly down through a 3-k Ω resistor, similarly minimizing pops and clicks. The shutdown transition time is independent of the SSTIMER pin capacitance. Larger capacitors increase the start-up time, while capacitors smaller than 2.2 nF decrease the start-up time. The SSTIMER pin can be left floating for BD modulation.

9.3.6 Clock, Autodetection, and PLL

The TAS5755M is an I²S slave device. It accepts MCLK, SCLK, and LRCLK. The digital audio processor (DAP) supports all the sample rates and MCLK rates that are defined in the *Clock Control Register (0x00)*.

The TAS5755M checks to verify that SCLK is a specific value of 32 f_S , 48 f_S , or 64 f_S . The DAP only supports a 1 \times f_S LRCLK. The timing relationship of these clocks to SDIN is shown in subsequent sections. The clock section uses MCLK or the internal oscillator clock (when MCLK is unstable, out of range, or absent) to produce the internal clock (DCLK) running at 512 times the PWM switching frequency.

The DAP can autodetect and set the internal clock control logic to the appropriate settings for all supported clock rates as defined in the clock-control register.

The TAS5755M has robust clock error handling that uses the built-in trimmed oscillator clock to quickly detect changes/errors. Once the system detects a clock change/error, it mutes the audio (through a single-step mute) and then forces PLL to limp using the internal oscillator as a reference clock. Once the clocks are stable, the system autodetects the new rate and reverts to normal operation. During this process, the default volume is restored in a single step (also called hard unmute). The ramp process can be programmed to ramp back slowly (also called soft unmute) as defined in volume register (0x0E).

9.3.7 PWM Section

The TAS5755M DAP device uses noise-shaping and customized nonlinear correction algorithms to achieve high power efficiency and high-performance digital audio reproduction. The DAP uses a fourth-order noise shaper to increase dynamic range and SNR in the audio band. The PWM section accepts 24-bit PCM data from the DAP and outputs two BTL PWM audio output channels.

The PWM section has individual-channel dc-blocking filters that can be enabled and disabled. The filter cutoff frequency is less than 1 Hz. Individual-channel de-emphasis filters for 44.1 kHz and 48 kHz are included and can be enabled and disabled.

Finally, the PWM section has an adjustable maximum modulation limit of 93.8% to 99.2%.

For a detailed description of using audio processing features like DRC and EQ, see the *TAS5755EVM User's Guide* (SLOU481) and *TAS570X GDE Software Setup* development tool documentation (SLOC124).

9.3.8 2.1-Mode Support

The TAS5755M uses a special mid-Z ramp sequence to reduce click and pop in SE-mode and 2.1-mode operation. To enable the mid-Z ramp, register 0x05 bit D7 must be set to 1. To enable 2.1 mode, register 0x05 bit D2 must be set to 1. The SSTIMER pin must be left floating in this mode.

9.3.9 I²C Compatible Serial Control Interface

The TAS5755M DAP has an I²C serial control slave interface to receive commands from a system controller. The serial control interface supports both normal-speed (100 kHz) and high-speed (400 kHz) operations without wait states. As an added feature, this interface operates even if MCLK is absent. The serial control interface supports both single-byte and multiple-byte read and write operations for status registers and the general control registers associated with the PWM.

9.3.10 Audio Serial Interface

Serial data is input on SDIN. The PWM outputs are derived from SDIN. The TAS5755M DAP accepts serial data in 16-, 20-, or 24-bit left-justified, right-justified, and I²S serial data formats.

9.3.10.1 $^{\circ}$ S Timing

 I^2S timing uses LRCLK to define when the data being transmitted is for the left channel and when it is for the right channel. LRCLK is low for the left channel and high for the right channel. A bit clock running at 32, 48, or 64 × f_S is used to clock in the data. There is a delay of one bit clock from the time the LRCLK signal changes state to the first bit of data on the data lines. The data is written MSB-first and is valid on the rising edge of bit clock. The DAP masks unused trailing data bit positions.

2-Channel I²S (Philips Format) Stereo Input

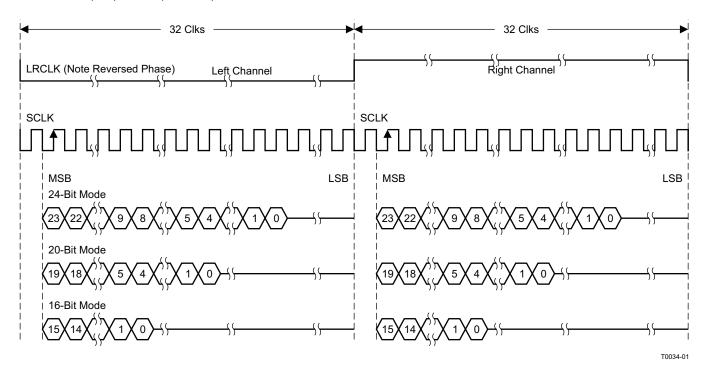



图 46. I²S 64-F_S Format

2-Channel I²S (Philips Format) Stereo Input/Output (24-Bit Transfer Word Size)

NOTE: All data presented in 2s-complement form with MSB first.

图 47. I²S 48-F_S Format

2-Channel I²S (Philips Format) Stereo Input

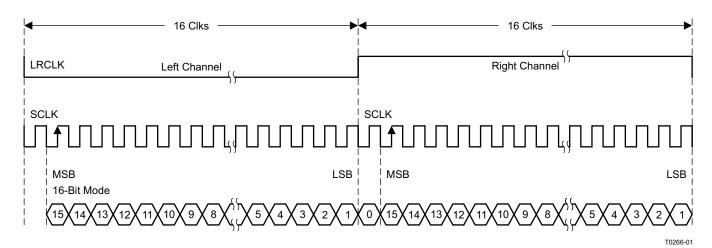


图 48. I²S 32-F_S Format

9.3.10.2 Left-Justified

Left-justified (LJ) timing uses LRCLK to define when the data being transmitted is for the left channel and when it is for the right channel. LRCLK is high for the left channel and low for the right channel. A bit clock running at 32, 48, or $64 \times f_S$ is used to clock in the data. The first bit of data appears on the data lines at the same time LRCLK toggles. The data is written MSB-first and is valid on the rising edge of the bit clock. The DAP masks unused trailing data bit positions.

2-Channel Left-Justified Stereo Input

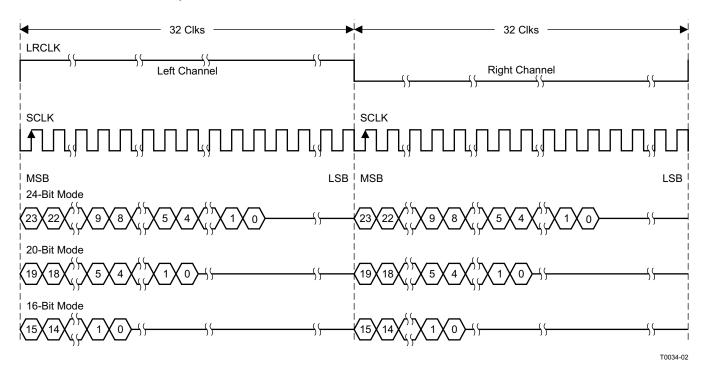
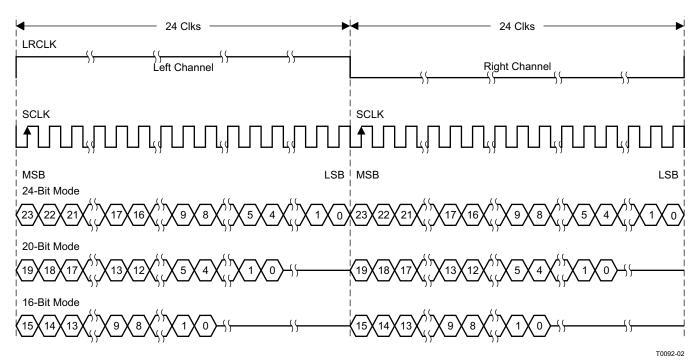



图 49. Left-Justified 64-F_S Format

2-Channel Left-Justified Stereo Input (24-Bit Transfer Word Size)

NOTE: All data presented in 2s-complement form with MSB first.

图 50. Left-Justified 48-F_S Format

2-Channel Left-Justified Stereo Input

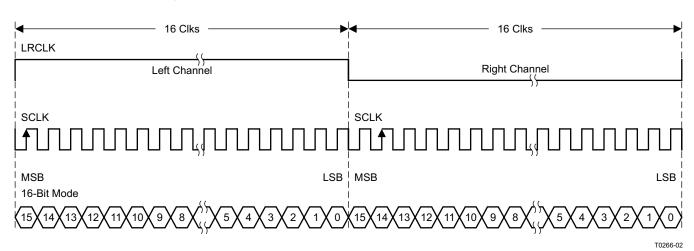


图 51. Left-Justified 32-F_S Format

9.3.10.3 Right-Justified

Right-justified (RJ) timing uses LRCLK to define when the data being transmitted is for the left channel and when it is for the right channel. LRCLK is high for the left channel and low for the right channel. A bit clock running at 32, 48, or $64 \times f_S$ is used to clock in the data. The first bit of data appears on the data 8 bit-clock periods (for 24-bit data) after LRCLK toggles. In RJ mode, the LSB of data is always clocked by the last bit clock before LRCLK transitions. The data is written MSB-first and is valid on the rising edge of bit clock. The DAP masks unused leading data bit positions.

2-Channel Right-Justified (Sony Format) Stereo Input

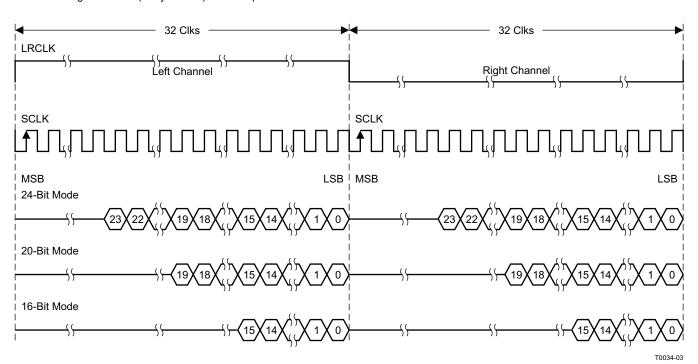


图 52. Right-Justified 64-F_S Format

2-Channel Right-Justified Stereo Input (24-Bit Transfer Word Size)

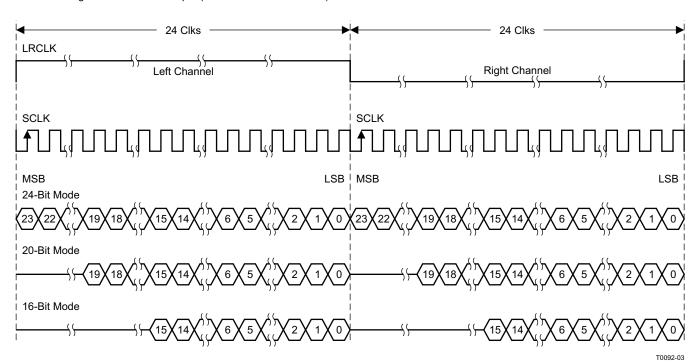
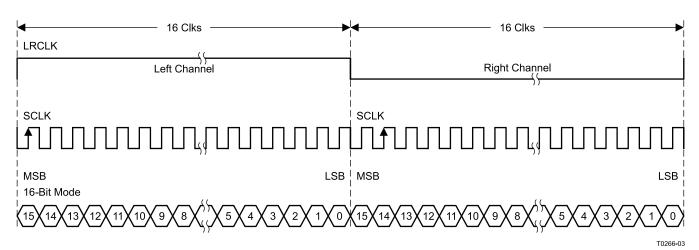
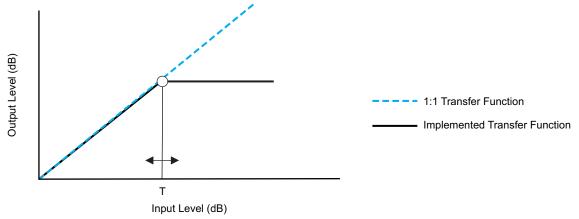


图 53. Right-Justified 48-F_S Format

2-Channel Right-Justified (Sony Format) Stereo Input




图 54. Right-Justified 32-F_S Format

9.3.11 Dynamic Range Control (DRC)

The DRC scheme has two DRC blocks. There is one ganged DRC for the high-band left/right channels and one DRC for the low-band left/right channels.

The DRC input/output diagram is shown in ₹ 55.

M0091-04

Professional-quality dynamic range compression automatically adjusts volume to flatten volume level.

- Each DRC has adjustable threshold levels.
- Programmable attack and decay time constants
- Transparent compression: compressors can attack fast enough to avoid apparent clipping before engaging, and decay times can be set slow enough to avoid pumping.

图 55. Dynamic Range Control

	α, ω	Т	$\alpha_a, \omega_a / \alpha_d, \omega_d$
DRC1	0x3C	0x3B	0x40
DRC2	0x3F	0x3E	0x43

B0265-04

T = 9.23 format, all other DRC coefficients are 3.23 format

图 56. DRC Structure

9.4 Device Functional Modes

9.4.1 Stereo BTL Mode

The classic stereo mode of operation uses the TAS5755M device to amplify two independent signals, which represent the left and right portions of a stereo signal. These amplified left and right audio signals are presented on differential output pairs shown as OUT_A and OUT_B for a channel and OUT_C and OUT_D for the other one. The routing of the audio data which is presented on the OUT_x outputs can be changed according to the PWM Output Mux Register (0x25). By default, the TAS5755M device is configured to output channel 1 to the OUT_A and OUT_B outputs, and channel 2 to the OUT_C and OUT_D outputs. Stereo Mode operation outputs are shown in 8 57.

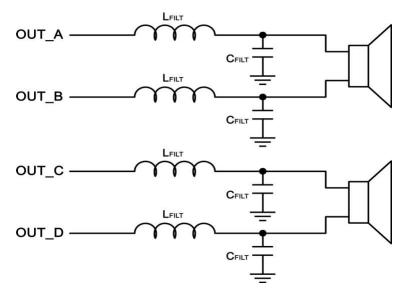


图 57. Stereo BTL Mode

9.4.2 Mono PBTL Mode

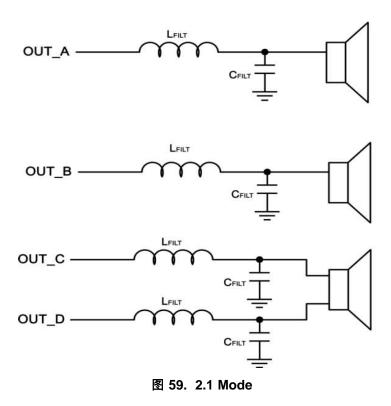
When this mode of operation is used, the two stereo outputs of the device are placed in parallel one with another to increase the power sourcing capabilities of the device. The TAS5755M supports parallel BTL (PBTL) mode with OUT_A/OUT_B (and OUT_C/OUT_D) connected before the LC filter.

The merging of the two output channels in this device can be done before the inductor portion of the output filter. This is called Single-Filter PBTL, and this mono operation is shown in 图 58. More information about this can be found in *Single-Filter PBTL Mode* section.

Device Functional Modes (接下页)

图 58. Pre-Filter PBTL

On the input side of the TAS5755M device, the input signal to the mono amplifier can be selected from a mix, left or right frame from an I²S, LJ, or RJ signal. The routing of the audio data which is presented on the SPK_OUTx outputs must be configured with the PWM Output Mux Register (0x25) and PWM Shutdown Group Register (0x19).


Refer to the *Mono Parallel Bridge Tied Load Application* section for more details of the correct PBTL output connection of the TAS5755M.

9.4.3 2.1 Mode

2.1 Mode is defined as the application of two Single ended channels and one BTL channel used in systems where a third sub channel is required. Generally, both single-ended inputs drive the Left and Right channels, while the BTL channel drives a low-frequency content channel called often Subwoofer. More information about this can be found in the 2.1-Mode Support section.

Device Functional Modes (接下页)

Refer to 2.1 Application section for more details of the correct 2.1 output connection of the TAS5755M.

9.5 Programming

9.5.1 I²C Serial Control Interface

The TAS5755M DAP has a bidirectional I^2C interface that is compatible with the Inter IC (I^2C) bus protocol and supports both 100-kHz and 400-kHz data transfer rates for single- and multiple-byte write and read operations. This is a slave-only device that does not support a multimaster bus environment or wait-state insertion. The control interface is used to program the registers of the device and to read device status.

The DAP supports the standard-mode I^2C bus operation (100 kHz maximum) and the fast I^2C bus operation (400 kHz maximum). The DAP performs all I^2C operations without I^2C wait cycles.

9.5.1.1 General PC Operation

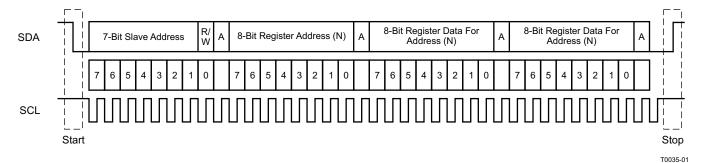


图 60. Typical I²C Sequence

There is no limit on the number of bytes that can be transmitted between start and stop conditions. When the last word transfers, the master generates a stop condition to release the bus. A generic data transfer sequence is shown in 860.

The 7-bit address for TAS5755M is 0011 011 (0x36).

9.5.1.2 Single- and Multiple-Byte Transfers

The serial control interface supports both single-byte and multiple-byte read/write operations for subaddresses 0x00 to 0x1F. However, for the subaddresses 0x20 to 0xFF, the serial control interface supports only multiple-byte read/write operations (in multiples of 4 bytes).

During multiple-byte read operations, the DAP responds with data, a byte at a time, starting at the subaddress assigned, as long as the master device continues to respond with acknowledges. If a particular subaddress does not contain 32 bits, the unused bits are read as logic 0.

During multiple-byte write operations, the DAP compares the number of bytes transmitted to the number of bytes that are required for each specific subaddress. For example, if a write command is received for a biquad subaddress, the DAP must receive five 32-bit words. If fewer than five 32-bit data words have been received when a stop command (or another start command) is received, the received data is discarded.

Supplying a subaddress for each subaddress transaction is referred to as random I²C addressing. The TAS5755M also supports sequential I²C addressing. For write transactions, if a subaddress is issued followed by data for that subaddress and the 15 subaddresses that follow, a sequential I²C write transaction has taken place, and the data for all 16 subaddresses is successfully received by the TAS5755M. For I²C sequential-write transactions, the subaddress then serves as the start address, and the amount of data subsequently transmitted, before a stop or start is transmitted, determines how many subaddresses are written. As was true for random addressing, sequential addressing requires that a complete set of data be transmitted. If only a partial set of data is written to the last subaddress, the data for the last subaddress is discarded. However, all other data written is accepted; only the incomplete data is discarded.

9.5.1.3 Single-Byte Write

As shown in \$\mathbb{E}\$ 61, a single-byte data-write transfer begins with the master device transmitting a start condition followed by the I²C device address and the read/write bit. The read/write bit determines the direction of the data transfer. For a data-write transfer, the read/write bit is a 0. After receiving the correct I²C device address and the read/write bit, the DAP responds with an acknowledge bit. Next, the master transmits the address byte or bytes corresponding to the TAS5755M internal memory address being accessed. After receiving the address byte, the TAS5755M again responds with an acknowledge bit. Next, the master device transmits the data byte to be written to the memory address being accessed. After receiving the data byte, the TAS5755M again responds with an acknowledge bit. Finally, the master device transmits a stop condition to complete the single-byte data-write transfer.

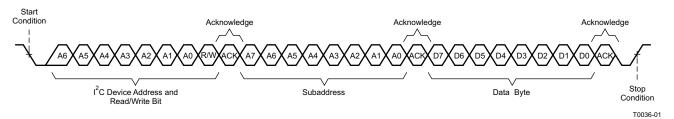


图 61. Single-Byte Write Transfer

9.5.1.4 Multiple-Byte Write

A multiple-byte data-write transfer is identical to a single-byte data-write transfer except that multiple data bytes are transmitted by the master device to the DAP as shown in 8 62. After receiving each data byte, the TAS5755M responds with an acknowledge bit.

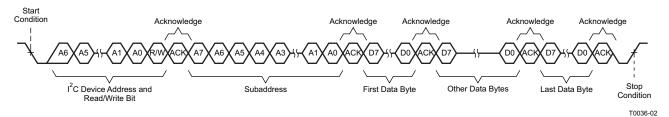


图 62. Multiple-Byte Write Transfer

9.5.1.5 Single-Byte Read

As shown in \$\mathbb{g}\$ 63, a single-byte data-read transfer begins with the master device transmitting a start condition, followed by the I²C device address and the read/write bit. For the data read transfer, both a write followed by a read are actually done. Initially, a write is done to transfer the address byte or bytes of the internal memory address to be read. As a result, the read/write bit becomes a 0. After receiving the TAS5755M address and the read/write bit, TAS5755M responds with an acknowledge bit. In addition, after sending the internal memory address byte or bytes, the master device transmits another start condition followed by the TAS5755M address and the read/write bit again. This time, the read/write bit becomes a 1, indicating a read transfer. After receiving the address and the read/write bit, the TAS5755M again responds with an acknowledge bit. Next, the TAS5755M transmits the data byte from the memory address being read. After receiving the data byte, the master device transmits a not-acknowledge followed by a stop condition to complete the single-byte data-read transfer.

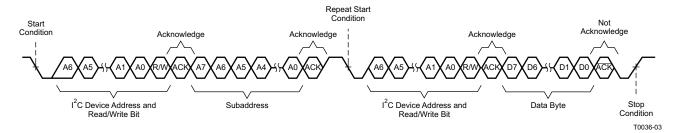


图 63. Single-Byte Read Transfer

9.5.1.6 Multiple-Byte Read

A multiple-byte data-read transfer is identical to a single-byte data-read transfer except that multiple data bytes are transmitted by the TAS5755M to the master device as shown in 8 64. Except for the last data byte, the master device responds with an acknowledge bit after receiving each data byte.

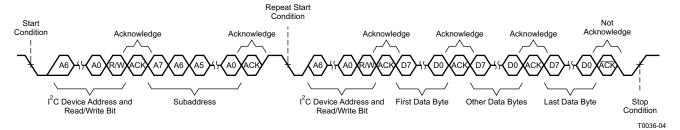


图 64. Multiple-Byte Read Transfer

9.5.2 26-Bit 3.23 Number Format

All mixer gain coefficients are 26-bit coefficients using a 3.23 number format. Numbers formatted as 3.23 numbers means that there are 3 bits to the left of the binary point and 23 bits to the right of the binary point. This is shown in 865.

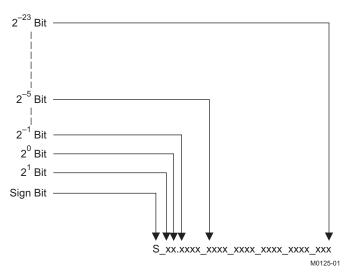
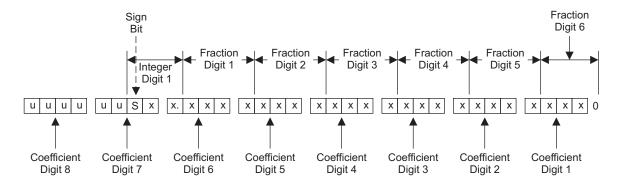


图 65. 3.23 Format


The decimal value of a 3.23 format number can be found by following the weighting shown in ₹ 65. If the most significant bit is logic 0, the number is a positive number, and the weighting shown yields the correct number. If the most significant bit is a logic 1, then the number is a negative number. In this case every bit must be inverted, a 1 added to the result, and then the weighting shown in ₹ 66 applied to obtain the magnitude of the negative number.

$$2^{1}$$
 Bit 2^{0} Bit 2^{-1} Bit 2^{-4} Bit 2^{-23} Bit 2^{-23

图 66. Conversion Weighting Factors — 3.23 Format To Floating Point

Gain coefficients, entered via the I^2C bus, must be entered as 32-bit binary numbers. The format of the 32-bit number (4-byte or 8-digit hexadecimal number) is shown in $\boxtimes 67$.

u = unused or don't care bits Digit = hexadecimal digit

M0127-01

图 67. Alignment of 3.23 Coefficient in 32-Bit I²C Word

表 1. Sample Calculation for 3.23 Format

db	LINEAR	DECIMAL	HEX (3.23 Format)
0	1	8,388,608	80 0000
5	1.77	14,917,288	00E3 9EA8
-5	0.56	4,717,260	0047 FACC
Х	$L = 10^{(X/20)}$	D = 8,388,608 × L	H = dec2hex (D, 8)

表 2. Sample Calculation for 9.17 Format

db	LINEAR	DECIMAL	HEX (9.17 Format)
0	1	131,072	2 0000
5	1.77	231,997	3 8A3D
-5	0.56	73,400	1 1EB8
Х	$L = 10^{(X/20)}$	D = 131,072 × L	H = dec2hex (D, 8)

9.6 Register Maps

9.6.1 Register Map Summary

表 3. Serial Control Interface Register Summary

SUBADDRESS	REGISTER NAME	NO. OF BYTES	CONTENTS ⁽¹⁾	INITIALIZATION VALUE
0x00	Clock control register	1	Description shown in subsequent section	0x6C
0x01	Device ID register	1	Description shown in subsequent section	0x00
0x02	Error status register	1	Description shown in subsequent section	0x00
0x03	System control register 1	1	Description shown in subsequent section	0xA0
0x04	Serial data interface register	1	Description shown in subsequent section	0x05
0x05	System control register 2	1	Description shown in subsequent section	0x40
0x06	Soft mute register	1	Description shown in subsequent section	0x00
0x07	Master volume	1	Description shown in subsequent section	0xFF (mute)
80x0	Channel 1 vol	1	Description shown in subsequent section	0x30 (0 dB)
0x09	Channel 2 vol	1	Description shown in subsequent section	0x30 (0 dB)
0x0A	Channel 3 vol	1	Description shown in subsequent section	0x30 (0 dB)
0x0B-0x0D		1	Reserved ⁽²⁾	
0x0E	Volume configuration register	1	Description shown in subsequent section	0x91
0x0F		1	Reserved ⁽²⁾	
0x10	Modulation limit register	1	Description shown in subsequent section	0x02
0x11	IC delay channel 1	1	Description shown in subsequent section	0xAC
0x12	IC delay channel 2	delay channel 2 1 Description shown in subsequent section		0x54
0x13	IC delay channel 3	1	Description shown in subsequent section	0xAC
0x14	IC delay channel 4	1	Description shown in subsequent section	0x54
0x15-0x18		1	Reserved ⁽²⁾	
0x19	PWM channel shutdown group register	1	Description shown in subsequent section	0x30
0x1A	Start/stop period register	1		0x0F
0x1B	Oscillator trim register	1		0x82
0x1C	BKND_ERR register	1		0x02
0x1D-0x1F		1	Reserved ⁽²⁾	
0x20	Input MUX register	4	Description shown in subsequent section	0x0001 7772
0x21	Ch 4 source select register	4	Description shown in subsequent section	0x0000 4303
0x22 -0x24		4	Reserved ⁽²⁾	
0x25	PWM MUX register	4	Description shown in subsequent section	0x0102 1345
0x26-0x28		4	Reserved ⁽²⁾	
0x29	ch1_bq[0]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x2A	ch1_bq[1]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000

⁽¹⁾ A u indicates unused bits.

⁽²⁾ Reserved registers must not be accessed.

Register Maps (接下页)

表 3. Serial Control Interface Register Summary (接下页)

SUBADDRESS	REGISTER NAME	NO. OF BYTES	CONTENTS ⁽¹⁾	INITIALIZATION VALUE
0x2B	ch1_bq[2]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x2C	ch1_bq[3]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x2D	ch1_bq[4]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x2E	ch1_bq[5]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x2F	ch1_bq[6]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x30	ch2_bq[0]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x31	ch2_bq[1]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x32	ch2_bq[2]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x33	ch2_bq[3]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000

Register Maps (接下页)

表 3. Serial Control Interface Register Summary (接下页)

0x34	SUBADDRESS	REGISTER NAME	NO. OF BYTES	CONTENTS ⁽¹⁾	INITIALIZATION VALUE
U 31:26 , b2 25:0	0x34	ch2_bq[4]	20	u[31:26], b0[25:0]	0x0080 0000
U[31:26], a1[25:0]				u[31:26], b1[25:0]	0x0000 0000
				u[31:26], b2[25:0]	0x0000 0000
0x35 ch2_bq[5] 20 u[31:26], bp[25:0] 0x0000 0000 u[31:26], bp[25:0] 0x0000 0000 0x0000 0000 u[31:26], ap[25:0] 0x0000 0000 u[31:26], ap[25:0] 0x0000 0000 u[31:26], bp[25:0] 0x0000 0000 u[31:26], bp[25:0] 0x0000 0000 u[31:26], bp[25:0] 0x0000 0000 u[31:26], bp[25:0] 0x0000 0000 u[31:26], ap[25:0] 0x0000 0000 u[31:26], ap[25:0] 0x0000 0000 u[31:26], ap[25:0] 0x0000 0000 0x37 - 0x39 4 Reserved ⁽²⁾ 0x3A DRC1 (1 - ae) u[31:26], ap[25:0] 0x0000 0000 0x3B DRC1 (1 - ae) u[31:26], ap[25:0] 0x0000 0000 0x3B DRC1 (1 - aa) u[31:26], ap[25:0] 0x0000 0000 0x3C DRC1 aa 8 u[31:26], ap[25:0] 0x0000 0000 0x3B DRC2 (1 - aa) u[31:26], ap[25:0] 0x0000 0000 0x3C DRC2 ae 8 u[31:26], ap[25:0] 0x0000 0000 0x3B DRC2 ae 8				u[31:26], a1[25:0]	0x0000 0000
U 31:28 , b1 25:0 0x0000 0000 U 31:28 , b1 25:0 0x0000 0000 U 31:28 , a2 25:0 0x0000 0000 U 31:28 , b2 25:0 0x0000 0000 U 31:28 , b2 25:0 0x0000 0000 U 31:28 , a2 25:0 0x0000 0000 U 31:28 , d2 25:0 0x0000 0000 U 31:28 , d1-aa 25:0 0x0000 0000 U 31:28 , d1-aa 25:0 0x0000 0000 0x0000 0000 U 31:28 , d1-aa 25:0 0x0000 0000 0x0000 0000 U 31:28 , d1-aa 25:0 0x0000 0000 0x00000 0000 0x0000 0000 0x00000 0000 0x000000 0x000000 0x0000000 0x0000000 0x00000000				u[31:26], a2[25:0]	0x0000 0000
U 31:26 , b2 25:0 0x0000 0000 U 31:26 , a2 25:0 0x0000 0000 U 31:26 , (1 - a0) 25:0 0x0000 0000 U 31:26 , (1 - a0) 25:0 0x0000 0000 U 31:26 , (1 - a0) 25:0 0x0000 0000 U 31:26 , (1 - a0) 25:0 0x0000 0000 U 31:26 , (1 - a0) 25:0 0x0000 0000 U 31:26 , (1 - a0) 25:0 0x0000 0000 U 31:26 , (1 - a0) 25:0 0x0000 0000 U 31:26 , (1 - a0) 25:0 0x0000 0000 U 31:26 , (1 - a0) 25:0 0x0000 0000 U 31:26 , (1 - a0) 25:0 0x0000 0000 U 31:26 , (1 - a0) 25:0 0x0000 0000 U 31:26 , (1 - a0) 25:0 0x0000 0000 U 31:26 , (1 - a0) 25:0 0x0000 0000 U 31:26 , (1 - a0) 25:0 0x0000 0000 U 31:26 , (1 - a0) 25:0 0x0000 0000 U 31:26 , (1 - a0) 25:0 0x0000 0000 0x0000 0000 U 31:26 , (1 - a0) 25:0 0x0000 0000 0x0000 0000 U 31:26 , (1 - a0) 25:0 0x0000 0000 0x0000 0000 U 31:26 , (1 - a0) 25:0 0x0000 0000 0x0000 0000 U 31:26 , (1 - a0) 25:0 0x0000 0000 0x0000 0000 U 31:26 , (1 - a0) 25:0 0x0000 0000 0x0000 0000 U 31:26 , (1 - a0) 25:0 0x0000 0000 0x0000 0000 0x0000 0000 0x00000 0000 0x00000 0000 0x00000 0000 0x0000000 0x0000000 0x00000000	0x35	ch2_bq[5]	20	u[31:26], b0[25:0]	0x0080 0000
U[31:26], a1[25:0]				u[31:26], b1[25:0]	0x0000 0000
U(31:28), a2(25:0)				u[31:26], b2[25:0]	0x0000 0000
0x36 ch2_bq[6] 20 u[31:28], b0[25:0] 0x0080 0000 u[31:28], b1[25:0] 0x0000 0000 u[31:28], b1[25:0] 0x0000 0000 u[31:28], b2[25:0] 0x0000 0000 u[31:28], a2[25:0] 0x0000 0000 0x37 - 0x39 4 Reserved ⁽²⁾ 0x0000 0000 0x3A DRC1 ae ⁽³⁾ 8 u[31:28], ae[25:0] 0x0000 0000 0x3B DRC1 (1 - ae) u[31:28], ae[25:0] 0x0000 0000 0x3C DRC1 ae 8 u[31:26], ae[25:0] 0x0000 0000 0x3C DRC1 ad 8 u[31:26], ae[25:0] 0x0000 0000 0x3D DRC2 ae 8 u[31:26], ae[25:0] 0x0000 0000 0x3D DRC2 ae 8 u[31:26], ae[25:0] 0x0000 0000 0x3E DRC2 (1 - ae) u[31:26], ae[25:0] 0x0000 0000 0x3E DRC2 (1 - ae) u[31:26], ae[25:0] 0x0000 0000 0x3F DRC2 ad 8 u[31:26], ae[25:0] 0x0000 0000 0x40 DRC1 A 4 T[31:0] (9:23 format) 0xFDA2 1490 <td></td> <td></td> <td></td> <td>u[31:26], a1[25:0]</td> <td>0x0000 0000</td>				u[31:26], a1[25:0]	0x0000 0000
Wilson Wilson				u[31:26], a2[25:0]	0x0000 0000
Wilson Wilson	0x36	ch2_bq[6]	20	u[31:26], b0[25:0]	0x0080 0000
U[31:26], a1[25:0] 0x0000 0000 0x37 - 0x39 4 Reserved(2) 0x3A DRC1 ae(3) 8 U[31:26], a2[25:0] 0x0000 0000 0x3B DRC1 (1 - ae) U[31:26], a[25:0] 0x0000 0000 0x3B DRC1 aa 8 U[31:26], a[25:0] 0x0000 0000 0x3C DRC1 (1 - aa) U[31:26], a1[25:0] 0x0000 0000 0x3D DRC1 (1 - ad) U[31:26], a1[25:0] 0x0000 0000 0x3D DRC2 ae 8 U[31:26], a2[25:0] 0x0000 0000 0x3D DRC2 ae 8 U[31:26], a2[25:0] 0x0000 0000 0x3E DRC2 ae 8 U[31:26], a1[25:0] 0x0000 0000 0x3E DRC2 ad 8 U[31:26], a1[25:0] 0x0000 0000 0x3F DRC2 ad 8 U[31:26], (1 - aa)[25:0] 0x0000 0000 0x40 DRC1-T 4 T[13:0] (9.23 format) 0xFDA2 1490 0x41 DRC1-T 4 T[13:0] (9.23 format) 0xFDA2 1490 0x42 DRC1-O 4				u[31:26], b1[25:0]	0x0000 0000
U[31:26], a2[25:0]				u[31:26], b2[25:0]	0x0000 0000
0x37 - 0x39 4 Reserved ⁽²⁾ 0x3A DRC1 aa ⁽³⁾ 8 u[31:26], ae[25:0] 0x0080 0000 0x3B DRC1 aa 8 u[31:26], ae[25:0] 0x0000 0000 0x3B DRC1 (1 - aa) u[31:26], ae[25:0] 0x0000 0000 0x3C DRC1 ad 8 u[31:26], ae[25:0] 0x0000 0000 0x3D DRC2 ad 8 u[31:26], ae[25:0] 0x0000 0000 0x3E DRC2 ae 8 u[31:26], ae[25:0] 0x0000 0000 0x3E DRC2 aa 8 u[31:26], ae[25:0] 0x0000 0000 0x3F DRC2 aa 8 u[31:26], ae[25:0] 0x0000 0000 0x3F DRC2 ad 8 u[31:26], ae[25:0] 0x0000 0000 0x40 DRC1-T 4 T[31:26], ae[25:0] 0x0000 0000 0x41 DRC1-Aa) u[31:26], ae[25:0] 0x0000 0000 0x42 DRC2-T 4 T[31:0] (9:23 format) 0xFDA2 1490 0x42 DRC1-K 4 u[31:26], C[125:0] 0x0008 4210 0				u[31:26], a1[25:0]	0x0000 0000
0x37 - 0x39 4 Reserved ⁽²⁾ 0x3A DRC1 aa ⁽³⁾ 8 u[31:26], ae[25:0] 0x0080 0000 0x3B DRC1 aa 8 u[31:26], ae[25:0] 0x0000 0000 0x3B DRC1 (1 - aa) u[31:26], ae[25:0] 0x0000 0000 0x3C DRC1 ad 8 u[31:26], ae[25:0] 0x0000 0000 0x3D DRC2 ad 8 u[31:26], ae[25:0] 0x0000 0000 0x3E DRC2 ae 8 u[31:26], ae[25:0] 0x0000 0000 0x3E DRC2 aa 8 u[31:26], ae[25:0] 0x0000 0000 0x3F DRC2 aa 8 u[31:26], ae[25:0] 0x0000 0000 0x3F DRC2 ad 8 u[31:26], ae[25:0] 0x0000 0000 0x40 DRC1-T 4 T[31:26], ae[25:0] 0x0000 0000 0x41 DRC1-Aa) u[31:26], ae[25:0] 0x0000 0000 0x42 DRC2-T 4 T[31:0] (9:23 format) 0xFDA2 1490 0x42 DRC1-K 4 u[31:26], C[125:0] 0x0008 4210 0				u[31:26], a2[25:0]	0x0000 0000
DRC1 (1 - ae)	0x37 - 0x39		4		
DRC1 (1 - ae)	0x3A	DRC1 ae ⁽³⁾	8	u[31:26], ae[25:0]	0x0080 0000
0x3B DRC1 (1 - aa) 8 u[31:26], aa[25:0] 0x0080 0000 0x3C DRC1 ad 8 u[31:26], (1 - aa)[25:0] 0x0080 0000 0x3D DRC1 (1 - ad) u[31:26], ad[25:0] 0x0080 0000 0x3D DRC2 ae 8 u[31:26], ae[25:0] 0x0080 0000 0x3E DRC2 (1 - ae) u[31:26], ae[25:0] 0x0080 0000 0x3E DRC2 aa 8 u[31:26], ae[25:0] 0x0080 0000 0x3F DRC2 ad 8 u[31:26], ae[25:0] 0x0080 0000 0x40 DRC2 (1 - ad) u[31:26], ae[25:0] 0x0080 0000 0x40 DRC1-T 4 T1[3:0] (9.23 format) 0xFDA2 1490 0x41 DRC1-K 4 u[31:26], K1[25:0] 0x0088 210 0x42 DRC1-O 4 u[31:26], S1[25:0] 0x0088 210 0x43 DRC2-T 4 T2[31:0] (9.23 format) 0xFDA2 1490 0x44 DRC2-T 4 U[31:26], S1[25:0] 0x0088 210 0x43 DRC2-O 4 u[31:26], S1[25:0]		DRC1 (1 – ae)			0x0000 0000
0x3C DRC1 (1 - ad) 8 u[31:26], ad[25:0] 0x0080 0000 0x3D DRC2 ae 8 u[31:26], (1 - ad)[25:0] 0x0000 0000 0x3E DRC2 (1 - ae) u[31:26], ae[25:0] 0x0000 0000 0x3E DRC2 aa 8 u[31:26], a[25:0] 0x0000 0000 0x3F DRC2 (1 - aa) u[31:26], ad[25:0] 0x0000 0000 0x3F DRC2 ad 8 u[31:26], ad[25:0] 0x0000 0000 0x40 DRC1-T 4 T1[31:0] (9.23 format) 0xFDA2 1490 0x41 DRC1-K 4 u[31:26], K1[25:0] 0x0008 4210 0x42 DRC1-O 4 u[31:26], C1[25:0] 0x008 4210 0x43 DRC2-T 4 T2[31:0] (9.23 format) 0xFDA2 1490 0x44 DRC2-K 4 u[31:26], K2[25:0] 0x008 4210 0x45 DRC2-O 4 u[31:26], C2[25:0] 0x0384 2109 0x46 DRC control 4 Description shown in subsequent section 0x0000 000 0x50 Bank switch control 4 <td>0x3B</td> <td></td> <td>8</td> <td></td> <td>0x0080 0000</td>	0x3B		8		0x0080 0000
0x3C DRC1 (1 - ad) 8 u[31:26], ad[25:0] 0x0080 0000 0x3D DRC2 ae 8 u[31:26], (1 - ad)[25:0] 0x0000 0000 0x3E DRC2 (1 - ae) u[31:26], ae[25:0] 0x0000 0000 0x3E DRC2 aa 8 u[31:26], a[25:0] 0x0000 0000 0x3F DRC2 (1 - aa) u[31:26], ad[25:0] 0x0000 0000 0x3F DRC2 ad 8 u[31:26], ad[25:0] 0x0000 0000 0x40 DRC1-T 4 T1[31:0] (9.23 format) 0xFDA2 1490 0x41 DRC1-K 4 u[31:26], K1[25:0] 0x0008 4210 0x42 DRC1-O 4 u[31:26], C1[25:0] 0x008 4210 0x43 DRC2-T 4 T2[31:0] (9.23 format) 0xFDA2 1490 0x44 DRC2-K 4 u[31:26], K2[25:0] 0x008 4210 0x45 DRC2-O 4 u[31:26], C2[25:0] 0x0384 2109 0x46 DRC control 4 Description shown in subsequent section 0x0000 000 0x50 Bank switch control 4 <td></td> <td>DRC1 (1 – aa)</td> <td></td> <td>u[31:26], (1 – aa)[25:0]</td> <td>0x0000 0000</td>		DRC1 (1 – aa)		u[31:26], (1 – aa)[25:0]	0x0000 0000
DRC1 (1 − ad) u[31:26], (1 − ad)[25:0] 0x0000 0000 0x3D DRC2 ae 8 u[31:26], ae[25:0] 0x0080 0000 DRC 2 (1 − ae) u[31:26], (1 − ae)[25:0] 0x0000 0000 0x3E DRC2 aa 8 u[31:26], (1 − aa)[25:0] 0x0080 0000 0x3F DRC2 (1 − aa) u[31:26], (1 − ad)[25:0] 0x0000 0000 0x3F DRC2 ad 8 u[31:26], ad[25:0] 0x0080 0000 0x40 DRC1 − T 4 T1[31:0] (9.23 format) 0xFDA2 1490 0x41 DRC1-T 4 T1[31:0] (9.23 format) 0xFDA2 1490 0x42 DRC1-O 4 u[31:26], bt[25:0] 0x0384 2109 0x42 DRC1-O 4 u[31:26], c1[25:0] 0x0088 4210 0x43 DRC2-T 4 T2[31:0] (9.23 format) 0xFDA2 1490 0x44 DRC2-K 4 u[31:26], c2[5:0] 0x0088 4210 0x46 DRC-O 4 u[31:26], c2[5:0] 0x0384 2109 0x46 DRC control 4 Description shown in subsequent section <td< td=""><td>0x3C</td><td>DRC1 ad</td><td>8</td><td>u[31:26], ad[25:0]</td><td>0x0080 0000</td></td<>	0x3C	DRC1 ad	8	u[31:26], ad[25:0]	0x0080 0000
0x3D DRC2 ae 8 u[31:26], ae[25:0] 0x0080 0000 0x3E DRC2 (1 - ae) u[31:26], (1 - ae)[25:0] 0x0000 0000 0x3E DRC2 aa 8 u[31:26], aa[25:0] 0x0080 0000 0x3F DRC2 (1 - aa) u[31:26], ad[25:0] 0x0000 0000 0x3F DRC2 ad 8 u[31:26], ad[25:0] 0x0080 0000 0x40 DRC1-T 4 T1[31:0] (9.23 format) 0xFDA2 1490 0x41 DRC1-K 4 u[31:26], K1[25:0] 0x0384 2109 0x42 DRC1-O 4 u[31:26], C1[25:0] 0x0084 210 0x43 DRC2-T 4 T2[31:0] (9.23 format) 0xFDA2 1490 0x44 DRC2-K 4 u[31:26], K2[25:0] 0x0384 2109 0x45 DRC2-O 4 u[31:26], K2[25:0] 0x0384 2109 0x46 DRC control 4 Description shown in subsequent section 0x0008 4210 0x50 Bank switch control 4 Description shown in subsequent section 0x00770 8000 0x51 Ch 1 output		DRC1 (1 – ad)			0x0000 0000
DRC 2 (1 - ae) u[31:26], (1 - ae)[25:0] 0x0000 0000 0x3E DRC2 aa 8 u[31:26], aa[25:0] 0x0080 0000 DRC2 (1 - aa) u[31:26], aa[25:0] 0x0000 0000 0x3F DRC2 ad 8 u[31:26], aa[25:0] 0x0000 0000 0x40 DRC1-T 4 T1[31:0] (9.23 format) 0xFDA2 1490 0x41 DRC1-K 4 u[31:26], K1[25:0] 0x0384 2109 0x42 DRC1-O 4 u[31:26], O1[25:0] 0x0008 4210 0x43 DRC2-T 4 T2[31:0] (9.23 format) 0xFDA2 1490 0x44 DRC2-K 4 u[31:26], K2[25:0] 0x0384 2109 0x45 DRC2-O 4 u[31:26], O2[25:0] 0x0088 4210 0x46 DRC control 4 Description shown in subsequent section 0x0000 0000 0x47-0x4F 4 Description shown in subsequent section 0x0070 0000 0x50 Bank switch control 4 Description shown in subsequent section 0x0770 8000 0x51 Ch 1 output mixer 12 <t< td=""><td>0x3D</td><td>DRC2 ae</td><td>8</td><td></td><td>0x0080 0000</td></t<>	0x3D	DRC2 ae	8		0x0080 0000
0x3E DRC2 aa 8 u[31:26], aa[25:0] 0x0080 0000 0x3F DRC2 ad 8 u[31:26], (1 - aa)[25:0] 0x0000 0000 0x40 DRC2 (1 - ad) u[31:26], ad[25:0] 0x0000 0000 0x40 DRC1-T 4 T1[31:0] (9.23 format) 0xFDA2 1490 0x41 DRC1-K 4 u[31:26], K1[25:0] 0x0384 2109 0x42 DRC1-O 4 u[31:26], O1[25:0] 0x0008 4210 0x43 DRC2-T 4 T2[31:0] (9.23 format) 0xFDA2 1490 0x44 DRC2-K 4 u[31:26], K2[25:0] 0x0384 2109 0x45 DRC2-O 4 u[31:26], C2[25:0] 0x0088 4210 0x46 DRC control 4 Description shown in subsequent section 0x0000 0000 0x47-0x4F 4 Reserved ⁽²⁾ 0x50 Bank switch control 4 Description shown in subsequent section 0x0770 8000 0x51 Ch 1 output mixer 12 Ch 1 output mix1[2] 0x0080 0000 Ch 1 output mix1[1] 0x0000 0000		DRC 2 (1 – ae)			0x0000 0000
0x3F DRC2 ad 8 u[31:26], ad[25:0] 0x0080 0000 0x40 DRC1-T 4 T1[31:0] (9.23 format) 0xFDA2 1490 0x41 DRC1-K 4 u[31:26], K1[25:0] 0x0384 2109 0x42 DRC1-O 4 u[31:26], O1[25:0] 0x0008 4210 0x43 DRC2-T 4 T2[31:0] (9.23 format) 0xFDA2 1490 0x44 DRC2-K 4 u[31:26], K2[25:0] 0x0384 2109 0x45 DRC2-O 4 u[31:26], O2[25:0] 0x0008 4210 0x46 DRC control 4 Description shown in subsequent section 0x0000 0000 0x47-0x4F 4 Reserved(2) 0x0000 0000 0x51 Ch 1 output mixer 12 Ch 1 output mix1[2] 0x0000 0000 0x52 Ch 2 output mixer 12 Ch 2 output mix2[1] 0x0000 0000 Ch 2 output mixer 12 Ch 2 output mix2[1] 0x0000 0000	0x3E	DRC2 aa	8	u[31:26], aa[25:0]	0x0080 0000
0x3F DRC2 ad DRC2 (1 - ad) 8 u[31:26], ad[25:0] 0x0080 0000 0x40 DRC1-T 4 T1[31:0] (9.23 format) 0xFDA2 1490 0x41 DRC1-K 4 u[31:26], K1[25:0] 0x0384 2109 0x42 DRC1-O 4 u[31:26], O1[25:0] 0x0008 4210 0x43 DRC2-T 4 T2[31:0] (9.23 format) 0xFDA2 1490 0x44 DRC2-K 4 u[31:26], K2[25:0] 0x0384 2109 0x45 DRC2-O 4 u[31:26], O2[25:0] 0x0008 4210 0x46 DRC control 4 Description shown in subsequent section 0x0000 0000 0x47-0x4F 4 Reserved(2) 0x0077 8000 0x50 Bank switch control 4 Description shown in subsequent section 0x0F70 8000 0x51 Ch 1 output mixer 12 Ch 1 output mix1[2] 0x0000 0000 0x52 Ch 2 output mixer 12 Ch 2 output mix2[1] 0x0000 0000		DRC2 (1 – aa)			0x0000 0000
DRC2 (1 - ad) u[31:26], (1 - ad)[25:0] 0x0000 0000 0x40 DRC1-T 4 T1[31:0] (9.23 format) 0xFDA2 1490 0x41 DRC1-K 4 u[31:26], K1[25:0] 0x0384 2109 0x42 DRC1-O 4 u[31:26], O1[25:0] 0x0008 4210 0x43 DRC2-T 4 T2[31:0] (9.23 format) 0xFDA2 1490 0x44 DRC2-K 4 u[31:26], K2[25:0] 0x0384 2109 0x45 DRC2-O 4 u[31:26], O2[25:0] 0x0008 4210 0x46 DRC control 4 Description shown in subsequent section 0x0000 0000 0x47-0x4F 4 Reserved(2) 0x0000 0000 0x50 Bank switch control 4 Description shown in subsequent section 0x0F70 8000 0x51 Ch 1 output mixer 12 Ch 1 output mix1[2] 0x0080 0000 0x52 Ch 2 output mixer 12 Ch 2 output mix2[2] 0x0000 0000 Ch 2 output mix2[1] 0x0000 0000 0x0000 0000	0x3F	DRC2 ad	8		0x0080 0000
0x40 DRC1-T 4 T1[31:0] (9.23 format) 0xFDA2 1490 0x41 DRC1-K 4 u[31:26], K1[25:0] 0x0384 2109 0x42 DRC1-O 4 u[31:26], O1[25:0] 0x0008 4210 0x43 DRC2-T 4 T2[31:0] (9.23 format) 0xFDA2 1490 0x44 DRC2-K 4 u[31:26], K2[25:0] 0x0384 2109 0x45 DRC2-O 4 u[31:26], O2[25:0] 0x0008 4210 0x46 DRC control 4 Description shown in subsequent section 0x0000 0000 0x47-0x4F 4 Reserved(²) 0x0000 0000 0x50 Bank switch control 4 Description shown in subsequent section 0x0F70 8000 0x51 Ch 1 output mixer 12 Ch 1 output mix1[2] 0x0080 0000 0x52 Ch 2 output mixer 12 Ch 2 output mix2[1] 0x0000 0000 Ch 2 output mix2[1] 0x0000 0000 0x0000 0000		DRC2 (1 – ad)			0x0000 0000
0x41 DRC1-K 4 u[31:26], K1[25:0] 0x0384 2109 0x42 DRC1-O 4 u[31:26], O1[25:0] 0x0008 4210 0x43 DRC2-T 4 T2[31:0] (9.23 format) 0xFDA2 1490 0x44 DRC2-K 4 u[31:26], K2[25:0] 0x0384 2109 0x45 DRC2-O 4 u[31:26], O2[25:0] 0x0008 4210 0x46 DRC control 4 Description shown in subsequent section 0x0000 0000 0x47-0x4F 4 Reserved(2) 0x00770 8000 0x50 Bank switch control 4 Description shown in subsequent section 0x0F70 8000 0x51 Ch 1 output mixer 12 Ch 1 output mix1[2] 0x0080 0000 Ch 1 output mix1[1] 0x0000 0000 0x0000 0000 0x52 Ch 2 output mixer 12 Ch 2 output mix2[2] 0x0080 0000 Ch 2 output mix2[1] 0x0000 0000	0x40		4		0xFDA2 1490
0x42 DRC1-O 4 u[31:26], O1[25:0] 0x0008 4210 0x43 DRC2-T 4 T2[31:0] (9.23 format) 0xFDA2 1490 0x44 DRC2-K 4 u[31:26], K2[25:0] 0x0384 2109 0x45 DRC2-O 4 u[31:26], O2[25:0] 0x0008 4210 0x46 DRC control 4 Description shown in subsequent section 0x0000 0000 0x47-0x4F 4 Reserved(2) 0x0070 8000 0x50 Bank switch control 4 Description shown in subsequent section 0x0F70 8000 0x51 Ch 1 output mixer 12 Ch 1 output mix1[2] 0x0080 0000 Ch 1 output mix1[1] 0x0000 0000 0x0000 0000 0x52 Ch 2 output mixer 12 Ch 2 output mix2[2] 0x0080 0000 Ch 2 output mix2[1] 0x0000 0000 0x0000 0000	0x41	DRC1-K	4		0x0384 2109
0x43 DRC2-T 4 T2[31:0] (9.23 format) 0xFDA2 1490 0x44 DRC2-K 4 u[31:26], K2[25:0] 0x0384 2109 0x45 DRC2-O 4 u[31:26], O2[25:0] 0x0008 4210 0x46 DRC control 4 Description shown in subsequent section 0x0000 0000 0x47-0x4F 4 Reserved ⁽²⁾ 0x0F70 8000 0x50 Bank switch control 4 Description shown in subsequent section 0x0F70 8000 0x51 Ch 1 output mixer 12 Ch 1 output mix1[2] 0x0080 0000 Ch 1 output mix1[1] 0x0000 0000 0x0000 0000 0x52 Ch 2 output mixer 12 Ch 2 output mix2[2] 0x0080 0000 Ch 2 output mix2[1] 0x0000 0000	0x42	DRC1-O	4	u[31:26], O1[25:0]	0x0008 4210
0x45 DRC2-O 4 u[31:26], O2[25:0] 0x0008 4210 0x46 DRC control 4 Description shown in subsequent section 0x0000 0000 0x47-0x4F 4 Reserved ⁽²⁾ 0x0000 0000 0x50 Bank switch control 4 Description shown in subsequent section 0x0F70 8000 0x51 Ch 1 output mixer 12 Ch 1 output mix1[2] 0x0080 0000 Ch 1 output mix1[1] 0x0000 0000 0x0000 0000 Ch 2 output mix2[0] 0x0000 0000 Ch 2 output mix2[1] 0x0000 0000	0x43	DRC2-T	4		0xFDA2 1490
0x45 DRC2-O 4 u[31:26], O2[25:0] 0x0008 4210 0x46 DRC control 4 Description shown in subsequent section 0x0000 0000 0x47-0x4F 4 Reserved ⁽²⁾ 0x0000 0000 0x50 Bank switch control 4 Description shown in subsequent section 0x0F70 8000 0x51 Ch 1 output mixer 12 Ch 1 output mix1[2] 0x0080 0000 Ch 1 output mix1[1] 0x0000 0000 0x0000 0000 Ch 2 output mix2[0] 0x0000 0000 Ch 2 output mix2[1] 0x0000 0000	0x44	DRC2-K	4	,	0x0384 2109
0x46 DRC control 4 Description shown in subsequent section 0x0000 0000 0x47-0x4F 4 Reserved ⁽²⁾ 0x50 Bank switch control 4 Description shown in subsequent section 0x0F70 8000 0x51 Ch 1 output mixer 12 Ch 1 output mix1[2] 0x0080 0000 Ch 1 output mix1[1] 0x0000 0000 0x0000 0000 Ch 2 output mixer 12 Ch 2 output mix2[2] 0x0080 0000 Ch 2 output mix2[1] 0x0000 0000	0x45		4		
0x47-0x4F 4 Reserved (2) 0x50 Bank switch control 4 Description shown in subsequent section 0x0F70 8000 0x51 Ch 1 output mixer 12 Ch 1 output mix1[2] 0x0080 0000 Ch 1 output mix1[1] 0x0000 0000 Ch 1 output mix1[0] 0x0000 0000 0x52 Ch 2 output mixer 12 Ch 2 output mix2[2] 0x0080 0000 Ch 2 output mix2[1] 0x0000 0000		DRC control	4	Description shown in subsequent section	0x0000 0000
0x50 Bank switch control 4 Description shown in subsequent section 0x0F70 8000 0x51 Ch 1 output mixer 12 Ch 1 output mix1[2] 0x0080 0000 Ch 1 output mix1[1] 0x0000 0000 Ch 1 output mix1[0] 0x0000 0000 0x52 Ch 2 output mixer 12 Ch 2 output mix2[2] 0x0080 0000 Ch 2 output mix2[1] 0x0000 0000				· · · · · · · · · · · · · · · · · · ·	
0x51 Ch 1 output mixer 12 Ch 1 output mix1[2] 0x0080 0000 Ch 1 output mix1[1] 0x0000 0000 Ch 1 output mix1[0] 0x0000 0000 0x52 Ch 2 output mixer 12 Ch 2 output mix2[2] 0x0080 0000 Ch 2 output mix2[1] 0x0000 0000 0x0000 0000		Bank switch control			0x0F70 8000
Ch 1 output mix1[1] 0x0000 0000				'	
Ch 1 output mix1[0] 0x0000 0000				, , , ,	
0x52 Ch 2 output mixer 12 Ch 2 output mix2[2] 0x0080 0000 Ch 2 output mix2[1] 0x0000 0000					
Ch 2 output mix2[1] 0x0000 0000	0x52	Ch 2 output mixer	12	, .,	
				, , , ,	
				Ch 2 output mix2[0]	0x0000 0000

^{(3) &}quot;ae" stands for α of energy filter, "aa" stands for α of attack filter and "ad" stands for α of decay filter and 1- α = ω .

TEXAS INSTRUMENTS

Register Maps (接下页)

表 3. Serial Control Interface Register Summary (接下页)

SUBADDRESS	REGISTER NAME	NO. OF BYTES	CONTENTS ⁽¹⁾	INITIALIZATION VALUE
0x53	Ch 1 input mixer	16	Ch 1 input mixer[3]	0x0080 0000
			Ch 1 input mixer[2]	0x0000 0000
			Ch 1 input mixer[1]	0x0000 0000
			Ch 1 input mixer[0]	0x0080 0000
0x54	Ch 2 input mixer	16	Ch 2 input mixer[3]	0x0080 0000
			Ch 2 input mixer[2]	0x0000 0000
			Ch 2 input mixer[1]	0x0000 0000
			Ch 2 input mixer[0]	0x0080 0000
0x55	Channel 3 input mixer	12	Channel 3 input mixer [2]	0x0080 0000
			Channel 3 input mixer [1]	0x0000 0000
			Channel 3 input mixer [0]	0x0000 0000
0x56	Output post-scale	4	u[31:26], post[25:0]	0x0080 0000
0x57	Output pre-scale	4	u[31:26], pre[25:0] (9.17 format)	0x0002 0000
0x58	ch1 BQ[7]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x59	ch1 BQ[8]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x5A	Subchannel BQ[0]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x5B	Subchannel BQ[1]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x5C	ch2 BQ[7]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x5D	ch2 BQ[8]	20	u[31:26], b0[25:0]	0x0080 0000
0,00	5 <u>_</u> 5.4[0]	20	u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
	1		ענט ז. בטן, מבנבט.טן	0,0000 0000

Register Maps (接下页)

表 3. Serial Control Interface Register Summary (接下页)

SUBADDRESS	REGISTER NAME	NO. OF BYTES	CONTENTS ⁽¹⁾	INITIALIZATION VALUE
0x5E	pseudo_ch2 BQ[0]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x5F		4	Reserved ⁽²⁾	
0x60	Channel 4 (subchannel)	8	Ch 4 output mixer[1]	0x0000 0000
	output mixer		Ch 4 output mixer[0]	0x0080 0000
0x61	Channel 4 (subchannel)	8	Ch 4 input mixer[1]	0x0040 0000
	input mixer		Ch 4 input mixer[0]	0x0040 0000
0x62	IDF post scale	4	Post-IDF attenuation register	0x0000 0080
0x63-0xF7			Reserved ⁽²⁾	0x0000 0000
0xF8	Device address enable register	4	Write F9 A5 A5 A5 in this register to enable write to device address update (0xF9)	0x0000 0000
0xF9	Device address Update Register	4	u[31:8], New Dev Id[7:1] , ZERO[0] (New Dev Id (7:1) defines the new device address	0X0000 0036
0xFA-0xFF		4	Reserved ⁽²⁾	0x0000 0000

All DAP coefficients are 3.23 format unless specified otherwise.

9.6.2 Register Maps

9.6.2.1 Clock Control Register (0x00)

The clocks and data rates are automatically determined by the TAS5755M. The clock control register contains the auto-detected clock status. Bits D7–D5 reflect the sample rate. Bits D4–D2 reflect the MCLK frequency. The device accepts a 64 f_S or 32 f_S SCLK rate for all MCLK ratios, but accepts a 48 f_S SCLK rate for MCLK ratios of 192 f_S and 384 f_S only.

表 4. Clock Control Register (0x00)

D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION			
0	0	0	1	1	1	-	1	f _S = 32-kHz sample rate			
0	0	1	_	-	_	_	-	- Reserved ⁽¹⁾			
0	1	0	_	-	_	_	-	Reserved ⁽¹⁾			
0	1	1	-	-	1	-	-	f _S = 44.1/48-kHz sample rate ⁽²⁾			
1	0	0	ı	ı	-	_	ı	f _S = 16-kHz sample rate			
1	0	1	ı	ı	-	_	ı	$f_S = 22.05/24$ -kHz sample rate			
1	1	0	1	ı	1	_	ı	$f_S = 8$ -kHz sample rate			
1	1	1	1	ı	1	_	ı	$f_S = 11.025/12$ -kHz sample rate			
-	-	-	0	0	0	_	ı	MCLK frequency = $64 \times f_S^{(3)}$			
-	-	-	0	0	1	_	-	MCLK frequency = 128 x f _S ⁽³⁾			
-	-	-	0	1	0	_	-	MCLK frequency = 192 × f _S ⁽⁴⁾			
_	-	-	0	1	1	_	-	MCLK frequency = 256 × f _S (2)(5)			
-	-	-	1	0	0	_	ı	MCLK frequency = 384 x f _S			
-	-	-	1	0	1	_	1	MCLK frequency = 512 x f _S			
-	-	-	1	1	0	_	-	Reserved ⁽¹⁾			
-	_	_	1	1	1	_	ı	Reserved ⁽¹⁾			
-	_	_	-	_	-	0	1	Reserved ⁽¹⁾ (2)			
_	_	_	-	-	-	_	0	Reserved ⁽¹⁾ (2)			

- (1) Reserved registers must not be accessed.
- (2) Default values are in **bold**.
- (3) Only available for 44.1-kHz and 48-kHz rates
- 4) Rate only available for 32/44.1/48-kHz sample rates
- (5) Not available at 8 kHz

9.6.2.2 Device ID Register (0x01)

The device ID register contains the ID code for the firmware revision.

表 5. General Status Register (0x01)

D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
0	0	0	0	0	0	0	0	Identification code

9.6.2.3 Error Status Register (0x02)

The error bits are sticky and are not cleared by the hardware. This means that the software must clear the register (write zeroes) and then read them to determine if they are persistent errors.

Error Definitions:

- MCLK Error: MCLK frequency is changing. The number of MCLKs per LRCLK is changing.
- SCLK Error: The number of SCLKs per LRCLK is changing.
- LRCLK Error: LRCLK frequency is changing.
- Frame Slip: LRCLK phase is drifting with respect to internal Frame Sync.

表 6. Error Status Register (0x02)

D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
1	-	ı	-	ı	-	1	-	MCLK error
-	1	1	-	1	-	1	1	PLL autolock error
-	-	1	-	ı	-	1	-	SCLK error
-	-	1	1	ı	-	1	-	LRCLK error
-	-	1	-	1	-	1	-	Frame slip
-	-	-	-	-	1	_	_	Clip indicator
-	-	-	-	-	-	1	_	Overcurrent, overtemperature, or undervoltage errors
-	_	_	_	_	_	_	0	Reserved
0	0	0	0	0	0	0	-	No errors ⁽¹⁾

⁽¹⁾ Default values are in bold.

9.6.2.4 System Control Register 1 (0x03)

The system control register 1 has several functions:

Bit D7: If 0, the dc-blocking filter for each channel is disabled.

If 1, the dc-blocking filter (-3 dB cutoff <1 Hz) for each channel is enabled (default).

Bit D5: If 0, use soft unmute on recovery from clock error. This is a slow recovery. Unmute takes the

same time as the volume ramp defined in register 0x0E.

If 1, use hard unmute on recovery from clock error (default). This is a fast recovery, a single step

volume ramp

Bits D1-D0: Select de-emphasis

表 7. System Control Register 1 (0x03)

D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION	
0	-	-	-	-	_	_	_	PWM high-pass (dc blocking) disabled	
1	-	_	-	-	-	-	-	PWM high-pass (dc blocking) enabled ⁽¹⁾	
-	0	-	ı	ı	-	_	_	Reserved ⁽¹⁾	
-	ı	0	ı	ı	-	_	_	Soft unmute on recovery from clock error	
-	1	1	1	1	1	_	_	Hard unmute on recovery from clock error ⁽¹⁾	
-	1	-	0	1	1	_	_	Reserved ⁽¹⁾	
-	-	-	-	0	_	_	_	Reserved ⁽¹⁾	
-	-	-	-	-	0	_	_	Reserved ⁽¹⁾	
_	-	_	-	-	-	0	0	No de-emphasis ⁽¹⁾	
-	1	-	1	1	1	0	1	De-emphasis for f _S = 32 kHz	
-	_	_	_	-	_	1	0	De-emphasis for f _S = 44.1 kHz	
_	ı	_	ı	ı	ı	1	1	De-emphasis for f _S = 48 kHz	

⁽¹⁾ Default values are in **bold**.

9.6.2.5 Serial Data Interface Register (0x04)

As shown in 表 8, the TAS5755M supports 9 serial data modes. The default is 24-bit, I²S mode,

表 8. Serial Data Interface Control Register (0x04)

RECEIVE SERIAL DATA INTERFACE FORMAT	WORD LENGTH	D7-D4	D3	D2	D1	D0
Right-justified	16	0000	0	0	0	0
Right-justified	20	0000	0	0	0	1
Right-justified	24	0000	0	0	1	0
I ² S	16	000	0	0	1	1
I ² S	20	0000	0	1	0	0
I ² S ⁽¹⁾	24	0000	0	1	0	1
Left-justified	16	0000	0	1	1	0
Left-justified	20	0000	0	1	1	1
Left-justified	24	0000	1	0	0	0
Reserved		0000	1	0	0	1
Reserved		0000	1	0	1	0
Reserved		0000	1	0	1	1
Reserved		0000	1	1	0	0
Reserved		0000	1	1	0	1
Reserved		0000	1	1	1	0
Reserved		0000	1	1	1	1

⁽¹⁾ Default values are in bold.

9.6.2.6 System Control Register 2 (0x05)

When bit D6 is set low, the system exits all channel shutdown and starts playing audio; otherwise, the outputs are shut down (hard mute).

表 9. System Control Register 2 (0x05)

D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
0	_	_	_	-	-	-	-	Mid-Z ramp disabled ⁽¹⁾
1	-	1	-	ı	ı	ı	-	Mid-Z ramp enabled
_	0	_	_	ı	ı	ı	-	Exit all-channel shutdown (normal operation)
-	1	-	-	ı	ı	ı	-	Enter all-channel shutdown (hard mute) ⁽¹⁾
				0				Sub-channel in AD Mode
				1				Sub-channel in BD Mode
_	_	-	-	ı	0	ı	-	2.0 mode [2.0 BTL] ⁽¹⁾
-	-	1	-	ı	1	ı	-	2.1 mode [2 SE + 1 BTL]
-	_	-	-	1	1	0	-	ADR/FAULT pin is configured as to serve as an address input only ⁽¹⁾
_	_	_	-	1	ı	1	-	ADR/FAULT pin is configured as fault output
_	_	0	0	-	-	-	0	Reserved ⁽¹⁾

⁽¹⁾ Default values are in bold.

9.6.2.7 Soft Mute Register (0x06)

Writing a 1 to any of the following bits sets the output of the respective channel to 50% duty cycle (soft mute).

表 10. Soft Mute Register (0x06)

D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
0	0	0	0	0	1	-	_	Reserved ⁽¹⁾
_	_	_	-	-	0	-	_	Soft unmute channel 3 ⁽¹⁾
_	_	_	-	-	1	-	-	Soft mute channel 3
_	_	_	1	1	1	0	-	Soft unmute channel 2 ⁽¹⁾
_	_	_	1	1	1	1	-	Soft mute channel 2
_	_	_	1	1	1	1	0	Soft unmute channel 1 ⁽¹⁾
_	_	_	-	-	-	-	1	Soft mute channel 1

⁽¹⁾ Default values are in bold.

9.6.2.8 Volume Registers (0x07, 0x08, 0x09, 0x0A)

Step size is 0.5 dB.

Master volume - 0x07 (default is mute)
Channel-1 volume - 0x08 (default is 0 dB)
Channel-2 volume - 0x09 (default is 0 dB)
Channel-3 volume - 0x0A (default is 0 dB)

表 11. Volume Registers (0x07, 0x08, 0x09, 0x0A)

D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
0	0	0	0	0	0	0	0	24 dB
0	0	1	1	0	0	0	0	0 dB (default for individual channel volume) ⁽¹⁾
1	1	1	1	1	1	1	0	-103 dB
1	1	1	1	1	1	1	1	Soft mute (default for master volume) (1)

⁽¹⁾ Default values are in **bold**.

9.6.2.9 Volume Configuration Register (0x0E)

Bits Volume slew rate (Used to control volume change and MUTE ramp rates). These bits control the

D2-D0: number of steps in a volume ramp. Volume steps occur at a rate that depends on the sample rate of

the I2S data as follows

Sample Rate (KHz) Approximate Ramp Rate

8/16/32 125 μs/step 11.025/22.05/44.1 90.7 μs/step 12/24/48 83.3 μs/step

表 12. Volume Control Register (0x0E)

D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
1	1	_	1	0	-	_	1	Reserved ⁽¹⁾
-	0	_	1	1	-	_	1	Subchannel (ch4) volume = ch1 volume (2) (1)
-	1	_	1	1	-	_	ı	Subchannel volume = register 0x0A ⁽²⁾
-	-	0	1	1	-	_	ı	Ch3 volume = ch2 volume ⁽¹⁾
-	-	1	1	1	-	_	ı	Ch3 volume = register 0x0A
-	-	_	1	1	0	0	0	Volume slew 512 steps (43-ms volume ramp time at 48 kHz)
-	-	_	1	1	0	0	1	Volume slew 1024 steps (85-ms volume ramp time at 48 kHz) ⁽¹⁾
_	-	_	1	1	0	1	0	Volume slew 2048 steps (171- ms volume ramp time at 48 kHz)
_	_	_	_	-	0	1	1	Volume slew 256 steps (21-ms volume ramp time at 48 kHz)
_	_	_	ı		1	Х	Х	Reserved

⁽¹⁾ Default values are in **bold**.

9.6.2.10 Modulation Limit Register (0x10)

The modulation limit is the maximum duty cycle of the PWM output waveform.

表 13. Modulation Limit Register (0x10)

D7	D6	D5	D4	D3	D2	D1	D0	MODULATION LIMIT
-	-	-	_	-	0	0	0	99.2%
_	-	_	_	_	0	0	1	98.4%
_	-	_	_	_	0	1	0	97.7% ⁽¹⁾
_	-	_	_	_	0	1	1	96.9%
-	-	-	-	-	1	0	0	96.1%
_	-	-	_	_	1	0	1	95.3%
_	-	_	_	_	1	1	0	94.5%
_	-	_	_	_	1	1	1	93.8%
0	0	0	0	0	_	_	_	Reserved

⁽¹⁾ Default values are in **bold**.

⁽²⁾ Bits 6:5 can be changed only when volume is in MUTE [master volume = MUTE (register 0x07 = 0xFF)].

9.6.2.11 Interchannel Delay Registers (0x11, 0x12, 0x13, and 0x14)

Internal PWM Channels 1, 2, $\overline{1}$, and $\overline{2}$ are mapped into registers 0x11, 0x12, 0x13, and 0x14.

表 14. Channel Interchannel Delay Registers (0x11, 0x12, 0x13, and 0x14)

BITS DEFINITION	D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
	0	0	0	0	0	0	_	-	Minimum absolute delay, 0 DCLK cycles
	0	1	1	1	1	1	_	-	Maximum positive delay, 31 x 4 DCLK cycles
	1	0	0	0	0	0	_	-	Maximum negative delay, −32 x 4 DCLK cycles
							0	0	Reserved
SUBADDRESS	D7	D6	D5	D4	D3	D2	D1	D0	DELAY = (VALUE) × 4 DCLKs
0x11	1	0	1	0	1	1	_	-	Default value for channel 1 ⁽¹⁾
0x12	0	1	0	1	0	1	_	-	Default value for channel 2 ⁽¹⁾
0x13	1	0	1	0	1	1	_	_	Default value for channel 1 (1)
0x14	0	1	0	1	0	1	_	ı	Default value for channel 2 (1)

⁽¹⁾ Default values are in bold.

ICD settings have high impact on audio performance (e.g., dynamic range, THD, crosstalk etc.). Therefore, appropriate ICD settings must be used. By default, the device has ICD settings for AD mode. If used in BD mode, then update these registers before coming out of all-channel shutdown.

REGISTER	AD MODE	BD MODE
0x11	AC	B8
0x12	54	60
0x13	AC	A0
0x14	54	48

9.6.2.12 PWM Shutdown Group Register (0x19)

Settings of this register determine which PWM channels are active. The value must be 0x30 for BTL mode and 0x3A for PBTL mode. The default value of this register is 0x30. The functionality of this register is tied to the state of bit D5 in the system control register.

This register defines which channels belong to the shutdown group (SDG). If a 1 is set in the shutdown group register, that particular channel is **not** started following an exit *out of all-channel shutdown* command (if bit D5 is set to 0 in system control register 2, 0x05).

表 15. Shutdown Group Register (0x19)

D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
0	_	_	-	_	_	-	_	Reserved ⁽¹⁾
_	0	_	_	_	_	_	_	Reserved ⁽¹⁾
-	_	1	1	_	-	-	-	Reserved ⁽¹⁾
-	_	_	1	_	-	-	-	Reserved ⁽¹⁾
_	_	_	-	0	_	_	_	PWM channel 4 does not belong to shutdown group. ⁽¹⁾
-	-	-	ı	1	-	-	_	PWM channel 4 belongs to shutdown group.
-	_	_	1	_	0	-	-	PWM channel 3 does not belong to shutdown group. ⁽¹⁾
-	_	_	1	_	1	-	-	PWM channel 3 belongs to shutdown group.
-	_	_	1	_	-	0	-	PWM channel 2 does not belong to shutdown group. (1)
-	-	-	ı	_	-	1	_	PWM channel 2 belongs to shutdown group.
_	_	_	_	_	_	_	0	PWM channel 1 does not belong to shutdown group. ⁽¹⁾
_	_	_	-	_	_	_	1	PWM channel 1 belongs to shutdown group.

⁽¹⁾ Default values are in **bold**.

9.6.2.13 Start/Stop Period Register (0x1A)

This register is used to control the soft-start and soft-stop period following an enter/exit all channel shut down command or change in the PDN state. This helps reduce pops and clicks at start-up and shutdown. The times are only approximate and vary depending on device activity level and I²S clock stability.

表 16. Start/Stop Period Register (0x1A)

D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION	
0	_	_	_	_	_	_	_	SSTIMER enabled ⁽¹⁾	
1	-	_	_	_	_	_	_	STIMER disabled	
_	0	0	-	_	-	-	_	eserved ⁽¹⁾	
_	_	_	0	0	_	_	_	o 50% duty cycle start/stop period	
_	-	_	0	1	0	0	0	16.5-ms 50% duty cycle start/stop period	
_	-	_	0	1	0	0	1	23.9-ms 50% duty cycle start/stop period	
1	1	_	0	1	0	1	0	31.4-ms 50% duty cycle start/stop period	
_	-	_	0	1	0	1	1	40.4-ms 50% duty cycle start/stop period	
_	-	_	0	1	1	0	0	53.9-ms 50% duty cycle start/stop period	
_	-	_	0	1	1	0	1	70.3-ms 50% duty cycle start/stop period	
1	1	_	0	1	1	1	0	94.2-ms 50% duty cycle start/stop period	
-	1	_	0	1	1	1	1	125.7-ms 50% duty cycle start/stop period ⁽¹⁾	
-	1	_	1	0	0	0	0	164.6-ms 50% duty cycle start/stop period	
-	1	_	1	0	0	0	1	239.4-ms 50% duty cycle start/stop period	
-	1	_	1	0	0	1	0	314.2-ms 50% duty cycle start/stop period	
1	1	_	1	0	0	1	1	403.9-ms 50% duty cycle start/stop period	
-	1	_	1	0	1	0	0	538.6-ms 50% duty cycle start/stop period	
-	-	_	1	0	1	0	1	703.1-ms 50% duty cycle start/stop period	
-	1	_	1	0	1	1	0	942.5-ms 50% duty cycle start/stop period	
-	1	_	1	0	1	1	1	1256.6-ms 50% duty cycle start/stop period	
-	1	_	1	1	0	0	0	1728.1-ms 50% duty cycle start/stop period	
_	_	_	1	1	0	0	1	2513.6-ms 50% duty cycle start/stop period	
-	-	_	1	1	0	1	0	3299.1-ms 50% duty cycle start/stop period	
	_	_	1	1	0	1	1	4241.7-ms 50% duty cycle start/stop period	
_	_	_	1	1	1	0	0	5655.6-ms 50% duty cycle start/stop period	
	_	_	1	1	1	0	1	7383.7-ms 50% duty cycle start/stop period	
_	_	_	1	1	1	1	0	9897.3-ms 50% duty cycle start/stop period	
_	_	_	1	1	1	1	1	13,196.4-ms 50% duty cycle start/stop period	

⁽¹⁾ Default values are in bold.

9.6.2.14 Oscillator Trim Register (0x1B)

The TAS5755M PWM processor contains an internal oscillator to support autodetect of I^2S clock rates. This reduces system cost because an external reference is not required. Currently, TI recommends a reference resistor value of 18.2 k Ω (1%). This must be connected between OSC_RES and DVSSO.

Writing 0x00 to register 0x1B enables the trim that was programmed at the factory.

注
Trim must always be run following reset of the device.

表 17. Oscillator Trim Register (0x1B)

D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
0	1	_	1	1	ı	-	-	Reserved ⁽¹⁾
-	0	-	-		ı	-	_	Oscillator trim not done (read-only) ⁽¹⁾
-	1	-	-		ı	-	_	Oscillator trim done (read only)
-	1	0	0	0	0	-	_	Reserved ⁽¹⁾
_	-	-	_	-	-	0	_	Select factory trim (Write a 0 to select factory trim; default is 1.)
_	-	-	_	-	-	1	_	Factory trim disabled ⁽¹⁾
_	_	_	_	_	_	_	0	Reserved ⁽¹⁾

⁽¹⁾ Default values are in bold.

9.6.2.15 BKND_ERR Register (0x1C)

When a back-end error signal is received from the internal power stage, the power stage is reset stopping all PWM activity. Subsequently, the modulator waits approximately for the time listed in 表 18 before attempting to re-start the power stage.

表 18. BKND_ERR Register (0x1C)(1)

D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
0	0	0	0	0	0	0	Х	Reserved
_	-	_	-	0	0	1	0	Set back-end reset period to 299 ms ⁽²⁾
_	_	_	_	0	0	1	1	Set back-end reset period to 449 ms
_	_	_	-	0	1	0	0	Set back-end reset period to 598 ms
_	_	_	-	0	1	0	1	Set back-end reset period to 748 ms
_	-	_	-	0	1	1	0	Set back-end reset period to 898 ms
_	-	_	-	0	1	1	1	Set back-end reset period to 1047 ms
_	_	_	-	1	0	0	0	Set back-end reset period to 1197 ms
_	_	_	-	1	0	0	1	Set back-end reset period to 1346 ms
_	_	_	_	1	0	1	Х	Set back-end reset period to 1496 ms
_	_	-	_	1	1	Х	Х	Set back-end reset period to 1496 ms

⁽¹⁾ This register can be written only with a "non-Reserved" value. Also this register can be written once after the reset.

⁽²⁾ Default values are in **bold**.

9.6.2.16 Input Multiplexer Register (0x20)

This register controls the modulation scheme (AD or BD mode) as well as the routing of I^2S audio to the internal channels.

表 19. Input Multiplexer Register (0x20)

D31	D30	D29	D28	D27	D26	D25	D24	FUNCTION
0	0	0	0	0	0	0	0	Reserved ⁽¹⁾
D23	D22	D21	D20	D19	D18	D17	D16	FUNCTION
0	_	_	_	_	_	_	_	Channel-1 AD mode ⁽¹⁾
1	_	_	_	_	_	_	_	Channel-1 BD mode
_	0	0	0	_	_	-	_	SDIN-L to channel 1 ⁽¹⁾
_	0	0	1	_	_	-	_	SDIN-R to channel 1
_	0	1	0	_	_	_	_	Reserved
_	0	1	1	_	_	_	_	Reserved
_	1	0	0	_	_	_	_	Reserved
_	1	0	1	_	_	_	_	Reserved
_	1	1	0	_	_	_	_	Ground (0) to channel 1
_	1	1	1	_	_	_	_	Reserved
_	_	_	_	0	_	_	_	Channel 2 AD mode ⁽¹⁾
_	_	_	_	1	_	_	_	Channel 2 BD mode
_	_	-	_	_	0	0	0	SDIN-L to channel 2
_	_	-	-	-	0	0	1	SDIN-R to channel 2 ⁽¹⁾
_	_	-	-	_	0	1	0	Reserved
_	_	_	_	_	0	1	1	Reserved
_	_	_	_	_	1	0	0	Reserved
_	_	-	-	-	1	0	1	Reserved
_	_	-	-	_	1	1	0	Ground (0) to channel 2
_	_	-	_	_	1	1	1	Reserved
D15	D14	D13	D12	D11	D10	D9	D8	FUNCTION
0	1	1	1	0	1	1	1	Reserved ⁽¹⁾
D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
0	1	1	1	0	0	1	0	Reserved ⁽¹⁾

⁽¹⁾ Default values are in bold.

9.6.2.17 Channel 4 Source Select Register (0x21)

This register selects the channel 4 source.

表 20. Subchannel Control Register (0x21)

D31	D30	D29	D28	D27	D26	D25	D24	FUNCTION
0	0	0	0	0	0	0	0	Reserved ⁽¹⁾
D23	D22	D21	D20	D19	D18	D17	D16	FUNCTION
0	0	0	0	0	0	0	0	Reserved ⁽¹⁾
D15	D14	D13	D12	D11	D10	D9	D8	FUNCTION
0	1	0	0	0	0	1	1	Select SDIN path (third path), not available in TAS5755M ⁽¹⁾
_	-	1	_	_	_	_	0	(L + R)/2
_	-	-	_	_	_	0	1	Left-channel post-BQ ⁽¹⁾
D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
0	0	0	0	0	0	1	1	Reserved ⁽¹⁾

⁽¹⁾ Default values are in bold.

9.6.2.18 PWM Output Mux Register (0x25)

This DAP output mux selects which internal PWM channel is output to the external pins. Any channel can be output to any external output pin.

Bits D21–D20: Selects which PWM channel is output to OUT_A
Bits D17–D16: Selects which PWM channel is output to OUT_B
Bits D13–D12: Selects which PWM channel is output to OUT_C
Bits D09–D08: Selects which PWM channel is output to OUT_D

注

Channels are encoded so that channel 1 = 0x00, channel 2 = 0x01, ..., channel 4 = 0x03.

表 21. PWM Output Mux Register (0x25)

D31	D30	D29	D28	D27	D26	D25	D24	FUNCTION
0	0	0	0	0	0	0	1	Reserved ⁽¹⁾
D23	D22	D21	D20	D19	D18	D17	D16	FUNCTION
0	0	ı	ı	ı	_	ı	_	Reserved ⁽¹⁾
_	-	0	0	-	-	-	-	Multiplex PWM 1 to OUT_A ⁽¹⁾
_	1	0	1	ı	-	ı	-	Multiplex PWM 2 to OUT_A
_	ı	1	0	ı	-	ı	-	Multiplex PWM 3 to OUT_A
_	-	1	1	ı	-	ı	_	Multiplex PWM 4 to OUT_A
_	-	ı	ı	0	0	ı	_	Reserved ⁽¹⁾
_	_	-	-	-	-	0	0	Multiplex PWM 1 to OUT_B
_	1	ı	ı	ı	-	0	1	Multiplex PWM 2 to OUT_B
_	ı	ı	ı	ı	-	1	0	Multiplex PWM 3 to OUT_B ⁽¹⁾
_	_	-	-	-	_	1	1	Multiplex PWM 4 to OUT_B

⁽¹⁾ Default values are in bold.

表 21. PWM Output Mux Register (0x25) (接下页)

D15	D14	D13	D12	D11	D10	D9	D8	FUNCTION
0	0	-	-	-	_	-	-	Reserved ⁽¹⁾
_	_	0	0	-	-	ı	ı	Multiplex PWM 1 to OUT_C
_	-	0	1	-	-	1	ı	Multiplex PWM 2 to OUT_C ⁽¹⁾
_	-	1	0	-	-	1	ı	Multiplex PWM 3 to OUT_C
_	-	1	1	-	-	1	ı	Multiplex PWM 4 to OUT_C
_	_	-	_	0	0	-	-	Reserved ⁽¹⁾
_	-	-	-	-	_	0	0	Multiplex PWM 1 to OUT_D
_	-	1	_	-	-	0	1	Multiplex PWM 2 to OUT_D
_	-	1	_	-	-	1	0	Multiplex PWM 3 to OUT_D
-	-	-	-	-	_	1	1	Multiplex PWM 4 to OUT_D ⁽¹⁾
D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
0	1	0	0	0	1	0	1	Reserved ⁽¹⁾

9.6.2.19 DRC Control Register (0x46)

Each DRC can be enabled independently using the DRC control register. The DRCs are disabled by default.

表 22. DRC Control Register (0x46)

D31	D30	D29	D28	D27	D26	D25	D24	FUNCTION
0	0	0	0	0	0	0	0	Reserved ⁽¹⁾
D23	D22	D21	D20	D19	D18	D17	D16	FUNCTION
0	0	0	0	0	0	0	0	Reserved (1)
D15	D14	D13	D12	D11	D10	D9	D8	FUNCTION
0	0	0	0	0	0	0	0	Reserved ⁽¹⁾
D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
0	0	ı	ı	_	_	_	-	Reserved ⁽¹⁾
-	1	0	1	_	_	_	_	Disable complementary (1 - H) low-pass filter generation
_	1	1	1	_	_	_	_	Enable complementary (1 - H) low-pass filter generation
_	1	1	0	_	_	_	_	
_	1	-	1	_	_	_	_	
				0	0			Reserved ⁽¹⁾
_	_	_	_	_	_	0	_	DRC2 turned OFF ⁽¹⁾
_	ı	ı		_	_	1	_	DRC2 turned ON
_	1	1		_	_	_	0	DRC1 turned OFF ⁽¹⁾
	-	-	-	_	-	_	1	DRC1 turned ON

⁽¹⁾ Default values are in **bold**.

9.6.2.20 Bank Switch and EQ Control Register (0x50)

表 23. Bank Switching Command Register (0x50)

201 Built Officially Communic Register (0x00)								
D31	D30	D29	D28	D27	D26	D25	D24	FUNCTION
0	_	_	_	_	_	_	ı	32 kHz, does not use bank 3 ⁽¹⁾
1	_	_	_	_	_	_	_	32 kHz, uses bank 3
_	0	_	_	_	_	_	_	Reserved ⁽¹⁾
_	_	0	_	_	_	_	_	Reserved ⁽¹⁾
_	-	_	0	_	_	_	1	44.1/48 kHz, does not use bank 3 ⁽¹⁾
_	_	_	1	_	_	_	-	44.1/48 kHz, uses bank 3
_	-	_	_	0	_	_	-	16 kHz, does not use bank 3
_	-	_	_	1	_	_	1	16 kHz, uses bank 3 ⁽¹⁾
_	-	_	_	_	0	_	-	22.025/24 kHz, does not use bank 3
_	-	-	_	_	1	_	I	22.025/24 kHz, uses bank 3 ⁽¹⁾
_	-	_	_	_	_	0	1	8 kHz, does not use bank 3
_	-	_	_	_	_	1	-	8 kHz, uses bank 3 ⁽¹⁾
_	-	_	_	_	_	_	0	11.025 kHz/12, does not use bank 3
_	_	_	_	_	_	_	1	11.025/12 kHz, uses bank 3 ⁽¹⁾
D23	D22	D21	D20	D19	D18	D17	D16	FUNCTION
0	_	_	_	_	_	_	_	32 kHz, does not use bank 2 ⁽¹⁾
1	-	_	_	_	_	_	-	32 kHz, uses bank 2
_	1	_	_	_	_	_	-	Reserved ⁽¹⁾
_	_	1	_	_	_	_	-	Reserved ⁽¹⁾
_	_	_	0	_	_	_	ı	44.1/48 kHz, does not use bank 2
_	_	_	1	_	_	_	-	44.1/48 kHz, uses bank 2 ⁽¹⁾
_	_	_	_	0	_	_	_	16 kHz, does not use bank 2 ⁽¹⁾
_	_	_	_	1	_	_	-	16 kHz, uses bank 2
_	_	_	_	_	0	_	-	22.025/24 kHz, does not use bank 2 ⁽¹⁾
_	_	_	_	_	1	_	ı	22.025/24 kHz, uses bank 2
_	_	_	_	_	_	0	-	8 kHz, does not use bank 2 ⁽¹⁾
_	_	_	_	_	_	1	-	8 kHz, uses bank 2
_	_	_	_	_	_	_	0	11.025/12 kHz, does not use bank 2 ⁽¹⁾
_	_	_	_	_	_	_	1	11.025/12 kHz, uses bank 2
D15	D14	D13	D12	D11	D10	D9	D8	FUNCTION
0	_	_	_	_	_	_	_	32 kHz, does not use bank 1
1	_	_	_	_	_	_	-	32 kHz, uses bank 1 ⁽¹⁾
_	0	_	_	_	_	_	_	Reserved ⁽¹⁾
_	_	0	_	_	_	_	-	Reserved ⁽¹⁾
_	_	_	0	_	_	_		44.1/48 kHz, does not use bank 1 ⁽¹⁾
_	_	_	1	_	_	_	-	44.1/48 kHz, uses bank 1
_	_	_	_	0	_	_	-	16 kHz, does not use bank 1 ⁽¹⁾
_	_	_	_	1	_	_	-	16 kHz, uses bank 1
_	_	_	_	_	0	_	-	22.025/24 kHz, does not use bank 1 ⁽¹⁾
_	_	_	_	_	1	_	-	22.025/24 kHz, uses bank 1
_	_	_	_	_	_	0		8 kHz, does not use bank 1 ⁽¹⁾
_		_	_	_	_	1		8 kHz, uses bank 1
	_	_	_	_	_	_	0	11.025/12 kHz, does not use bank 1 ⁽¹⁾
	_	_	_	_	_		1	11.025/12 kHz, uses bank 1
	_		_		_	_	ı	11.020/12 NIZ, USES DAIN 1

⁽¹⁾ Default values are in **bold**.

表 23. Bank Switching Command Register (0x50) (接下页)

D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
0								EQ ON
1	-	-	_	_	_	_	-	EQ OFF (bypass BQ 0-7 of channels 1 and 2)
_	0	_	_	_	_	_	-	Reserved ⁽¹⁾
_	_	0	_	_	_	_	_	Ignore bank-mapping in bits D31–D8.Use default mapping. (1)
		1						Use bank-mapping in bits D31–D8.
_	_	_	0	_	_	_	_	L and R can be written independently. ⁽¹⁾
_	-	_	1	_	-	_	_	L and R are ganged for EQ biquads; a write to left-channel BQ is also written to right-channel BQ. (0x29–0x2F is ganged to 0x30–0x36.Also 0x58–0x59 is ganged to 0x5C–0x5D)
_	_	_	_	0	_	_	_	Reserved ⁽¹⁾
_	_	-	_	_	0	0	0	No bank switching. All updates to DAP ⁽¹⁾
_	_	-	_	_	0	0	1	Configure bank 1 (32 kHz by default)
_	-	-	_	_	0	1	0	Configure bank 2 (44.1/48 kHz by default)
_	-	-	_	_	0	1	1	Configure bank 3 (other sample rates by default)
_	_	_	_	_	1	0	0	Automatic bank selection
_	_	_	_	_	1	0	1	Reserved
_	_	_	_	_	1	1	Χ	Reserved

10 Application and Implementation

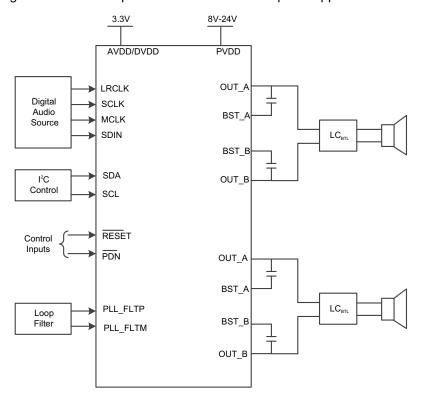
注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

图 68, 图 71, and 图 72 highlight the required external components and system level connections for proper operation of the device in several popular use cases.

Each of these configurations can be realized using the Evaluation Modules (EVMs) for the device. These flexible modules allow full evaluation of the device in the most common modes of operation. Any design variation can be supported by TI through schematic and layout reviews. Visit http://e2e.ti.com for design assistance and join the audio amplifier discussion forum for additional information.


10.2 Typical Applications

10.2.1 Stereo Bridge Tied Load Application

A stereo system generally refers to a system in which there are two full range speakers without a separate amplifier path for the speakers that reproduce the low-frequency content. In this system, two channels are presented to the amplifier via the digital input signal. These two channels are amplified and then sent to two separate speakers.

Most commonly, the two channels are a pair of signals called a stereo pair, with one channel containing the audio for the left channel and the other channel containing the audio for the right channel.

The Stereo BTL Configuration with Headphone and Line Driver Amplifier application is shown in \begin{align*} \omega 68.

Copyright © 2018, Texas Instruments Incorporated

图 68. Stereo Bridge Tied Load Application

Typical Applications (接下页)

10.2.1.1 Design Requirements

表 24. Design Requirements

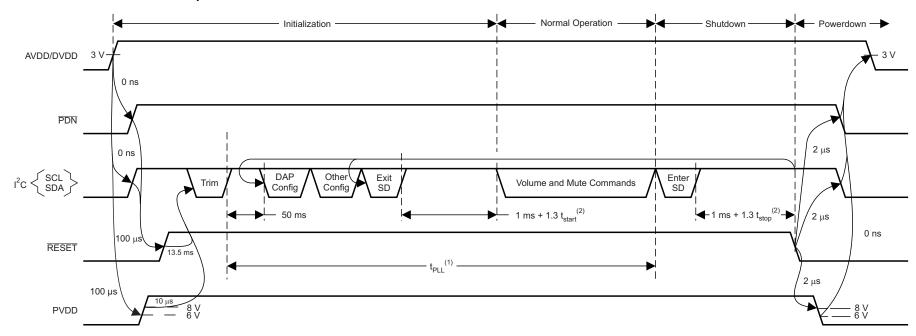
PARAMETER	EXAMPLE		
Low Power Supply	3.3 V		
High Power Supply	8 V to 24 V		
	I ² S Compliant Master		
Host Processor	I ² C Compliant Master		
	GPIO Control		
Output Filters	Inductor-Capacitor Low Pass Filter		
Speaker	4 Ω minimum		

10.2.1.2 Detailed Design Procedure

10.2.1.2.1 Component Selection and Hardware Connections

The typical connections required for proper operation of the device can be found in the *TAS5755EVM User's Guide* (SLOU481A). The device was tested with this list of components; deviation from this list of typical application components, unless recommended by this document, may produce unwanted results, which could range from degradation of audio performance to destructive failure of the device.

10.2.1.2.2 I²C Pullup Resistors


Customary pullup resistors are required on the SCL and SDA signal lines. They are not shown in the Typical Application Circuits, because they are shared by all of the devices on the I²C bus and are considered to be part of the associated passive components for the System Processor. These resistor values must be chosen per the guidance provided in the I²C Specification.

10.2.1.2.3 Digital I/O Connectivity

The digital I/O lines of the TAS5755M are described in previous sections. As discussed, whenever a static digital pin (that is a pin that is hardwired to be HIGH or LOW) is required to be pulled HIGH, it must be connected to DVDD through a pullup resistor to control the slew rate of the voltage presented to the digital I/O pins. It is not, however, necessary to have a separate pullup resistor for each static digital I/O line. Instead, a single resistor can be used to tie all static I/O lines HIGH to reduce BOM count.

10.2.1.2.4 Recommended Start-Up and Shutdown Procedures

⁽¹⁾ t_{PLL} has to be greater than 240 ms + 1.3 t_{start} .

T0419-06

图 69. Recommended Command Sequence

This constraint only applies to the first trim command following AVDD/DVDD power-up. It does not apply to trim commands following subsequent resets.

(2) t_{start}/t_{stop} = PWM start/stop time as defined in register 0X1A

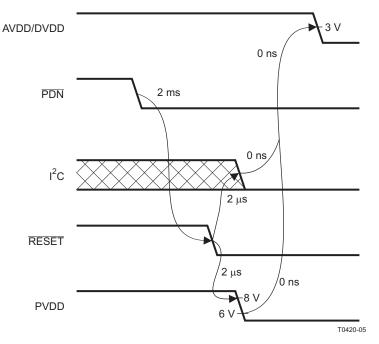


图 70. Power-Loss Sequence

10.2.1.2.4.1 Initialization Sequence

Use the following sequence to power up and initialize the device:

- 1. Hold all digital inputs low and ramp up AVDD/DVDD to at least 3 V.
- 2. Initialize digital inputs and PVDD supply as follows:
 - Drive RESET = 0, PDN = 1, and other digital inputs to their desired state while ensuring that all are never more than 2.5 V above AVDD/DVDD. Wait at least 100 μs, drive RESET = 1, and wait at least another 13.5 ms.
 - Ramp up PVDD to at least 8 V while ensuring that it remains below 6 V for at least 100 μs after AVDD/DVDD reaches 3 V. Then wait at least another 10 μs.
- 3. Trim oscillator (write 0x00 to register 0x1B) and wait at least 50 ms.
- Configure the DAP via I²C, see TAS5755EVM Evaluation Module User's Guide (SLOU481A) for typical values.
- 5. Configure remaining registers.
- 6. Exit shutdown (sequence defined in *Shutdown Sequence*).

10.2.1.2.4.2 Normal Operation

The following are the only events supported during normal operation:

- 1. Writes to master/channel volume registers
- 2. Writes to soft-mute register
- 3. Enter and exit shutdown (sequence defined in Shutdown Sequence)

注

Event 3 is not supported for 240 ms + 1.3 \times t_{start} after trim following AVDD/DVDD power-up ramp (where t_{start} is specified by register 0x1A).

10.2.1.2.4.3 Shutdown Sequence

Enter:

- 1. Write 0x40 to register 0x05.
- 2. Wait at least 1 ms + 1.3 \times t_{stop} (where t_{stop} is specified by register 0x1A).
- 3. If desired, reconfigure by returning to step 4 of initialization sequence.

Exit:

- 1. Write 0x00 to register 0x05 (exit shutdown command may not be serviced for as much as 240 ms after trim following AVDD/DVDD power-up ramp).
- 2. Wait at least 1 ms + 1.3 \times t_{start} (where t_{start} is specified by register 0x1A).
- 3. Proceed with normal operation.

10.2.1.2.4.4 Power-Down Sequence

Use the following sequence to power down the device and its supplies:

- 1. If time permits, enter shutdown (sequence defined in *Shutdown Sequence*); else, in case of sudden power loss, assert $\overline{\text{PDN}} = 0$ and wait at least 2 ms.
- 2. Assert $\overline{\mathsf{RESET}} = 0$.
- 3. Drive digital inputs low and ramp down PVDD supply as follows:
 - Drive all digital inputs low after RESET has been low for at least 2 μs.
 - Ramp down PVDD while ensuring that it remains above 8 V until RESET has been low for at least 2 µs.
- 4. Ramp down AVDD/DVDD while ensuring that it remains above 3 V until PVDD is below 6 V and that it is never more than 2.5 V below the digital inputs.

10.2.1.3 Application Curves

表 25. Relevant Performance Curves

CURVE TITLE	FIGURE
Output Power vs Supply Voltage (2.0 BTL Mode) With 4Ω Load on Typical 2 Layer PCB Device May Be Thermally Limited Above 20 V	图 18
Total Harmonic Distortion + Noise vs Output Power (2.0 BTL Mode)	图 19
Total Harmonic Distortion + Noise vs Output Power (2.0 BTL Mode)	图 20
Total Harmonic Distortion + Noise vs Output Power (2.0 BTL Mode)	图 21
Total Harmonic Distortion vs Frequency (2.0 BTL Mode)	图 22
Total Harmonic Distortion vs Frequency (2.0 BTL Mode)	图 23
Total Harmonic Distortion vs Frequency (2.0 BTL Mode)	图 24
Efficiency vs Output Power (2.0 BTL Mode)	图 25
Crosstalk vs Frequency (2.0 BTL Mode)	图 26
Crosstalk vs Frequency (2.0 BTL Mode)	图 27
Crosstalk vs Frequency (2.0 BTL Mode)	图 28
Crosstalk vs Frequency (2.0 BTL Mode)	图 29
Power vs Supply Voltage (2.0 BTL Mode)	图 30
Idle Channel Noise vs Supply Voltage (2.0 BTL Mode)	图 31

10.2.2 Mono Parallel Bridge Tied Load Application

A mono system refers to a system in which the amplifier is used to drive a single loudspeaker. Parallel Bridge Tied Load (PBTL) indicates that the two full-bridge channels of the device are placed in parallel and drive the loudspeaker simultaneously using an identical audio signal. The primary benefit of operating the TAS5755M device in PBTL operation is to reduce the power dissipation and increase the current sourcing capabilities of the amplifier output. In this mode of operation, the current limit of the audio amplifier is approximately doubled while the on-resistance is approximately halved.

The loudspeaker can be a full-range transducer or one that only reproduces the low-frequency content of an audio signal, as in the case of a powered subwoofer. Often in this use case, two stereo signals are mixed together and sent through a low-pass filter in order to create a single audio signal which contains the low frequency information of the two channels.

The Mono Parallel Bridge Tied Load application is shown in <a>8 71.

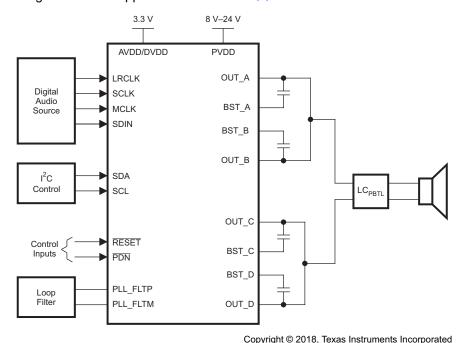


图 71. Mono Parallel Bridge Tied Load Application

10.2.2.1 Design Requirements

表 26. Design Requirements

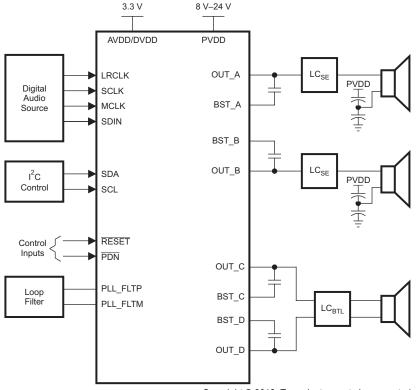
PARAMETER	EXAMPLE		
Low Power Supply	3.3 V		
High Power Supply	8 V to 24 V		
	I ² S Compliant Master		
Host Processor	I ² C Compliant Master		
	GPIO Control		
Output Filters	Inductor-Capacitor Low Pass Filter		
Speaker	4 Ω minimum		

10.2.2.2 Detailed Design Procedure

Refer to *Detailed Design Procedure* for information.

10.2.2.3 Application Curves

表 27. Relevant Performance Curves


CURVE TITLE	FIGURE
Output Power vs Supply Voltage (PBTL Mode) With 2Ω Load on Typical 2 Layer PCB, Device May Be Thermally Limited Above 20 V	图 32
Total Harmonic Distortion + Noise vs Output Power (PBTL Mode)	图 33
Total Harmonic Distortion + Noise vs Output Power (PBTL Mode)	图 34
Total Harmonic Distortion + Noise vs Output Power (PBTL Mode)	图 35
Total Harmonic Distortion vs Frequency (PBTL Mode)	图 36
Total Harmonic Distortion vs Frequency (PBTL Mode)	图 37
Total Harmonic Distortion vs Frequency (PBTL Mode)	图 38
Efficiency vs Output Power (PBTL Mode)	图 39
Efficiency vs Output Power (PBTL Mode)	图 40
Power vs Supply Voltage (PBTL Mode)	图 41
Idle Channel Noise vs Supply Voltage (PBTL Mode)	图 42

10.2.3 2.1 Application

A 2.1 system generally refers to a system in which there are two full range speakers with a separate amplifier path for the speakers which reproduce the low-frequency content. In this system, two channels are presented to the amplifier via the digital input signal, these are driven into two single-ended speakers and are mixed into a third channel, conditioned to stream low-frequency content into a differentially connected speaker.

The 2.1 application is shown in ₹ 72.

Copyright © 2018, Texas Instruments Incorporated

图 72. Simplified 2.1 Application Diagram

10.2.3.1 Design Requirements

表 28. Design Requirements

PARAMETER	EXAMPLE		
Low Power Supply	3.3 V		
High Power Supply	8 V to 24 V		
	I ² S Compliant Master		
Host Processor	I ² C Compliant Master		
	GPIO Control		
Output Filters	Inductor-Capacitor Low Pass Filter		
Speaker	4 Ω (BTL), 2 Ω (SE) minimum		

10.2.3.2 Detailed Design Procedure

Refer to *Detailed Design Procedure* for information.

10.2.3.3 Application Curves

表 29. Relevant Performance Curves

CURVE TITLE	FIGURE
Output Power vs Supply Voltage (2.1 SE Mode) With 2 x 4Ω + 4Ω Load on Typical 2 Layer PCB Device May Be Thermally Limited Above 20 V	图 5
Total Harmonic Distortion + Noise vs Output Power (2.1 SE Mode)	图 6
Total Harmonic Distortion + Noise vs Output Power (2.1 SE Mode)	图 7
Total Harmonic Distortion + Noise vs Output Power (2.1 SE Mode)	图 8
Total Harmonic Distortion + Noise vs Frequency (2.1 SE Mode)	图 9
Total Harmonic Distortion + Noise vs Frequency (2.1 SE Mode)	图 10
Total Harmonic Distortion + Noise vs Frequency (2.1 SE Mode)	图 11
Efficiency vs Total Output Power (2.1 SE Mode)	图 12
Efficiency vs Total Output Power (2.1 SE Mode)	图 13
Crosstalk vs Frequency (2.1 SE Mode)	图 14
Crosstalk vs Frequency (2.1 SE Mode)	图 15
Crosstalk vs Frequency (2.1 SE Mode)	图 16
Crosstalk vs Frequency (2.1 SE Mode)	图 17

11 Power Supply Recommendations

The TAS5755M requires two power supplies; a low voltage 3.3 V nominal for the pins DVDD and AVDD and a high power supply, 8 V to 24 V for the pin PVDD. There is no requirement for power up sequencing of low and high power supplies, however is recommended to put the PDN pin to low before removing the low voltage power supplies in order to protect the outputs.

11.1 DVDD and AVDD Supplies

The AVDD Supply is used to power the analog internal circuit of the device, and needs a well regulated and filtered 3.3-V supply voltage. The DVDD Supply is used to power the digital circuitry. DVDD needs a well regulated and filtered 3.3-V supply voltage.

11.2 PVDD Power Supply

The TAS5755M class-D audio amplifier requires adequate power supply decoupling to ensure the output total harmonic distortion (THD) and noise is as low as possible. A good low equivalent-series-resistance (ESR) ceramic capacitor, typically 1 μ F, placed as close as possible to the device PVDD leads works best. For filtering lower frequency noise signals, a 10 μ F or greater capacitor placed near the audio power amplifier is recommended.

12 Layout

12.1 Layout Guidelines

Class-D switching edges are fast and switched currents are high so it is necessary to take care when planning the layout of the printed circuit board. The following suggestions will help to meet audio, thermal and EMC requirements.

- Decoupling capacitors: the high-frequency decoupling capacitors must be placed as close to the supply pins as possible; on the TAS5755M a 1-μF high-quality ceramic capacitor is used. Large (10 μF or greater) bulk power supply decoupling capacitors must be placed near the TAS5755M on the PVDD supplies.
- Keep the current loop from each of the outputs through the output inductor and the small filter cap and back to GND as small and tight as possible. The size of this current loop determines its effectiveness as an antenna.
- Grounding: A big common GND plane is recommended. The PVDD decoupling capacitors must connect to GND. The TAS5755M PowerPAD must be connected to GND.
- Output filter: remember to select inductors that can handle the high short circuit current of the device. The LC filter must be placed close to the outputs.

The EVM product folder (TAS5755EVM) and User's Guide (SLOU481A) available on www.ti.com show schematic, bill of material, gerber files, and more detailed layout plots.

12.2 Layout Examples

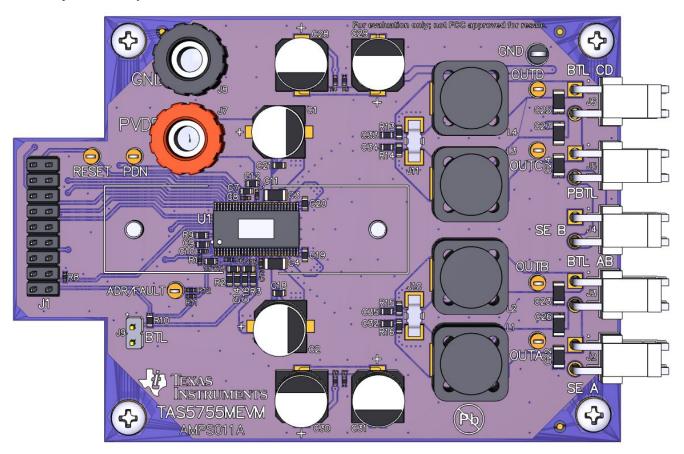


图 73. Top Layer Layout with Stereo BTL Mode

Layout Examples (接下页)

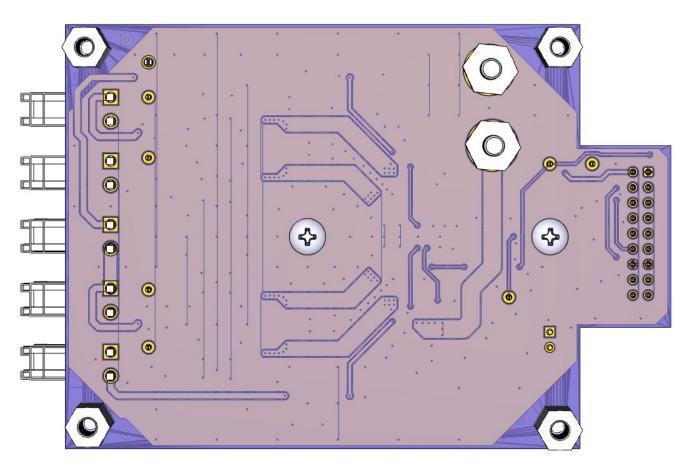


图 74. Bottom Layer Layout with Stereo BTL Mode

13 器件和文档支持

13.1 器件支持

13.1.1 开发支持

TAS570X GDE 软件设置开发工具文档 (SLOC124)

13.2 文档支持

EVM 产品文件夹 (TAS5755MEVM)

13.2.1 相关文档

《TAS5755MEVM 用户指南》(SLOU481A)

13.3 社区资源

下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商"按照原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的 《使用条款》。

TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在 e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。

设计支持 71 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。

13.4 商标

PowerPAD, E2E are trademarks of Texas Instruments.

13.5 静电放电警告

这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损伤。

13.6 术语表

SLYZ022 — TI 术语表。

这份术语表列出并解释术语、缩写和定义。

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TAS5755MDFD	ACTIVE	HTSSOP	DFD	56	35	RoHS & Green	NIPDAU	Level-4-260C-72 HR	0 to 125	5755M	Samples
TAS5755MDFDR	ACTIVE	HTSSOP	DFD	56	2000	RoHS & Green	NIPDAU	Level-4-260C-72 HR	0 to 125	5755M	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

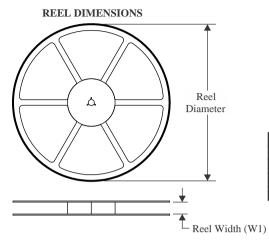
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

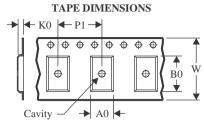
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

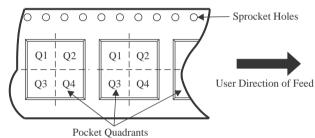
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.




10-Dec-2020

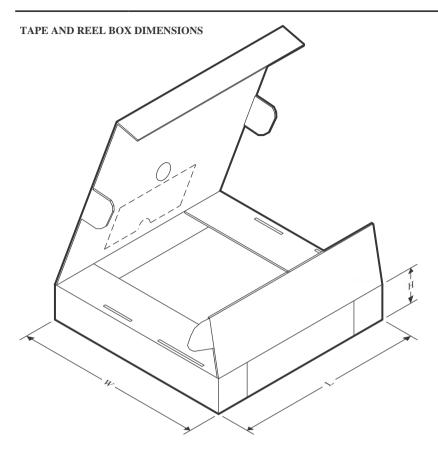
PACKAGE MATERIALS INFORMATION

www.ti.com 5-Dec-2023


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

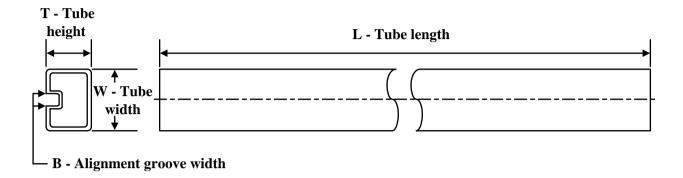


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TAS5755MDFDR	HTSSOP	DFD	56	2000	330.0	24.4	8.6	15.6	1.8	12.0	24.0	Q1

PACKAGE MATERIALS INFORMATION

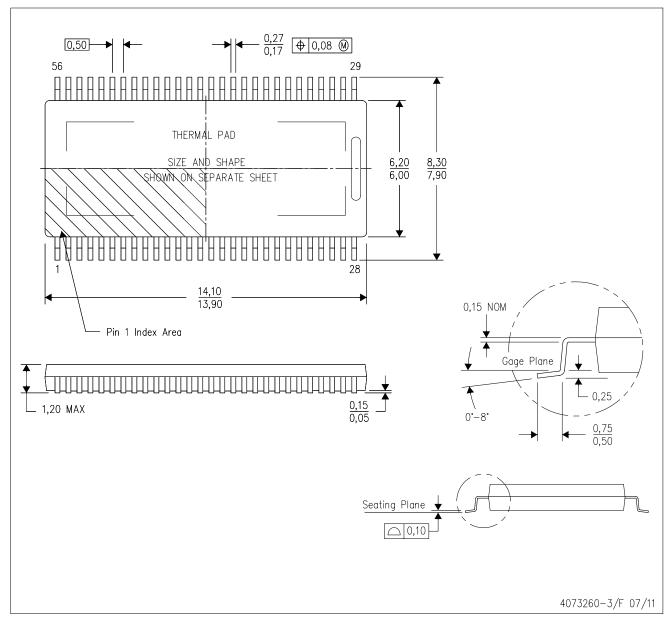
www.ti.com 5-Dec-2023


*All dimensions are nominal

Device	Device Package Type		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
TAS5755MDFDR	HTSSOP	DFD	56	2000	350.0	350.0	43.0	

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Dec-2023


TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
TAS5755MDFD	DFD	HTSSOP	56	35	530	11.89	3600	4.9

DFD (R-PDSO-G56) PowerPAD ™ PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN)

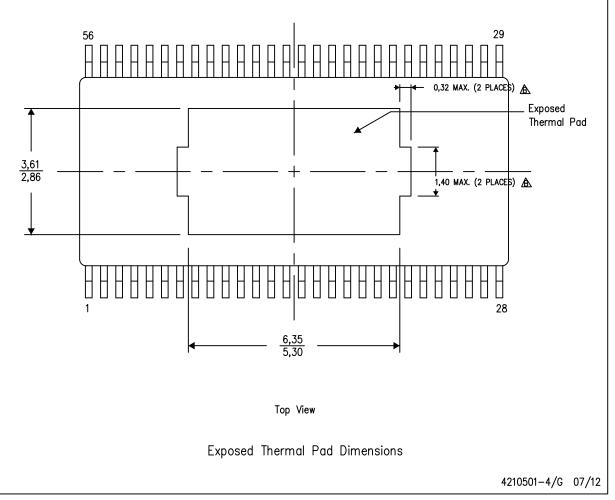
NOTES:

- All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
- This drawing is subject to change without notice.
- Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com http://www.ti.com.

 E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. Falls within JEDEC MO-153

PowerPAD is a trademark of Texas Instruments.

DFD (R-PDSO-G56)


PowerPAD™ PLASTIC SMALL OUTLINE

THERMAL INFORMATION

This PowerPAD™ package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTES: A. All linear dimensions are in millimeters

★ Keep—out features are identified to prevent board routing interference.

These exposed metal features may vary within the identified area or completely absent on some devices.

PowerPAD is a trademark of Texas Instruments

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023,德州仪器 (TI) 公司