7 通道中继和电感负载下沉式驱动器 查询样品: ULN2003V12 #### 特性 - 7 通道高电流下沉式驱动器 - 支持高达 20V 的输出上拉电压 - 支持宽范围的低电压和高电压中继和电感线圈 - 0.6V 低输出电压 (VOL) (典型值),并且 - 在 3.3V 的逻辑输入上,每通道具有 100mA(典型值)的电流吸收能力⁽¹⁾ - 在 5.0V 的逻辑输入上,每通道具有 140mA(典型值)的电流吸收能力⁽¹⁾ - 与 3.3V 和 5.0V 微控制器和逻辑接口兼容 - 用于电感反冲保护的内部自振荡二极管 - 输入下拉电阻器可实现三态输入驱动器 - 用来消除嘈杂环境中寄生运行的输入电阻电容 (RC) 缓冲器 - 低输入和输出泄漏电流 - 易于使用的并行接口 - 静电放电 (ESD) 保护性能超过 JESD 22 规范要求 - 2kV 人体模型 (HBM), 500V 充电器件模型 (CDM) - 采用 16 引脚小外形尺寸集成电路 (SOIC) 和薄型小 外形尺寸 (TSSOP) 封装 - (1) 总电流吸收有可能受到内部结温、绝对最大电流水平等的限制-详细情况请参考电气规范部分。 #### 应用范围 - 在多种电信、消费类、和工业应用中的中继和电感 负载驱动器 - 照明灯和 LED 显示 - 逻辑电平转换器 ### 功能方框图 #### 说明 特性部分。 ULN2003V12 是一款针对 TI 生产的广受欢迎的 ULN2003 系列 7 通道达灵顿 (Darlington) 晶体管阵列 的低功耗升级产品。 ULN2003V12 下沉式驱动器特有 7 个低输出阻抗驱动器,此驱动器能够大大降低片上功率耗散。 当驱动一个典型值为 12V 中继线圈时,一个 ULN2003V12 的功率耗散比一个等效的 ULN2003A 低 12 倍。 ULN2003V12 驱动器与 ULN2003 系列器件具有相似封装,并且引脚对引脚兼容。 ULN2003V12 支持 3.3V 至 5V CMOS 逻辑输入接口,从而使得此器件与大范围的微控制器和其它逻辑接口兼容。ULN2003V12 特有一个改进的输入接口,此接口可以大大降低取自外部驱动器的输入 DC 电流。ULN2003V12 特有一个输入 RC 缓冲器,此缓冲器能够极大地改进此器件在嘈杂运行条件下的性能。ULN2003V12 通道输入特有一个内部输入下拉电阻器从而可实现三态输入逻辑。ULN2003V12 还支持其它 如功能图中所示,在共阴极配置中,ULN2003V12 的每一个输出都特有一个连接在 COM 引脚上的内部自振荡二极管。 逻辑输入电平,例如 TTL 和 1.8V;详细信息请见典型 ULN2003V12 通过将几条相邻的并联通道相组合来提供不断增加的电流吸收能力的灵活性。 在通常情况下,当所有 7 个通道并联时, ULN2003V12 能够支持高达 1.0A 的负载电流。 ULN2003V12 还可以被用于需要一个下沉式驱动器的 多种其它应用。 ULN2003V12 采用 16 引脚 SOIC 和 16 引脚 TSSOP 封装。 表 1. ULN2003V12 功能表⁽¹⁾ | 输入 (IN1-IN7) | 输出 (OUT1-OUT7) | |--------------------------|---------------------| | L | H ⁺⁽²⁾ | | Н | L | | Z | H ⁺⁽²⁾ | | (1) L = 低电平 (接地); H = 高時 | 电平; Z = 高阻抗; | | (2) H+ = 上拉电平 | | Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. #### ORDERING INFORMATION(1) | TJ | PART NUMBER | PACK | TOP-SIDE MARKING | | |----------------|---------------|--------------|------------------|----------| | -40°C to 125°C | ULN2003V12DR | 16-Pin SOIC | Reel of 2500 | U2003V12 | | | ULN2003V12PWR | 16-Pin TSSOP | Reel of 2000 | U2003V12 | ⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com. ## **ABSOLUTE MAXIMUM RATINGS**(1) Specified at $T_J = -40$ °C to 125°C unless otherwise noted. | | | | VALU | JE | LINUT | |------------------|---|----------------|------|------|-------| | | | | MIN | MAX | UNIT | | V_{IN} | Pins IN1- IN7 to GND voltage | | -0.3 | 5.5 | V | | V_{OUT} | Pins OUT1 – OUT7 to GND voltage | | | 20 | V | | V_{COM} | Pin COM to GND voltage | | | 20 | V | | | Max GND-pin continuous current (100°C < T _J | < +125°C) | | 700 | mA | | I _{GND} | Max GND-pin continuous current (T _J < +100°C | 5) | | 1.0 | Α | | 0 | Total device newer discipation at T 95°C | 16 Pin - SOIC | | 0.86 | W | | P_D | Total device power dissipation at T _A = 85°C | 16 Pin - TSSOP | | 0.68 | W | | ESD | ESD Rating – HBM | | | 2 | kV | | ESD | ESD Rating – CDM | | | 500 | V | | TJ | Operating virtual junction temperature | | -55 | 150 | °C | | T _{stg} | Storage temperature range | | -55 | 150 | °C | ⁽¹⁾ Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. ### **DISSIPATION RATINGS**(1)(2) | BOARD | PACKAGE | θ _{JC} | θ _{JA} ⁽³⁾ | DERATING
FACTOR
ABOVE T _A =
25°C | T _A < 25°C | T _A = 70°C | T _A = 85°C | T _A = 105°C | |--------|--------------|-----------------|--------------------------------|--|-----------------------|-----------------------|-----------------------|------------------------| | High-K | 16-Pin SOIC | 46°C/W | 75°C/W | 13.33 mW/°C | 1.66 W | 1.06 W | 0.86 W | 0.59 W | | High-K | 16-Pin TSSOP | 49°C/W | 95°C/W | 10.44 mW/°C | 1.31 W | 0.84 W | 0.68 W | 0.47 W | - (1) Maximum dissipation values for retaining device junction temperature of 150°C - (2) Refer to TI's design support web page at www.ti.com/thermal for improving device thermal performance - (3) Operating at the absolute T_{J-max} of 150°C can affect reliability– for higher reliability it is recommended to ensure T_{J} < 125°C #### RECOMMENDED OPERATING CONDITIONS over operating free-air temperature range (unless otherwise noted) | | PARAMETER | MIN | TYP MAX | UNIT | | |------------------|--|-------------|---------|--------|----| | V _{OUT} | Channel off-state output pull-up voltage | | 16 | V | | | V_{COM} | COM pin voltage | | 16 | V | | | | December of the control contr | VINx = 3.3V | | 100(1) | 0 | | IOUT(ON) | Per channel continuous sink current | VINx = 5.0V | | 140(1) | mA | | TJ | Operating junction temperature | | -40 | 125 | °C | ^(1) 1) Refer to ABSOLUTE MAXIMUM RATINGS for T_J dependent absolute maximum GND-pin current #### **ELECTRICAL CHARACTERISTICS** Specified over the recommended junction temperature range $T_J = -40^{\circ}\text{C}$ to 125°C and over recommended operating conditions unless otherwise noted. Typical values are at $T_J = 25^{\circ}\text{C}$. | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | | |-----------------------------|--|---|------|------|------|------|--| | INPUTS IN1 T | HROUGH IN7 PARAMETERS | | " | | Į. | | | | V _{I(ON)} | IN1-IN7 logic high input voltage | $V_{pull-up} = 3.3 \text{ V}, R_{pull-up} = 1 \text{ k}\Omega, I_{OUTX} = 3.2 \text{ mA}$ | 1.65 | | | V | | | V _{I(OFF)} | IN1–IN7 logic low input voltage | $V_{pull-up}$ = 3.3 V, $R_{pull-up}$ = 1 kΩ,
(I_{OUTX} < 20 μA) | | | 0.6 | | | | I _{I(ON)} | IN1–IN7 ON state input current | $V_{pull-up} = 12 \text{ V}, \text{ VIN}_x = 3.3 \text{ V}$ | | 12 | 25 | uA | | | I _{I(OFF)} | IN1–IN7 OFF state input leakage | V _{pull-up} = 12 V, VIN _x = 0 V | | | 250 | nA | | | OUTPUTS OU | T1 THROUGH OUT7 PARAMETERS | | | | | | | | | | V _{INX} = 3.3 V, I _{OUTX} = 20 mA | | 0.12 | 0.15 | | | | V | OUTA OUT7 law laws a street walks as | V _{INX} = 3.3 V, I _{OUTX} = 100 mA | | 0.60 | 0.75 | V | | | $V_{OL(VCE-SAT)}$ | OUT1-OUT7 low-level output voltage | V _{INX} = 5.0 V, I _{OUTX} = 20 mA | | 0.09 | 0.11 | V | | | | | V _{INX} = 5.0 V, I _{OUTX} = 140 mA | | 0.60 | 0.75 | | | | | OUT1-OUT7 ON-state continuous | V _{INX} = 3.3 V, V _{OUTX} = 0.6 V | 80 | 100 | | | | | I _{OUT(ON)} | current ⁽¹⁾ (2) at V _{OUTX} = 0.6V | V _{INX} = 5.0 V, V _{OUTX} = 0.6 V | 95 | 140 | | mA | | | I _{OUT(OFF)(ICEX)} | OUT1-OUT7 OFF-state leakage current | V _{INX} = 0 V, V _{OUTX} = V _{COM} = 16 V | | 0.5 | | μA | | | SWITCHING P | PARAMETERS(3)(4) | | | | | | | | t _{PHL} | OUT1-OUT7 logic high propagation delay | $V_{INX} = 3.3V$, $V_{pull-up} = 12 V$, $R_{pull-up} = 1 k\Omega$ | | 50 | 70 | ns | | | t _{PLH} | OUT1-OUT7 logic low propagation delay | $V_{INX} = 3.3V$, $V_{pull-up} = 12$ V, $R_{pull-up} = 1$ k Ω | | 121 | 140 | ns | | | t CHANNEL | Channel to Channel delay | Over recommended operating conditions and with same test conditions on channels. | | 15 | 50 | ns | | | R _{PD} | IN1-IN7 input pull-down Resistance | | 210k | 300k | 390k | Ω | | | ζ | IN1–IN7 Input filter time constant | | | 9 | | ns | | | C _{OUT} | OUT1-OUT7 output capacitance | V _{INX} = 3.3 V, V _{OUTX} = 0.4 V | | 15 | | pF | | | | ING DIODE PARAMETERS ⁽⁵⁾⁽⁴⁾ | | • | | | | | | VF | Forward voltage drop | I _{F-peak} = 140 mA, VF = V _{OUTx} - V _{COM} | | 1.2 | | V | | | I _{F-peak} | Diode peak forward current | | | 140 | | mA | | ⁽¹⁾ The typical continuous current rating is limited by V_{OL}= 0.6V. Whereas, absolute maximum operating continuous current may be limited by the Thermal Performance parameters listed in the Dissipation Rating Table and other Reliability parameters listed in the Recommended Operating Conditions Table. Refer to the Absolute Maximum Ratings Table for T_J dependent absolute maximum GND-pin current. Rise and Fall propagation delays, t_{PHL} and t_{PLH}, are measured between 50% values of the input and the corresponding output signal amplitude transition. Guaranteed by design only. Validated during qualification. Not measured in production testing. Not rated for continuous current operation – for higher reliability use an external freewheeling diode for inductive loads resulting in more than specified maximum free-wheeling. diode peak current across various temperature conditions ### **DEVICE INFORMATION** Figure 1. ULN2003V12 PINOUT Figure 2. Channel Block Diagram #### **ULN2003V12 PIN DESCRIPTION** | NAME | PIN N | UMBER | DESCRIPTION | | | | | | | | |-------------|---------|----------|---|--|--|--|--|--|--|--| | | 16-SOIC | 16-TSSOP | | | | | | | | | | IN1 - IN7 | 1–7 | 1–7 | Logic Input Pins IN1 through IN7 | | | | | | | | | GND | 8 | 8 | Ground Reference Pin | | | | | | | | | COM | 9 | 9 | Internal Free-Wheeling Diode Common Cathode Pin | | | | | | | | | OUT7 – OUT1 | 10–16 | 10–16 | Channel Output Pins OUT7 through OUT1 | | | | | | | | #### APPLICATION INFORMATION ## **TTL and other Logic Inputs** ULN2003V12 input interface is specified for standard 3V and 5V CMOS logic interface. However, ULN2003V12 input interface may support other logic input levels as well. Refer to Figure 10 and Figure 11 to establish VOL and the corresponding typical load current levels for various input voltage ranges. Application Information section shows an implementation to drive 1.8V relays using ULN2003V12. ### Input RC Snubber ULN2003V12 features an input RC snubber that helps prevent spurious switching in noisy environment. Connect an external $1k\Omega$ to $5k\Omega$ resistor in series with the input to further enhance ULN2003V12's noise tolerance. #### **High-impedance Input Drivers** ULN2003V12 features a $300k\Omega$ input pull-down resistor. The presence of this resistor allows the input drivers to be tri-stated. When a high-impedance driver is connected to a channel input the ULN2003V12 detects the channel input as a low level input and remains in the OFF position. The input RC snubber helps improve noise tolerance when input drivers are in the high-impedance state. #### **On-chip Power Dissipation** Use the below equation to calculate ULN2003V12 on-chip power dissipation P_D: $$P_D = \sum_{i=1}^N V_{OLi} \times I_{Li}$$ Where: N is the number of channels active together. VOLi is the OUT, pin voltage for the load current ILI. (1) ### Thermal Reliability It is recommended to limit ULN2003V12 IC's die junction temperature to less than 125°C. The IC junction temperature is directly proportional to the on-chip power dissipation. Use the following equation to calculate the maximum allowable on-chip power dissipation for a target IC junction temperature: $$PD_{(MAX)} = \left(T_{J(MAX)} - T_{A}\right) \theta_{JA}$$ Where: T_{J(MAX)} is the target maximum junction temperature. T_A is the operating ambient temperature. θ_{JA} is the package junction to ambient thermal resistance. (2) #### Improving Package Thermal Performance The package θ_{JA} value under standard conditions on a High-K board is listed in the DISSIPATION RATINGS. θ_{JA} value depends on the PC board layout. An external heat sink and/or a cooling mechanism, like a cold air fan, can help reduce θ_{JA} and thus improve device thermal capabilities. Refer to TI's design support web page at www.ti.com/thermal for a general guidance on improving device thermal performance. ## **Application Examples** ### **Inverting Logic Level Shifter** To use ULN2003V12 as an open-collector or an open-drain inverting logic level shifter configure the device as shown in Figure 3. The ULN2003V12's each channel input and output logic levels can also be set independently. When using different channel input and output logic voltages connect the ULN2003V12 COM pin to the maximum voltage. Figure 3. ULN2003V12 as Inverting Logic Level Shifter #### **Max Supply Selector** Figure 4 implements a max supply selector along with a 4-channel logic level shifter using a single ULN20003V12. This setup configures ULN2003V12's channel clamp diodes OUT5 – OUT7 in a diode-OR configuration and thus the maximum supply among VSUP1, VSUP2 and VSUP3 becomes available at the COM pin. The maximum supply is then used as a pull-up voltage for level shifters. Limit the net GND pin current to less than 100mA DC to ensure reliability of the conducting diode. The unconnected inputs IN5-IN7 are pulled to GND potential through $300k\Omega$ internal pull-down resistor. Figure 4. ULN2003V12 as Max Supply Selector #### **Constant Current Generation** When configured as per Figure 5 the ULN2003V12 outputs OUT1-OUT6 act as independent constant current sources. The current flowing through the resistor R1 is copied on all other channels. To increase the current sourcing connect several output channels in parallel. To ensure best current copying set voltage drop across connected load such that VOUTx matches to VOUT7. Figure 5. ULN2003V12 as a Constant Current Driver Figure 6. ULN2003V12 VOUT vs IREF #### **Unipolar Stepper Motor Driver** Figure 7 shows an implementation of ULN2003V12 for driving a uniploar stepper motor. The unconnected input channels can be used for other functions. When an input pin is left open the internal $300k\Omega$ pull down resistor pulls the respective input pin to GND potential. For higher noise immunity use an external short across an unconnected input and GND pins. Figure 7. ULN2003V12 as a Stepper Motor Driver #### **NOR Logic Driver** Figure 8 shows a NOR Logic driver implementation using ULN2003V12. The output channels sharing a common pull-up resistor implement a logic NOR of the respective channel inputs. The LEDs connected to outputs OUT5-OUT7 light up when any of the inputs IN5-IN7 is logic-high (> VIH). Figure 8. ULN2003V12 as a NOR driver ## **TYPICAL CHARACTERISTICS** Figure 9. Load Current 1-Channel; VOL=0.6V Figure 10. Load Current 7-Channels in parallel; VOL=0.6V Figure 11. Freewheeling Diode VF versus IF ### ZHCS939B -MAY 2012-REVISED JANUARY 2013 ## **REVISION HISTORY** | CI | hanges from Revision A (July 2012) to Revision B | Page | |----|--|------| | • | Changed Operating Temperature Range | 2 | | • | Added Details to Dissipation Data | 2 | | • | Added Details to Switching Parameters | 3 | | • | Changed Detailed Block Diagram | 4 | ## PACKAGE OPTION ADDENDUM 10-Dec-2020 #### PACKAGING INFORMATION www.ti.com | Orderable Device | Status (1) | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking
(4/5) | Samples | |------------------|------------|--------------|--------------------|------|----------------|--------------|-------------------------------|--------------------|--------------|-------------------------|---------| | ULN2003V12DR | ACTIVE | SOIC | D | 16 | 2500 | RoHS & Green | SN | Level-1-260C-UNLIM | -40 to 125 | U2003V12 | Samples | | ULN2003V12PWR | ACTIVE | TSSOP | PW | 16 | 2000 | RoHS & Green | SN | Level-1-260C-UNLIM | -40 to 125 | U2003V12 | Samples | (1) The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. **Green:** TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. 10-Dec-2020 ## **PACKAGE MATERIALS INFORMATION** www.ti.com 17-Jul-2020 ## TAPE AND REEL INFORMATION | | Dimension designed to accommodate the component width | |----|---| | B0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |---------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | ULN2003V12DR | SOIC | D | 16 | 2500 | 330.0 | 16.8 | 6.5 | 10.3 | 2.1 | 8.0 | 16.0 | Q1 | | ULN2003V12PWR | TSSOP | PW | 16 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | ## **PACKAGE MATERIALS INFORMATION** www.ti.com 17-Jul-2020 #### *All dimensions are nominal | Device | Device Package Type Package Drawing | | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |---------------|-------------------------------------|----|------|------|-------------|------------|-------------| | ULN2003V12DR | SOIC | D | 16 | 2500 | 364.0 | 364.0 | 27.0 | | ULN2003V12PWR | TSSOP | PW | 16 | 2000 | 364.0 | 364.0 | 27.0 | ## D (R-PDS0-G16) ## PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side. - E. Reference JEDEC MS-012 variation AC. # D (R-PDSO-G16) ## PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. SMALL OUTLINE PACKAGE #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not - exceed 0.15 mm per side. - 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. - 5. Reference JEDEC registration MO-153. SMALL OUTLINE PACKAGE NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. SMALL OUTLINE PACKAGE NOTES: (continued) - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. #### 重要声明和免责声明 TI 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。 所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任: (1)针对您的应用选择合适的TI产品; (2)设计、验证并测试您的应用; (3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。 TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。 邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2020 德州仪器半导体技术(上海)有限公司