I3 TEXAS

INSTRUMENTS

RemoTl API

Documen t Number: SWRA268I

RemoTI API SWRA268I

Table Of Contents

T ABLE OF CONTENTS «.itttttteseses e s et e s et et et et e taa et e e e e e e eaeaeaeaeaeaeaaaaaaaaaaaaaaeaaaaaaaaaaaaaaaaaetateeeeeeetereeetereeeeeeeeeeeeeeeteeeeereeeeteeeteteeererereeerrerrrrrren
LIST OF FIGURES. ttttieiee e e ettt e e e e e ettt et e e e e et ateeeeeee e e s tabaseeeeeaaastsbeeeeeeesasstssaeeeeeeassseeseaeesaassssseseeeeesssbeseeeeeaeansssasseaeesansssnneseeeansnserns
LIST OF TABLES ...ciiiittttteeeeeeaitttteeeeeaeetttteseeeesaasatsseseeeaesaabesaeaeeaaastssesaeaeesasstsseeaeeaeaasssaeseaeesaassssbaseeeeesssbeseeeeeaesnssseeeeaeesansssssnseeesssnsnres
ACRONYMS AND DEFINITIONS...
REFERENCES . ..1eeeetiiitttttteee et aeitttteeeeeassaataseeeaeaaaatstssseaeesaassssseaeeaeassssseseaeessastsseseeeeesasssesseeeeaeasssseseaeessanstsseseaeeesassbesseesesassstnseeaeesannnes

1. L LI T 1L T T] S RSSRP
1.1 INTERFACE LAYERS. .. etttttttttttttttettteteteseaeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee et et et et et et et et e e e e e e e et e st et e e e s et et et et et et e tetetetetnbnbsenbnbnrnnn
1.2 SOFTWARE ARCHITECTURE...
1.3 SOFTWARE COMPONENTS. ... uutttteeeeeteitttteseeeesiateseeaseaaaastsssseeesaaastssessseasaatstssasasesssasstssseasssaassssssssasessasssssesesesssasssssssesesasnsssens

2. RTIEAPIOVERVIEWottt a b oo e e e s s bbb e e e e e e s s e bbb e e e e e e e s e bbb b e b e e e e s s bbb b e e e e e s s s bbb s as e e e s s s abbens
2.1 RTI API AND NODE TYPE

3.1 OVERVIEW...ceiiiiiiiiiiiiieieee e e
3.2 RTI_READITEMEX AND RTI_WRITEITEMEX.

3.3 CONFIGURATION PARAMETERS

34 STATE ATTRIBUTES ..oooeeeeeeeeeeeeeeeen

35 CONSTANTS i

3.6 RTI_READITEM AND RTI_WRITEITEM = DEPRECATEDcctuutttttttttaaautteeaauteaaasteaeaasseesaasseasatetasasseessasseasassesesasssesssseessasseasanns

3.7 ZID ATTRIBUTE READ & WRITE

4. RTI APPLICATION PROFILE INTERFACE
4.1 OVERVIEW...coiiiiiiiieeiieeeeeeeeeeeeeeeeeee
4.2 RTI_INITREQ....
4.3 RTL_INITCNF....
4.4 RTI_PAIRREQ..

4.5 RITT P AIRCINF ..ttt s
4.6 RTI_PAIRABORTREQ ... tttttt ettt e aittteaastteeatteeeateeeaasteeeaaabeee e beeaeaasbeeeaabeee ek b e e e e st e e e aasbeeeam b e e e e ambbee e ambeeeaabbeaeenbeaesnbbeaaantaaaaan
4.7 RTI_PAIRABORTCNF....

4.8 RTI_ALLOWPAIRREQ....

4.9 RTI_ALLOWPAIRCNF

4.10 RTI_ALLOWPAIRABORTREQ ...

4.11 RTI_UNPAIRREQ.......ccevennnnnn
412 RTT_UNPAIRCNF ..t ittite ettt ettt e ettt e ettt e e ettt e e e ate e e e aasee e e ambe e a4 bt e 22 e sk bt e e aab s e a2 s b e 22 2R b e e e e s ke e e 4m b st e e e mbbee e embeeeebbeaeenbeeeansbeaeanbenaean
4.13 RTT_UNPAIRIND ...ttt e e e s
4.14 RTI_SENDDATAREQ.....

4.15 RTI_SENDDATACNF.....

4.16 RTI_RECEIVEDATAIND..

4.17 RTI_STANDBYREQ

4.18 RTI_STANDBYCNF.....

4.19 RTI_RXENABLEREQ.....

4.20 RTI_RXENABLECNF

4.21 RTI_ENABLESLEEPREQ...
4.22 RTI_ENABLESLEEPCNF ...

4.23 RTI_DISABLESLEEPREQ ...ttt 00 e e e n e e e e n e n e n e e s
4.24 RTI_DISABLESLEEPCNFciiiutttteautttaaastttaaauteaeaateeaaasteasaasseaaasseaaaasteesaasbeeaaateeeaansseeeanbeee e s be e e e sbeeeamsbeaeanbeeeeanbsaeeanbeeesntanaean
5. RTITEST MODE INTERFACEcccttiiii ittt ettt e e e e ettt et e e e e e e ateeeeeeeassataaeeeaeeeaasatsseeeeeeesssbaseeeeesastaaeeeeeeesasssreseeeeaaannes 37
5.1 RTI_TESTMODEREQ
5.2 RTI_TESTRXCOUNTERGETIREQuttietttieeiitteeeatiteaattteeatteaaasteeaaasseeesaateee s beeaeaasbeeeambeeaeasb e e e e asbeeeebbeeeanbeeaeanbbaeesnbeeeaasseaeann 37
53 RTI_SWRESETREQ ...ttt 000000404 e 40004 e 4 e 4 e 44 e 4 e 4 e 4 e 4 e 4 a4 e e e s e e e e e a e e e e e neneneneaeneaeaanaaeaeaanaaaaaaeneaneens 37
6. SUMMARY OF RTI RETURN STATUS VALUES......oii ittt ettt e e e ettt e e e e e e e ettt e e e e e e e s e satabeeeeeessanaberaeaeeeesnsnnees 38
2 1 V2 . RS SOPPPERR
7.1 OVERVIEW
7.2 RCIN _CBACKEVENT ...ttt 0044 e 4 e 44 e 44 e e 4o 44 e 4 a4 a4 e e e e e e e a e e e a e e e aeaeaeaeneaeneaeaaaaaaeaeananaaaeaneaeaens
7.3 RCIN _CBACKRXCOUNT ...ttt eittteeaittteeatteeeasteeaaasteeeaasteeeaaateeeaateeaaassbeeeaateee e s be e e e st e e e aabbeeeam b s e e e embbeeeambeeeaabbeaeannbeeeanbaeaaanteaaaan
7.4 RCN_NLDEDATAALLOCcvvvvverennne
7.5 RCN_NLDEDATAREQcvvvvvvvennnnns
7.6 RCN_NLMEDISCOVERYREQ.............
7.7 RCN_NLMEDISCOVERYABORTREQ ..
7.8 RCN_NLMEDISCOVERYRSP.............
7.9 RCN_NLMEGETREQ ...tiiiutttieiittttaatete et ee ettt e e e teeeaaateeeaaabeee sttt aeassbeeeaabeea ek be e e e st e e e aasbeeeam b e e e e ambbeeeambeeeebbeaeenbeeesnbaeaeansaaaaan
7.10 RCN_NLMEPAIRREQ ...ttt 0 e e e e e e e e n e n e e e n e e e e e nen e e e e s
7.11 RCN_NLMEPAIRRSP

7.12 RCN_NLMERESETREQ ...ttt 1111 e e e a s e e e e e n e n e n e s

2 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

7.13 RCN_NLMERXENABLEREQ ...ttt titttteeittiteasttteeattteeaaatteeastteeaaatetaaastseeasbeaaasseeeeambeeeeasbeee ot b ea e e sbeeeambaeaeasbeeeeanbeeesnbeaeanseaaans 49
7.14 RCN_NLMESETREQ
7.15 RCN_NLMESTARTREQ ...ttt 0004001040404 e 44440404 e 1 e e e 1 e 1 e e e a e e e aenea e e e neneaeaenanaaaaananenaaananananens
7.16 RCN_NLMEUNPAIRREQ. ...ttt ttttteittiteeatteeeateaaettteeaaateeeaaateee e teeaeasaeeeeaabeea e s be e e e s beeeaabbeaeamee e e e embee e e ambeeeaabbeaeanbbeeesnbaeaaanseaaaan
7.17 RCN_NLMEUNPAIRRSP........cvvvevnnne
7.18 RCN_NLMEAUTODISCOVERYREQ
7.19 RCN_NLMEAUTODISCOVERYABORTREQ.
7.20 RCN_NLMEUPDATEKEYREQ......ccieiiininenennns
7.21 ASYNCHRONOUS RCN_CBACKEVENT() CALLS
8. USING RCN API FROM HOST APPLICATIONcciittttitte e e eeiieietee e e e ssieseeaeeassssstaaeaaeeaaassasaeeaeesasstasaeaeeaassnraeeeaeesasnsssaneeeeesans 53
9. GENERAL INFORMATION ...ciiiitttiee e et e ettt et e e e ettt et e e e e e se bt e e e eeeeeaaaaaaeeeaeesassbaseeeeesaasssbeseeeeeaassbesseaeeasassssnseaeesaasssseaeaeassnssrns 53
9.1 DOCUMENT HISTORY ...ttt 444 a4 e 4 e 4 e 44 e 44 e 44 e 4 e e e e e e e a e e e a e e e s e neaeaeneaeaeaeaaaaaaaananaeaaaneneaaaens 53
ADDRESS INFORMATION ...etttieiiiititittteeeeeeitseteae e e s sataeeaaeeaassssaaeeaeeaassteaeaaaesassssteseaaeasastaseeaeesesassseseeaeeaasnsssaeeeaeesansssnseeeeesnsnssrenenes 54

3 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

List of Figures

FIGURE 1: REMOTE CONFIGURATIONuutttttttteeesaitstteeteeesesamssbsseeeaesaaasssbeeeeeeesssassbsbeeeaeeesesnnbsneeeeeesaaannsrnneeeeens 8
FIGURE 2: NETWORK PROCESSOR CONFIGURATIONcttttetiiuutttreteeessaaausstneeeeeesssansssseeeesesssannssneeesesssssnnsnnneeeeens 8

List of Tables

TABLE 1: RCIN LIBRARY FILES ..tuiietuueettteeeeettteeeeaaeeesetaeeseaaasessasasesetaseeeaaaeseasaeesetaseeessnessataseretrseerannaeersnns 9
TABLE 2: APl USAGE BY NODE T Y PE .. .ittuiiiiitiieiete e et e e e et e e e et e e st e e e e et e e essaeetetaseeeetaeesssansesettaseeeesneeees 12
TABLE 3: CONFIGURATION PARAMETERS TABLEuuiiiitieeiittteeeeteee st e e e eet e e e eeaeeese b eeeeeanseeessnnsesetaaeeeensneeees 15
TABLE 4: STATE ATTRIBUTES TABLE......cuutiiittiieeiete e et eteeeeett e e e e et ees et e e ee et eeesaa e tetaaseretaeerssansesrtraseernsneeres 20
TABLE 5. CONSTANT LIST TABLE . .cettiiietee ettt ee ettt e e et e e e e e e e e et e e s et e e e e et e e e e s e e setaeeeeebaeesssnnsesessnaeeennnnneres 21
TABLE 6: RTI APl RETURN STATUS SUMMARY ..otuiiitniittiitueittieetiiestessteestetsssstasesassstssssersessioresnessinesss 39
L 2T = R {8 \\ Y o IS U] = =T 0] = i TR 41
TABLE 8: CUSTOM ATTRIBUTES ..tuuiituiitttiittittteettettnssttestetstestaesanssteestetasasttseta sttt 47
TABLE 9: ASYNCHRONOUS CALLBACKS .. ituuiittiittieitteetttestetsissttsesanssstasestessnesstae s tsstsestersnesstsestnsssrnessniens 53
TABLE 10: DOCUMENT HISTORY ..uiiituiiitiiiiiiiieit e et ee e st e s s st s e sa e s s b e e st e s aa s s ba s san s sbasasa e sanssbasesansssbnsastaes 53

4 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

Acronyms and Definitions

AP Application Processor

API Application Programming Interface

AREQ Asynchronous Request by AP of SPI interface

CERC Consumer Electronics Remote Control — deprecated for ZRC
CTL Controller

ID Identifier

LQI Link Quality Indication

MAC Medium Access Control

NP Network Processor

NPI Network Processor Interface

NSDU Network layer Service Data Unit

NV Non Volatile Memory

OSAL Operating System Abstraction Layer

PAN Personal Area Network

POLL Poll Request by target of SPI interface

RF4CE Radio Frequency for Consumer Electronics

RCN RF4CE Network Layer

RO Read-Only

RPC Remote Procedure Call

RTI RemoTI Application Framework

RW Read-Write

SPI Serial Peripheral Interface

SREQ Synchronous Request by AP of SPI interface

Target Consumer Electronics device

TGT Target

ZID ZigBee Input Device — the 2 Application Profile specified for RF4CE
ZRC ZigBee Remote Control — the 1* Application Profile specified for RF4ACE

5 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

References

[R1] IEEE Std. 802.15.4-2006, Wireless Medium Access Control (MAC) and Physical Layer (PHY)
Specifications for Low-Rate Wireless Personal Area Networks (WPANS)

[R2] ZigBee RF4CE Specification (ZigBee Alliance document 094945r00ZB)

[R3] ZigBee RF4CE CERC Profile Specification (ZigBee Alliance document 094946r00ZB)
[R4] ZigBee RF4CE Vendor ID List (ZigBee Alliance document 094949r00ZB)

[R5] ZigBee RF4CE Device Type List (ZigBee Alliance document 094950r00ZB)

[R6] ZigBee RFACE Profile ID List (ZigBee Alliance document 094951r00ZB)

[R7] CC253x Users Guide, SWRU191, Texas Instruments Inc, http://www.ti.com/lit/'swrul91.

[R8] RemoTI Host Processor Sample Application and Porting Guide, SWRA259, Texas Instruments
Inc, can be found in the installation folder of RemoTI.

[R9] RemoTI OS Abstraction Layer Application Programming Interface, SWRA417, Texas
Instruments Inc, can be found in the installation folder of RemoT].

[R10] ZzigBee RFACE ZID Profile Specification (ZigBee Alliance document 105557r18ZB),

http://Iwww.zigbee.org/Standards/ZigBeelnputDevice/download.aspx

6 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

http://www.ti.com/lit/swru198�
http://www.zigbee.org/Standards/ZigBeeInputDevice/download.aspx�

RemoTI API SWRA268I

1. Introduction

1.1 Interface Layers

RemoT]I stack provides two layers of interfaces. One is RemoTI (RTI) API and the other is network layer
(RCN) API. The RemoTl (RTI) API provides an interface to an application framework to simplify
application development. RemoTI application framework (RTI) is implemented by use of network layer
(RCN) API and removes some of the RCN layer complexity. RTI also includes API for sleep mode and
test mode on top of network layer features. RTI application framework, implements the profile layer of
RFA4CE. The profile layer controls features such as discovery and pairing. RTI is based on the ZRC
profile, but can support multiple profiles through extensions. RCN API is optionally provided so that
customer can build their application on top of RCN API directly, to leverage full flexibility of network layer
interface such as to perform non-ZRC profile discovery and pairing. On the other hand, RCN API does
not have non-network layer API such as sleep mode and test mode.

If RemoTI application framework (RTI) is in use and application accesses RTI API, application is not
advised to use RCN API directly as such use will conflict with RTI using RCN API. If application is built
without RTI, application must access RCN API directly to control RemoT]I network layer.

The ZID Profile extension to the RTI (also referred to as a co-layer to the RTI) is enabled by defining to
TRUE one of the corresponding compiler directives (FEATURE_ZID_ADA or FEATURE_ZID_CLD).
Enabling the ZID Profile extension empowers the RTI layer to implement the specified details of the ZID
state machine for configuration and mandatory unpairing on failure. This simplifies the work of the
Application layer to sending or receiving ZID data reports. If the ZID Profile extension is not enabled, then
all ZID traffic will be received via the normal data indication mechanism defined later in this document.
Defining FEATURE_ZID_ADA to TRUE will enable operation as ZID Adaptor, defining
FEATURE_ZID_CLD will enable operation as ZID Class Device.

1.2 Software architecture

A RemoTI application can interface with the RemoT]I stack in two configurations — either executing directly
on the SoC (CC253x) or executing on a host processor that communicates with the SoC over a serial (
UART, SPI, 12C or USB as CDC or HID) interface.

1.2.1 Remote

The first configuration is called the remote configuration and is typically used to develop remote
applications. The end product might consist of a Keypad, LED’s, other user interface options and even IR
generation. The software architecture for this configuration is illustrated in Figure 1.

7 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

OSAL (Operating System
Abstraction Layer)

User Application K=
(rti)

RemoTI Framework

Hardware
abstraction layer
(KeyPad, LED,

UART, 12C

Master)

(renlib)
RF4CE network layer

802.15.4 MAC

T
il

Hardware

(CC2533 or CC2530)

(=)

Figure 1: Remote Configuration

The remote configuration includes RemoTI| Framework which provides RTI interface. If user application is
implemented directly on top of RCN, the RemoTI| Framework has to be excluded as RemoTIl Framework
will conflict with user application in its control of RCN.

1.2.2 Network processor

The second configuration is called the network processor configuration and it can be used to develop
Target devices as well as more advanced remote control devices that have more sophisticated user
interface technologies. The architecture for this configuration is illustrated in the figure below.

OSAL (Operating System
Abstraction Layer)

Network processor —
application
<) MSP430 (host
RemoTI Framework processor)
Hardware
abstraction layer User host processor app
(reniib) (UART, SPI)
RFACE network layer RemoTI Interface code
UART, (uart or spi interface)
SPI
802.15.4 MAC
ﬁ f} PC
User PC app
Hardware %V - -
(RemoTI Target Board + CC2530EM) or (SmartRFOSEB + CC2530EM) UART RTl interface library
X X (VisualStudio C library)

Figure 2: Network processor configuration

User host processor application can use either RTI API or RCN API as far as RemoT! interface code is
ported on the host processor. No change of configuration on the network processor side is required to
access RCN API. Use of both RTI API and RCN API by the user host processor application is not
possible except for use of a certain complementary RTI API functions together with RCN API functions.

8 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

Such use will be described later. Porting RemoT]I interface code on the host processor is described in
Error! Reference source not found..

PC RTI interface library provided in RemoTI software package includes RCN surrogate module as well
and hence, user PC application can access RCN API without changing PC RTI interface library.

1.3 Software components

The RemoTI stack consists of the following software components.

1.3.1 OSAL

This is a simple operation system environment for the SoC. It includes features for task management,
message passing, queuing, memory management, timers etc. This component is included as source
code.

1.3.2 Hardware abstraction layer

This component provides an abstract interface to the hardware available on chip and on the board. It
includes firmware for all the serial communication interfaces, Keypad on the remote control and LED’s.
This code is included in source to allow the user to modify to suit the hardware available on their product.

1.3.3 RCNlibrary

This is the core RFACE stack and includes the RF4ACE network layer and security functions, and IEEE
802.15.4 High-Level MAC layer. This component in included as an object code library. There are several
versions of this library and builds for two different use cases — a controller-only and a combined version.
The controller-only version may be used for devices that only need the remote control functions to save
code space.

The library files are, then, available in the form of near code model and banked code model. Near code
model cannot exceed 64-KB of address space for the code space and hence is only for CC253xF64 or for
any other product that only utilizes 64-KB of space for executable code.

There is also a build that takes the controller-only, non-banked build a step further in order to try to
absolutely minimize memory and code usage by defining the RCN_FEATURE_EXTRA_PAIR_INFO build
flag to FALSE.

Features Near Code Model Banked Code Model Minimal Memory/Code
Model
Controller feature only | rcnctrl-CC253x.lib rcnctrl-CC253x-banked.lib rcnctrl-min-CC253x.lib
Combined features rcnsuper-CC253x.lib rcnsuper-CC253x-banked.lib N/A

Table 1: RCN library files

1.34 RTI

This component is the application framework for the RFACE device. This component is included
as source code.

1.3.5 RTlinterface library for PC

This is a Visual Studio C library that implements an RPC mechanism for the RemoT| APl and RCN API. It
communicates with the hardware (operating in a network processor configuration) over a serial link and
makes the RemoTI APl and RCN API available for PC applications. Using this library, the developer can
develop PC applications that utilize RemoTIl APl and RCN API.

1.3.6 RTIlinterface code for host processor

This is software that implements an RPC mechanism for RemoTl APl and RCN API over any of the
available serial interfaces. It makes the RemoTl API available for applications running on a host

9 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

processor. An open source software for linux host is available at https://github.com/TI-L PRF-Software/RemoTI-
Linux.

10 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

2. RTI API Overview

The RTI API provides a framework for application development using TI's RF4CE software and
development kits. RTI provides a simplified API that allows the developer to rapidly generate application
prototypes using the Texas Instruments RFACE software stack with the ZRC and/or ZID application
profiles (hereafter referred to as RemoTI stack).

The following chapters describe the application programming interface for the RemoTI stack. They are
sub-divided into the following categories

e Configuration Interface: allows the application to configure the RemoT]I stack
e Application Framework Interface: provides interface to the stack networking features.

e Test Interface: provides an interface to test points in the RemoTI stack

2.1 RTI APl and Node Type

The following table indicates which of the RTI APIs can be used by a Controller and/or Target application.
A box containing the symbol ¢ means the API can be used by that node type.

RTI API Controller Target
RTI_InitReq . .
RTI_InitCnf . .
RT1_PairReq . .
RT1_PairCnf . .
RT1_PairAbortReq . .
RT1_PairAbortCnf ° R
RT1_AllowPairReq °
RT1_AllowPairCnf °
RT1_AllowPairAbortR °
€q
RT1_UnpairReq . .
RT1_UnpairCnf . .
RTI1_Unpairind . .
RT1_SendDataReq . .
RT1_SendDataCnf . .
RT1_ReceiveDatalnd . .
RT1_StandbyReq .
RT1_StandbyCnf .
RT1_RxEnableReq . .
RT1_RxEnableCnf ° .

11 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

RTI API Controller Target
RT1_EnableSleepReq . .
RT1_EnableSleepCnf . .
RT1_DisableSleepReq . .
RT1 _DisableSleepCnf ° °
Table 2: API Usage by Node Type
3. RTI Configuration Interface

3.1 Overview

The Configuration Interface allows the application to configure the RTI stack. There are three items of
configuration that can be accessed by the application layer:

e Configuration Parameters: used to control the behavior of the RTI
e State Attributes: the current network state information maintained by the RTI stack
e Constants: read-only information defined by the RF4ACE specification

3.2 RTI_ReadltemEx and RTI_WriteltemEx

These functions are used to read and write the Configuration Interface tables. For the Configuration
Parameters table, the writes should take place prior to calling RTI_InitReq() in order to be used by the
RTI stack (please see section 4.2 for additional detail). The State Attributes table has a limited number of
items that can be written (some of which are only permitted in test mode), and can be read to monitor
various attributes of the RTI stack. The Constants table is of course read-only.

3.2.1 Prototype

rStatus_t RTI_ReadltemEx(uint8 profileld, uint8 itemld, uint8 len, uint8 *pValue)
rStatus_t RTI_WriteltemEx(uint8 profileld, uint8 itemld, uint8 len, uint8 *pValue)

3.2.2 Input Parameters

profileld: The ID of the Profile corresponding to the ‘itemld’ parameter (i.e. the profile that specifies
the attribute identifier or the proprietary extension to a profile that does not conflict with
specified 1d’s) The supported Profile Id’s are listed in rti_constants.h.

itemld: The index used to identify the Configuration Interface item to be read or written. Please
see Table 3, Table 4, and Table 5 for available item identifiers and their descriptions.
len: The number of bytes to read or write.

*pValue: A byte pointer to storage containing data to be written.

3.2.3 Output Parameters

*pValue: A byte pointer to storage used to place read data.

3.24 Return

rStatus_t: The resulting status from a call to RTI_Readltem or RTI_Writeltem. Possible values

12 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

include (please see Table 6 for status descriptions):
RTI_SUCCESS
RTI_ERROR_NOT_PERMITTED
RTI_ERROR_NO_PAIRING_INDEX
RTI_ERROR_INVALID_PARAMETER
RTI_ERROR_UNKNOWN_PARAMETER
RTI_ERROR_UNSUPPORTED_ATTRIBUTE
RTI_ERROR_OSAL_NV_OPER_FAILED
RTI_ERROR_OSAL_NV_ITEM_UNINIT
RTI_ERROR_OSAL_NV_BAD_ITEM_LEN

3.25 Notes
None.

3.3 Configuration Parameters

3.3.1 Overview

The Configuration Parameters table contains parameters that are configured by the application layer prior
to starting the RTI stack. The RTI stack reads these parameter values during the initialization API call.
Any modification of these values while the RTI stack is operational will not take effect until the next RTI
stack initialization.

These values are stored by the RTI stack in non-volatile (NV) memory and persist across a device reset.
The application can restore the configuration parameters to their default settings by setting the
StartupOption parameter appropriately.

3.3.2 Parameter List
The following table contains the parameters of the Configuration Parameters table:

Parameter Item ID Length Default Description

StartupOption OXAO 1 1 rti.h definition: RT1_CP_ITEM_STARTUP_CTRL

Valid for both target and controller.

This attribute controls the behavior of the RTI stack upon
start-up. It takes the following values:

0 - Restore NIB state attributes from the saved NIB, and
start the RTI stack

1 - Clear the NIB state attributes (i.e. reset to default
values), and start the RTI stack

2 - Clear the Configuration Parameters attributes (i.e.
reset to default values), clear the NIB state attributes
(i.e. reset to default values), and start the RTI stack

Node Capabilities

Node Capabilities OxAl 1 OxF rti.h definition: RTI_CP_ITEM_NODE_CAPABILITIES

Valid for both target and controller.

This attribute indicates the node capabilities of the node.
Each bit indicates the following:

Bit 0: 0 — controller type, 1 — target type
Bit 1: 0 — battery powered, 1 — AC mains powered

13 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I
Parameter Item ID Length Default Description
Bit 2: 0 — Security incapable, 1 — Security capable
Bit 3: 0 — Channel normalization incapable, 1 — Channel
normalization capable
Bit 4 — 7: reserved.
SupportedTargetTypes 0xA2 6 2 rti.h definition:
RT1_CP_ITEM_NODE_SUPPORTED_TGT_TYPES
Valid for controller only.
This attribute lists the target types supported by the
controller node. Each byte in this attribute will indicate a
target type that the node supports. The possible device
types are defined in Table 1 of Error! Reference source
not found.. A byte may be set to reserved value (0x00)
if all supported valid device types are already indicated
by other bytes of the attribute.
Application Capabilities
ApplicationCapabilities 0xA3 1 0x12 rti.h definition: RTI1_CP_ITEM_APPL_CAPABILITIES
Valid for both target and controller.
This attribute indicates the device capabilities of
application specific information. Each bit represents the
following:
Bit 0: 0 — UserString is not specified, 1 — UserString is
specified
Bit 1-2: Number of supported device types
Bit 3: Reserved
Bit 4-6: Number of supported profiles
Bit 7: Reserved
DeviceTypelList 0xA4 1.3 1 rti.h definition: RTI_CP_ITEM_APPL_DEV_TYPE_LIST
Valid for both target and controller.
This attribute lists the device types supported by this
node. The possible device types are defined in Table 1
of Error! Reference source not found..
ProfileldList O0xA5 1.7 1 rti.h definition:
RT1_CP_ITEM_APPL_PROFILE_ID_LIST
Valid for both target and controller.
This attribute lists the profile Ids supported by this node.
The available profiles are defined in Error! Reference
source not found..
Standby Information
DefaultStandbyActivePeriod 0xA6 2 14 rti.h definition:

RTI_CP_ITEM_STDBY_DEFAULT_ACTIVE_PERIOD

Valid for target only.

This attribute indicates the default receiver on time for a
power saving device, in units of ms. This attribute will be

14 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTl API

SWRA268I

Parameter

Item ID

Length

Default

Description

used as default value of the state attribute
StandbyActivePeriod when clearing state attributes.

DefaultStandbyDutyCycle

OxA7

330

rti.h definition:
RTI_CP_ITEM_STDBY_DEFAULT_DUTY_CYCLE

Valid for target only.

This attribute indicates the duty cycle for a power saving
device, in units of ms, and is used to set the state
attribute StandbyDutyCycle when power saving mode is
entered by RT1_StandbyReq.

Vendor Information

Vendorld

OxA8

rti.h definition: RT1_CP_ITEM_VENDOR_ID

Valid for both target and controller.

This attribute indicates the manufacturer specific vendor
identifier for this node. The available vendor identifiers
are defined in Table 1 of Error! Reference source not
found..

VendorName

O0xA9

1.7
charact
ers

Empty

rti.h definition: RT1_CP_ITEM_VENDOR_NAME

Valid for both target and controller.

This attribute contains the manufacturer specific vendor
identification string for this node, if one if provided.

Discovery Information

DiscoveryDuration

OxAA

100

rti.h definition: RT1_CP_ITEM_DISCOVERY_DURATION

Valid for both target and controller.

This attribute indicates the maximum time to wait for
discovery responses to be sent from potential target
nodes, in units of milliseconds.

DefaultDiscoveryLgi-
Threshold

OxAB

rti.h definition:
RT1_CP_ITEM_DEFAULT_DISCOVERY_LQI_THRESHOL
D

Valid for both target and controller.

This attribute indicates the default LQI threshold below
which discovery requests will be rejected. This attribute
will be used as default value of the state attribute
DiscoveryLqgiThreshold when clearing state attributes.

Table 3: Configuration Parameters Table

15 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

3.4 State Attributes

3.4.1 Overview

The State Attributes table contains attributes that reflect the current operational state of the RFACE
device. These attributes are maintained by the RTI stack (i.e. by the network layer). The application may
read any attribute, and may also write certain attributes as well.

These attributes are maintained in RAM by the RTI stack but a backup copy is also saved in NV memory.
The backup copy can either be restored or cleared upon start-up depending on the Configuration
Parameters’ StartupOption parameter.

3.4.2 Attribute list

The following table contains the attributes of the State Attributes table:

Attribute Item Length | Default Description
1D
StandbyActivePeriod 0x60 2 Range rti.h definition:

RTI_SA_ITEM_STANDBY_ACTIVE_PERIOD

Valid for target only.

This attribute is RW, and is used to obtain the
active period of a device, in units of milliseconds.
Note that this state attribute is reset to the
DefaultStandbyActivePeriod configuration
parameter value when RTI initializes with a
StartupOption that instructs clearing of state
attributes.

The range of values include:

MinStandbyActivePeriod..OxFFFF

CurrentChannel 0x61 1 15 rti.h definition:
RTI_SA ITEM_CURRENT_CHANNEL

Valid for target only.

This attribute is RW, and contains the current
logical channel that was chosen when the RC
PAN was formed (Target device only). The range
of values include:

15, 20, 25

DiscoveryLQIThreshold 0x62 1 0 rti.h definition:
RTI_SA_ITEM_DISCOVERY_LQI_THRESHOLD

Valid for target only.

This attribute is RW. The LQI threshold below
which discovery requests will be rejected. The
range is from 0 to Oxff.

Note that this state attribute is reset to the
DefaultDiscoveryLQIThreshold configuration
parameter value when RTI initializes with a
StartupOption that instructs clearing of state
attributes.

16 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTl API

SWRA268I

Attribute

Item

Length

Default

Description

DutyCycle

0x64

rti.h definition: RTI_SA_ITEM_DUTY_CYCLE

Valid for target only.

This attribute is RW. The duty cycle of a device in
milliseconds. A value of 0 indicates the device is
not using power saving feature of RF4CE (duty
cycling).

Note that this state attribute is reset to the
DefaultDutyCycle configuration parameter value
when RTI initializes with a StartupOption that
instructs clearing of state attributes.

FrameCounter

0x65

Range

rti.h definition: RT1_SA_ITEM_FRAME_COUNTER

Valid for both target and controller.

This attribute is RO (RW in test mode), and
contains the current frame count added to the
transmitted NPDU. The range of values include:

0x0000_0000..0xFFFF_FFFF

InPowerSave

0x67

rti.h definition: RTI_SA_ITEM_IN_POWER_SAVE

Valid for target only.

This attribute is RO, and is used to obtain whether
the device is operating in power save mode. The
range of values include:

0 — Device is not operating in power save mode
1 — Device is operating in power save mode

MaxFirstAttemptCSMABackoffs

Ox6a

rti.h definition:
RTI_SA_ITEM_MAX_FIRST_ATTEMPT_CSMA_BA
CKOFFS

Valid for both target and controller.

This attribute is RW. The maximum number of
backoffs the MAC CSMA-CA algorithm will
attempt before declaring a channel access failure
for the first transmission attempt. Valid range is
between 0 and 5

MaxFirstAttemptFrameRetries

0x6b

rti.h definition:
RT1_SA ITEM_MAX_ FIRST_ATTEMPT_FRAME_R
ETRIES

Valid for both target and controller.

This attribute is RW. The maximum number of
MAC retries allowed after a transmission failure
for the first transmission attempt. Valid range is
between 0 and 7.

ResponseWaitTime

0Ox6d

50

rti.h definition:
RT1_SA ITEM_RESPONSE_WAIT_TIME

Valid for both target and controller.

17 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

Attribute Iltem Length Default Description

This attribute is RW, and is used to obtain or
specify the maximum time a device will wait for a
response following a request, in units of ms.

ScanDuration Ox6e 1 3 rti.h definition: RTI_SA_1TEM_SCAN_DURATION

Valid for target only.

This attribute is RW, and is used to obtain or
specify the duration of a scanning operation, as
specified by Error! Reference source not
found.. The range of values include:

0..14

UserString Ox6f 15 Empty rti.h definition: RTI_SA_ITEM_USER_STRING

Valid for both target and controller.

This attribute is RW. The user defined character
string used to identify this node.

IEEEAddress 0x84 8 N/A rti.h definition: RCN_N1B_IEEE_ADDRESS

Valid for both target and controller.

This attribute is RW.

Note that this attribute is overwritten at every
power cycle with a commissioned |IEEE address if
such commissioned IEEE address is available.

PanID 0x85 2 OXFFFF | rti.h definition: RT1_SA_ITEM_PAN_ID

Valid for target only.

This attribute is RW, and is used to obtain or
specify the PAN identifier of the node. The range
of values include:

0..0xFFFE — The PAN identifier of the node

OxFFFF — Used when broadcasting, when the
target is a Controller, or when
transmission uses an |IEEE address

ShortAddress 0x86 2 OXFFFF | rti.h definition: RT1_SA_ITEM_SHORT_ADDRESS

Valid for target only.

This attribute is RW, and is used to obtain or
specify the short address of the node. It can have
the following values:

0..0xFFFE — The PAN identifier of the node

OxFFFF — Used when broadcasting, when the
target is a Controller, or when
transmission uses an IEEE address

AgilityEnable 0x87 1 1 rti.h definition: RTI_SA_ITEM_AGILITY_ENABLE

18 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTl API

SWRA268I

Attribute

Item

Length

Default

Description

Valid for target only.

This attribute is RW, and is used to enable or
disable frequency agility. It can have the following
values:

0 — Disable frequency agility

1 — Enable frequency agility

This attribute is not retained in non-volatile

memory and hence the attribute value is reset to
default value after every power cycle.

TransmitPower

0x88

127

rti.h definition: RTI_SA_ITEM_TRANSMIT_POWER

Valid for both target and controller.

This attribute is RW. Transmit power level in dBm
of network layer packets except for key seed
frames shall be determined by this attribute. The
negative value must be represented as two’s
complement.

The transmit power level is rounded up to the
closest power level included in the recommended
transmit power level register settings of the radio
processor. If the attribute value is higher than the
highest transmit power level among the
recommended register settings, the transmit
power level is set to such highest transmit power
level among the recommended register settings.
For example, the default value 127 is rounded
down to 4dBm for CC2530.

This attribute is not retained in non-volatile
memory and hence the attribute value is reset to
default value after every power cycle.

Pairing Table (PT) Related Attributes

NumberOfActivePTEntries

0xBO

Range

rti.h definition:
RTI_SA_ITEM_PT_NUMBER_OF_ACTIVE_ENTRI
ES

Valid for both target and controller.

This attribute is RO, and is used to obtain the
number of active (i.e. valid) pairing table entries.
The range of values include:

0.. MaxPairingTableEntries

CurrentPTEntrylndex

0xB1

Range

rti.h definition:
RT1_SA_ITEM_PT_CURRENT_ENTRY_INDEX

Valid for both target and controller.

This attribute is RW, and is used to obtain or set
the pairing table reference index that will be or is
being used by the RTI for subsequent pairing
table attribute accesses. The range of values
include:

0.. (MaxPairingTableEntries-1) — Valid index
RTI_INVALID_PAIRING_REF - Invalid Index

CurrentPTEntry

0xB2

Size of

Invalid

rti.h definition:

19 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

Attribute Iltem Length Default Description

entry” Entry RT1_SA_ITEM_PT_CURRENT_ENTRY
Valid for both target and controller.

This attribute is RW, and is used to obtain or set a
pairing table entry indexed by
CurrentPTEntrylndex attribute above.

The attribute content corresponds to the following
C structure type:

typedef struct

{
uint8 pairingRef;
uintl6 srcNwkAddress;
uint8 logicalChannel;
SAddrExt_t ieeeAddress;
uintl6 panld;
uintl6 nwkAddress;
uint8 recCapabilities;
uint8 securityKeyvalid;
uint8

securityKey[[RCN__SEC_KEY_LENGTH]

uintl6 vendorldentifier;

uint8
devTypeList[RCN_MAX_NUM_DEV_TYPE
S1:

uint32 recFrameCounter;

uint8
profileDiscs[RCN_PROFILE_DISCS_S
1ZE];

} rcenNwkPairingEntry_t;

Note that the C structure type could vary from a
software version to another. The type definition
will be included in interface header file.

Table 4: State Attributes Table

3.5 Constants

351 Overview

The Constants table contains constants that are defined and used by the RTI stack. The constants are
read-only, and can not be modified by the application.

3.5.2 Constant list
The following table contains the constants of the Constants table:

Constant Item ID Length Value Description
SoftwareVersion 0xCO 1 X.y.Z rti.h definition:
X — major RTI_CONST_ITEM_SW_VERSION
revision
y — minor This constant specifies the software version.
revision This value is specified as follows:
zZ-— Ob’xxxyyyzz' where:

! Size of CurrentPTEntry can be determined from C structure representing a pairing table entry.

20 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

Constant Item ID Length Value Description
incremental xxx: Software Major Version
revision yyy: Software Minor Version
zz: Incremental Version
MaxPairingTableEntries 0xC1 1 10 rti.h definition:
RT1_CONST_ITEM_MAX_PAIRING_TABLE_E
NTRIES
This constant specifies the maximum number
of entries supported in the pairing table.
Protocolldentifier 0xC2 1 OxCE rti.h definition:
RT1_CONST_ITEM_NWK_PROTOCOL_ IDENTI
FIER
This constant specifies the identifier being
used by this device.
ProtocolVersion 0xC3 1 0x01 rti.h definition:
RT1_CONST_ITEM_NWK_PROTOCOL_VERSIO
N
This constant specifies the protocol
implemented on this device.
OAD Image Id 0xDO 2 0x0000- Application specific utilization of this constant.
OXFFFF
RNP Image Id 0xD1 1 0x00 RNP without any ZID functionality.
0x01 RNP with ZID CLD-only functionality.
0x02 RNP with ZID ADA-only functionality.

Table 5: Constant List Table

3.6 RTI_Readltem and RTI_Writeltem - Deprecated

These functions have been deprecated in favor of the newer, extended version of the API:
RTI_ReadltemEx and RTI_WriteltemEx. Legacy code can continue to use this deprecated APl by
including the newer header file “rti_deprecated.h”. Legacy code can be ported to the new API by setting
the newly added ‘profileld’ parameter to RTI_PROFILE_RT]I1 (defined in rti_constants.h).

3.7 ZID Attribute Read & Write

The ZID Profile Attributes enumerated in zid_profile.h can be read and written using the API described in
RTI_ReadltemEx and RTI_WriteltemEx by setting the ‘profileld’ parameter to ZID: RTI_PROFILE_ZID
(defined in rti.h). There may be proprietary extensions to the specified attributes in order to further
facilitate use, control and interaction with the ZID Profile extension of the RemoTI stack. Such proprietary
extensions would be found in zid_common.h and would of course not conflict with valid ranges specified
by the ZID Profile.

3.8 ZID Non-Standard Descriptor Component Read/Write Interface

Since ZID Non-Standard Descriptor Components can be rather large, they are stored in NV memory
using the same fragmenting scheme that is used to transfer them over the air. In order to hide this
complexity from the application, a set of application helper functions has been created to allow
applications to read/write the complete component without having to worry about how they are
fragmented in NV. These application helper functions can be thought of as a “thin” abstraction layer that

21 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

lies on top of the RTI API; it is thus running where the application resides. This interface is captured in
two files: zid_ada_app_helper.c and zid_cld_app_helper.c. The first file can be included by a ZID Adaptor
side application, while the second file can be included by a ZID class device side application. Details
about these functions can be found in the following sections.

3.8.1 zidAdaAppHIp_ReadNonStdDescComp

This function can be used by an adaptor side application to read non-standard descriptor components
that have been pushed to it by a class device.

3.8.1.1 Prototype
rStatus_t
zidAdaAppHIp_ReadNonStdDescComp(uint8 pairldx,
uint8 descNum,
zid_non_std _desc _comp_t *pBuf)
3.8.1.2 Input Parameters

pairldx: Pairing table index of class device whose non-standard descriptor component is to be
read.

descNum: Non-standard descriptor number. Range is 0 to aplcMaxNonStdDescCompsPerHID —
1.

pBuf: Pointer to buffer to place non-standard descriptor component as defined in Table 9 of

ZID Profile, r18.

3.8.1.3 Output Parameters
None.

3.8.1.4 Return
If successful, this function will return RT1_SUCCESS. If not successful, meaning the item was not able to
be read from NV, this function will return RT1_ERROR_INVALID_PARAMETER.

3.8.2 zidCldAppHIp_WriteNonStdDescComp

This function can be used by a class device side application to store a non-standard descriptor
component into NV so that it can be pushed to a paired ZID adaptor.

3.8.2.1 Prototype
rStatus_t
zidCldAppHIp_WriteNonStdDescComp(uint8 descNum,
zid_non_std_desc_comp_t *pBuf)
3.8.2.2 Input Parameters
descNum: Non-standard descriptor number. Range is 0 to aplcMaxNonStdDescCompsPerHID —
1.
pBuf: Pointer to buffer to place non-standard descriptor component as defined in Table 9 of
ZID Profile, Error! Reference source not found..

3.8.2.3 Output Parameters
None.

3.8.2.4 Return
If successful, this function will return RT1_SUCCESS. If not successful, meaning the item was not able to
be written to NV, this function will return RT1_ERROR_INVALID_ PARAMETER.

3.8.3 zidCldAppHIp_WriteNullReport

This function can be used by a class device side application to store a NULL report corresponding to a
non-standard descriptor component into NV so that it can be pushed to a paired ZID adaptor.

3.8.3.1 Prototype
rStatus_t
zidCldAppHIp_WriteNullReport(uint8 descNum,

22 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

zid_null_report_t *pBuf)
3.8.3.2 Input Parameters
descNum: Non-standard descriptor number that NULL report is for. Range is 0 to
aplcMaxNonStdDescCompsPerHID — 1.
pBuf: Pointer to NULL report as defined in Table 14 of ZID Profile, Error! Reference
source not found..

3.8.3.3 Output Parameters
None.

3.8.3.4 Return
If successful, this function will return RTI_SUCCESS. If not successful, meaning the item was not able to
be written to NV, this function will return RTI_ERROR_INVALID PARAMETER.

23 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

4, RTI Application Profile Interface

4.1 Overview

The RTI API allows a developer to access the application profile specified by the RFACE standard. Some
of the API's are Controller specific, some are Target specific, and some can be used by either the
Controller or the Target. Please see a summary of which type of application can use which API in section
2.1

4.2 RTI_InitReq

This function is used by the Controller or Target application to initialise the RemoTI| stack and begin
network operation. This function will load the Configuration Parameters table from NV memory, so as to
capture any updates made by the application, and base start-up operation on the StartupUp parameter
(please see Table 3 for details). The application is therefore expected to update the Configuration
Parameters table (using the RTI_Writeltem API) prior to making this call since once the call to
RTI_InitReq is made by the application, subsequent changes to the Configuration Parameters table, while
they will take place, will not be used by the RTI stack until a reset occurs.

4.2.1 Prototype
void RTI_InitReq(void)

4.2.2 Input Parameters
None.

4.2.3 Output Parameters

None.
42.4 Return
None.
425 Notes

A call to RTI_InitCnf will occur as a consequence of this function call.

4.3 RTI_InitCnf

This function is used by the RTI stack to return the results of an application call to RTI_InitReq. This
function is to be completed by the application, and as such, constitutes a callback.

4.3.1 Prototype
void RTI_InitCnf(rStatus_t status)

4.3.2 Input Parameters

status: The resulting status from a call to RTI_InitReq. Possible values include (please see
Table 6 for status descriptions):
e RTI_SUCCESS
e RTI_ERROR_RCN_INVALID_INDEX
e RTI_ERROR_RCN_UNSUPPORTED_ATTRIBUTE
e RTI_ERROR_UNKNOWN_PARAMETER

4.3.3 Output Parameters
None.

24 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

4.3.4 Return
None.
4.3.5 Notes

This call can be made to the application before the application’s call to RTI_InitReq has returned.

4.4 RTI_PairReq

This function is used by either a Controller application or a Target application to initiate a pairing process
with a Target. The pairing process actually consists of a discovery operation followed by a pairing
operation.

4.41 Prototype
void RTI_PairReq(void)

4.4.2 Input Parameters
None.

4.4.3 Output Parameters

None.

444 Return
None.

445 Notes

The parameters to be used during pairing must be configured prior to calling this API. These parameters
include ProfilelDs, Application Capabilities and Node Capabilities, see Configuration Parameters Table. A
call to RTI_PairCnf will occur as a consequence of this function call.

4.5 RTI_PairCnf

This function is used by the RTI stack to return the results of an application call to RTI_PairReq. This
function is to be completed by the application, and as such, constitutes a callback.

45.1 Prototype
void RTI_PairCnf(rStatus_t status,

uint8 dstindex,
uints devType)

4.5.2 Input Parameters

status: The resulting status from a call to RTI_PairReq. Possible values include (please see

Table 6 for status descriptions):

e RTI_SUCCESS

RTI_ERROR_NOT_PERMITTED
RTI_ERROR_OUT_OF_MEMORY
RTI_ERROR_MAC_TRANSACTION_EXPIRED
RTI_ERROR_MAC_TRANSACTION_OVERFLOW
RTI_ERROR_MAC_NO_RESOURCES
RTI_ERROR_MAC_UNSUPPORTED
RTI_ERROR_MAC_BAD_STATE
RTI_ERROR_MAC_TX_ABORTED
RTI_ERROR_MAC_NO_TIME
RTI_ERROR_MAC_CHANNEL_ACCESS_FAILURE

25 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

o RTI_ERROR_MAC_ACK_PENDING
e RTI_ERROR_MAC NO_ACK
dstindex: The pairing table index of the paired device, or RTI_INVALID_PAIRING_REF if an
error resulted.
devType: The pairing table index device type, or RTI_INVALID_DEVICE_TYPE if an error
resulted.

45.3 Output Parameters

None.
454 Return
None.
455 Notes

This call can be made to the application before the application’s call to RTI_PairReq has returned.

4.6 RTI_PairAbortReq

This function is used by an application to abort an on-going pairing process with a Target.

4.6.1 Prototype
void RTI_PairAbortReq(void)

4.6.2 Input Parameters
None.

4.6.3 Output Parameters

None.
46.4 Return
None.
4.6.5 Notes

A call to RT1_PairAbortCnf will occur as a consequence of this function call.

4.7 RTI_PairAbortCnf

This function is used by the RTI stack to return the results of an application call to RT1_PairAbortReq.
This function is to be completed by the application, and as such, constitutes a callback.

4.7.1 Prototype
void RTI_PairAbortCnf(rStatus_t status)

4.7.2 Input Parameters

status: The resulting status from a call to RTI_PairAbortReq. Possible values include (please
see Table 6 for status descriptions):
e RTI_SUCCESS
¢ RTI_ERROR_PAIR_COMPLETE

4.7.3 Output Parameters
None.

26 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

4.7.4 Return
None.
475 Notes

This call can be made to the application before the application’s call to RT1_PairAbortReq has
returned.

Pairing process may complete when pairing cannot be aborted in the middle.

4.8 RTI_AllowPairReq

This function is used by the Target application to ready the node for a pairing request, and thereby allow
this node to respond.

4.8.1 Prototype
void RTI_AllowPairReq(void)

4.8.2 Input Parameters
None.

4.8.3 Output Parameters

None.
4.8.4 Return
None.
4.8.5 Notes

A call to RTI_AllowPairCnf will occur as a consequence of this function call.

4.9 RTI_AllowPairCnf

This function is used by the RTI stack to return the results of an application call to RTI1_Al lowPairReq.
This function is to be completed by the application, and as such, constitutes a callback.

49.1 Prototype
void RTI_AllowPairCnf(rStatus_t status,

uint8 dstlindex,
uint8 devType)
4.9.2 Input Parameters
status: The resulting status from a call to RTI_AllowPairReq. Possible values include (please

see Table 6 for status descriptions):
e RTI_SUCCESS
e RTI_ERROR_OSAL_NO_TIMER_AVAIL
e RTI_ERROR_ALLOW_PAIRING_TIMEOUT
dstindex: The pairing table index of the paired device, or RTI_INVALID_PAIRING_REF if an
error resulted.
devType: The pairing table index device type, or RT1_INVALID_DEVICE_TYPE if an error
resulted.

4.9.3 Output Parameters
None.

27 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

494 Return
None.
495 Notes

This call can be made to the application before the application’s call to RTI_AllowPairReq has
returned.

4.10 RTI_AllowPairAbortReq

This function is used by a Target application to cancel previous RT1_Al lowPairReq() call.

4.10.1 Prototype
void RTI_AllowPairAbortReq(void)

4.10.2 Input Parameters
None.

4.10.3 Output Parameters
None.

4.10.4 Return
None.

4.10.5 Notes

This function call does not trigger any callback function. RTI may still complete on-going allow-pairing
request triggered by RTI1_AllowPairReq() if it cannot be aborted and hence may generate
RTI_AllowPairCnf() callback function in case the request was not cancelled.

411 RTI_UnpairReq

This function is used by either the Controller application or the Target application to trigger removing
pairing entry.

4.11.1 Prototype
void RTI_UnpairReq(uint8 dstlndex)

4.11.2 Input Parameters
dstindex: Specifies the index to the pairing table entry which is desired to be removed.

4.11.3 Output Parameters
None.

4.11.4 Return
None.

4.11.5 Notes
A call to RT1_Unpai rCnT will occur as a consequence of this function call.

28 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTl API SWRA268I

4.12 RTI_UnpairCnf

This function is used by the RTI stack to return the results of an application call to RT1_UnpairReq. This
function is to be completed by the application, and as such, constitutes a callback.

4.12.1 Prototype

void RTI_UnpairCnf(rStatus_t status,
uint8 dstindex)

4.12.2 Input Parameters

dstindex: The pairing table index of the removed pairing entry.

4.12.3 Output Parameters
None.

4.12.4 Return
None.

4125 Notes
This call can be made to the application before the application’s call to RTI_UnpairReq has returned.

Regardless of the resulting status value, the pairing entry is removed from the local pairing table when
this callback function is called.

4.13 RTI_Unpairind

This function is used by the RTI stack to indicate that a paired device has removed a pairing table entry of
this device. This function is to be completed by the application, and as such, constitutes a callback.

4.13.1 Prototype
void RTI_Unpairind(uint8 dstindex)

4.13.2 Input Parameters

29 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

4.13.3 Output Parameters
None.

4.13.4 Return
None.

4.13.5 Notes
By the time this call is made, the pairing entry corresponding to the pairing table index is removed.

4.14 RTI_SendDataReq

This function is used by the Controller or Target application to send a data packet to another RF4CE
device.

4.14.1 Prototype

void RTI_SendDataReq(uint8 dstlndex,
uint8 profileld,
uintl6é vendorld,
uint8 txOptions,
uint8 len,
uint8 *pData)

4.14.2 Input Parameters

dstindex: Specifies the index to the pairing table entry which contains the information required
to transmit the data. Note that this parameter is ignored if the txOptions parameter
specifies a broadcast transmission. Before sending ZID-specific commands/reports, if
more than just the ZID Profile is being supported, then the Application has the burden
to check whether the currently selected pairing table entry supports ZID (this check is
made on the CurrentPTEntry.profileDiscs[], bit 2 or masked as 0x04).
profileld: Specifies the identifier of the profile which indicates the format of the transmitted data.
Possible values include:
e RTI_PROFILE_ZRC
e RTI_PROFILE_ZID
vendorld: If txOptions parameter specifies this data is vendor specific, then this field specifies
the identifier of the vendor transmitting the data. Possible values include (please see
Error! Reference source not found. for more detail):
RTI_VENDOR_PANASONIC
RTI_VENDOR_SONY
RTI_VENDOR_SAMSUNG
RTI_VENDOR_PHILIPS
RTI_VENDOR_FREESCALE
RTI_VENDOR_OKI
RTI_VENDOR_TEXAS_INSTRUMENTS
If on the other side the data is not vendor specific but rather standard, this parameter
is ignored
txOptions: Specifies the transmission options to be used. One or more of the following
transmission options can be specified (please see Error! Reference source not
found. for additional details):
e RTI_TX_OPTION_BROADCAST
RTI_TX_OPTION_IEEE_ADDRESS
RTI_TX_OPTION_ACKNOWLEDGED
RTI_TX_OPTION_SECURITY
RTI_TX_OPTION_SINGLE_CHANNEL

30 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

e RTI_TX_OPTION_CHANNEL_DESIGNATOR
e RTI_TX_OPTION_VENDOR_SPECIFIC
Note that ZID has pre-defined “transmission pipes” which can be easily set using the
constants pre-defined by ZID_TX_OPTION_... macros in zid_common.h (e.g.
ZID_TX_OPTION_INTERRUPT_PIPE).
len: Specifies the number of bytes of data to be sent.
*pData: Specifies a pointer to the data to be sent.

4.14.3 Output Parameters
None.

4.14.4 Return
None.

4.14.5 Notes

A call to RTI_SendDataCnf will occur as a consequence of this function call. There is no queue in the
stack so RTI_SendDataCnf may be called with an unsuccessful status before this API returns. Thus it is
important to manage the state before calling this API.

4.15 RTI_SendDataCnf

This function is used by the RTI stack to return the results of an application call to RTI_SendDataReq.
This function is to be completed by the application, and as such, constitutes a callback.

4.15.1 Prototype
void RTI_SendDataCnf(rStatus_t status)

4.15.2 Input Parameters

status: The resulting status from a call to RTI_SendDataReq. Possible values include (please
see Table 6 for status descriptions):
e RTI_SUCCESS
RTI_ERROR_NO_PAIRING_INDEX
RTI_ERROR_OUT_OF_MEMORY
RTI_ERROR_NOT_PERMITTED
RTI_ERROR_MAC_BEACON_LOSS
RTI_ERROR_MAC_PAN_ID_CONFLICT
RTI_ERROR_MAC_SCAN_IN_PROGRESS

4.15.3 Output Parameters
None.

4.15.4 Return
None.

4.15.5 Notes

This call can be made to the application before the application’s call to RT1 _SendDataReq has returned.
Hence it is important to control the application state before calling RT1_SendDataReq.

4,16 RTI_ReceiveDatalnd

This function is used by the RTI stack to indicate to the Controller or Target application that data has
been received from another RFACE device. This function is to be completed by the application, and as
such, constitutes a callback. Note that the ZID Profile extension to the RemoT] stack intercepts incoming

31 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

ZID data frames that are specific to the implementation of the ZID state machine and configuration (thus
the importance of having all ZID attributes properly configured before initiating pairing).

4.16.1 Prototype

void RTI_ReceiveDatalnd(uint8 srclndex,
uint8 profileld,
uintl6é vendorld,
uint8 rxLQl,
uint8 rxFlags,
uint8 len,
uint8 *pData)

4.16.2 Input Parameters

srcindex: Specifies the index to the pairing table entry which contains the information about the
source node the data was received from.
profileld: Specifies the identifier of the profile which indicates the format of the transmitted data.
Possible values include:
e RTI_PROFILE_ZRC
e RTI_PROFILE_ZID
vendorld: If the RxFlags parameter specifies that the data is vendor specific, this field indicates
the identifier of the vendor transmitting the data. Possible values include (please see
Error! Reference source not found. for more detail):
RTI_VENDOR_PANASONIC
RTI_VENDOR_SONY
RTI_VENDOR_SAMSUNG
RTI_VENDOR_PHILIPS
RTI_VENDOR_FREESCALE
RTI_VENDOR_OKI
e RTI_VENDOR_TEXAS_INSTRUMENTS
If the RxFlags parameter specifies that the data is not vendor specific this parameter
shall be ignored.
rxLQI: Specifies the Link Quality Indication.
rxFlags: Specifies the reception indication flags. One or more of the following reception
indication flags can be specified (please see Error! Reference source not found. for
additional details):
e RTI_RX_FLAGS_BROADCAST
e RTI_RX_FLAGS_SECURITY
e RTI_RX_FLAGS_VENDOR_SPECIFIC
len: Specifies the number of bytes received.
*pData: Specifies a pointer to the data received.

4.16.3 Output Parameters
None.

4.16.4 Return
None.

4.16.5 Notes
None.

4.17 RTI_StandbyReq

This function is used by the Target application to place this node into standby mode. The properties of the
standby consist of the active period and the duty cycle. These values are set by the application by setting

32 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

the corresponding parameters in the Configuration Parameters table. Note that duty cycle has to be
greater than active period. Otherwise, software behaviour is unpredictable. The only exception is that duty
cycle value zero (0) is used to indicate that no duty cycling is requested for the standby mode operation,
i.e., standby mode when duty cycle value is zero is effectively disabling receiver forever.

4.17.1 Prototype
void RTI_StandbyReq (uint8 mode)

4.17.2 Input Parameters

mode: Specifies whether standby mode is enabled or disabled. The following values are
permitted:
e RTI_STANDBY_OFF
e RTI_STANDBY_ON

4.17.3 Output Parameters
None.

4.17.4 Return
None.

4.17.5 Notes
A call to RT1_StandbyCnf will occur as a consequence of this function call.

This node will automatically come out of standby mode when it receives a data packet, and return to
standby mode when nothing else is to be done. Standby mode will also persist across warm resets. The
application is responsible for explicitly enabling and disabling standby using the RT1_StandbyReq API.

4.18 RTI_StandbyCnf

This function is used by the RTI stack to return the results of an application call to RT1_StandbyReq.
This function is to be completed by the application, and as such, constitutes a callback.

4.18.1 Prototype
void RTI_StandbyCnf(rStatus_t status)

4.18.2 Input Parameters

status: The resulting status from a call to RTI_StandbyReq. Possible values include (please
see Table 6 for status descriptions):
e RTI_SUCCESS
RTI_ERROR_INVALID_PARAMETER
RTI_ERROR_UNSUPPORTED_ATTRIBUTE
RTI_ERROR_INVALID_INDEX
RTI_ERROR_UNKNOWN_STATUS_RETURNED

4.18.3 Output Parameters
None.

4.18.4 Return
None.

4.18.5 Notes
This call can be made to the application before the application’s call to RT1_StandbyReq has returned.

33 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

419 RTI_RxEnableReq

This function is used by the Controller or the Target application to enable the radio receiver, enable the
radio receiver for a specified amount of time, or disable the radio receiver. The target node operates in
standby mode once its received is initially turned off by use of this function call, regardless of prior
RTI_StandbyReq function call. Vice versa, RTI_StandbyReq function call overrules previous
RTI1_RxEnableReq function call.

4.19.1 Prototype
void RTI_RxEnableReq (uintl6 duration)

4.19.2 Input Parameters

duration: A value that specifies if the receiver is off, on for a specified duration and then off, or
on till another function call to change the state of receiver. Possible values include a
value from 1 to OXFFFE (in 34milliseconds) or:
e RTI_RX_ENABLE_OFF
e RTI_RX_ENABLE_ON

4.19.3 Output Parameters
None.

4.19.4 Return
None.

4.19.5 Notes
A call to RT1_RxEnableCnT will occur as a consequence of this function call.

4,20 RTI_RxEnableCnf

This function is used by the RTI stack to return the results of an application call to RTI_RxEnableReq.
This function is to be completed by the application, and as such, constitutes a callback.

4.20.1 Prototype
void RTI_RxEnableCnf(rStatus_t status)

4.20.2 Input Parameters

status: The resulting status from a call to RTI_RxEnableReq. Possible values include (please
see Table 6 for status descriptions):
e RTI_SUCCESS
e RTI_ERROR_INVALID_PARAMETER

4.20.3 Output Parameters
None.

4.20.4 Return
None.

4.20.5 Notes
This call can be made to the application before the application’s call to RT1_RxEnableReq has returned.

4,21 RTI_EnableSleepReq

This function is used by the Controller or the Target application to enable power savings mode for this
node.

34 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

4.21.1 Prototype
void RTI_EnableSleepReq (void)

4.21.2 Input Parameters
None.

4.21.3 Output Parameters
None.

4.21.4 Return
None.

4.21.5 Notes

To gain power saving for Target one must first call RTI_StandbyReq, otherwise the radio and MCU will
remain ON constantly. A call to RTI1_EnableSleepCnf will occur as a consequence of this function call.

4.22 RTI_EnableSleepCnf

This function is used by the RTI stack to return the results of an application call to
RTI1_EnableSleepReq. This function is to be completed by the application, and as such, constitutes a
callback.

4.22.1 Prototype
void RTI_EnableSleepCnf(rStatus_t status)

4.22.2 Input Parameters

status: The resulting status from a call to RTI_EnableSleepReqg. Possible values include
(please see Table 6 for status descriptions):
e RTI_SUCCESS

4.22.3 Output Parameters
None.

4.22.4 Return
None.

4.22.5 Notes

This call can be made to the application before the application’s call to RTI_EnableSleepReq has
returned.

4.23 RTI_DisableSleepReq

This function is used by the Controller or the Target application to disable power savings mode for this
node.

4.23.1 Prototype
void RTI_DisableSleepReq (void)

4.23.2 Input Parameters
None.

4.23.3 Output Parameters
None.

35 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

4.23.4 Return
None.

4.23.5 Notes
A callto RT1_DisableSleepCnf will occur as a consequence of this function call.

4.24 RTI_DisableSleepCnf

This function is used by the RTI stack to return the results of an application call to
RTI_DisableSleepReq. This function is to be completed by the application, and as such, constitutes a
callback.

4.24.1 Prototype
void RTI_DisableSleepCnf(rStatus_t status)

4.24.2 Input Parameters

status: The resulting status from a call to RTI_DisableSleepReq. Possible values include
(please see Table 6 for status descriptions):
e RTI_SUCCESS

4.24.3 Output Parameters
None.

4.24.4 Return
None.

4.24.5 Notes

This call can be made to the application before the application’s call to RTI_DisableSleepReq has
returned.

36 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

5. RTI Test Mode interface

This interface allows application to access test modes in the RemoTI stack. The functions described in
this chapter are compiled only when FEATURE_TEST_MODE compile flag is defined.

5.1 RTI_TestModeReq

This command is used to place the radio in different test modes.
void RTI_TestModeReq(uint8 mode, int8 txPower, uint8 channel)

Test mode Description
0x00 The device will transmit unmodulated carrier with the specified frequency
and transmit power
0x01 The device will transmit pseudo-random data with the specified
frequency and transmit power
0x02 The device will have the radio placed in receive mode on the specified
frequency.

Note that executing this command will leave the radio in a different configuration than is needed for
regular operation. It is expected that the device will have to be reset before it can be used again for
regular RF operations. . Also, the RemoTI software should be idling when this function is called. For
instance, no non-test-mode RTI calls must be made after calling this function and the device should not
enter power savings mode (e.g., OSAL power manager must be in PWNRMGR_ALWAYS_ON state prior to
this call. See Error! Reference source not found.). To ensure RemoT! software is idling, it is
recommended to reset the device before calling this function.

Input parameter txPower indicates transmit power level in dBm unit. The actual transmit power level is
set to the closest higher or equal transmit power level included in recommended register settings of the
radio processor. If the txPower is greater than the highest transmit power level in recommended register
settings, the actual transmit power level is set to the highest transmit power level in recommended
register settings.

Input parameter channel designates MAC channel number to set the device on.

5.2 RTI_TestRxCounterGetReq

This function retrieves 16 bit receiver counter value which is updated when RTI is set to test mode 0x02
and resets the counter value if resetFlag is set to TRUE.

uintlé RTI_TestRxCounterGetReq(uint8 resetFlag)

5.3 RTI_SwResetReq

This function resets processor.
void RTI_SwResetReq(void)

37 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

6. Summary of RTI Return Status Values

The status parameter that is returned from the RemoTI stack may take one of the following values.

Status Value Description

RT1_SUCCESS 0x00 [Operation completed normally.

RTI ERROR INVALID INDEX O0xF9 An invalid pairing table index was passed as a

- — — parameter.

RT1_ERROR_INVALID_PARAMETER OXE8 | Aninvalid parameter was passed to an API call.

RT1_ERROR_UNSUPPORTED_ATTRIBUTE OxF4 ﬁr\]/ailtl(i-}dm identifier to access a table attribute was

RTI_ERROR_NOT_PERMITTED 0xB4 | An attempt was made to pair when the RTI stack
was not ready to perform a discovery/pair operation.

RTI_ERROR_NO_ORG_CAPACITY 0xBO | A pairing operation required additional pairing table
space, but the pairing table of the pairing originator
is full.

RTI_ERROR_NO_REC_CAPACITY 0xB1 | A pairing operation required additional pairing table
space, but the pairing table of the pairing recipient is
full.

RTI_ERROR_NO_RESPONSE 0xB3 | A request to pair timed out.

RTI_ERROR_FRAME_COUNTER_EXPIRED 0xB6 Frame counter has reached its maximum value.

RTI1_ERROR_DISCOVERY_ERROR 0xB7 Failed pairing because more than one target device
have been discovered.

RTI_ERROR_DISCOVERY_TIMEOUT 0xB8 Failed pairing as no target device has been
discovered.

RTI_ERROR_SECURITY_TIMEOUT 0xB9 Failed pairing as security key exchange timed out.

RTI_ERROR_SECURITY_FAILURE OXBA | Failed pairing as security key verification failed.

RTI_ERROR_NO_SECURITY_KEY 0xBD Requested encryption while no security key is set
up.

RTI_ERROR_OUT_OF_MEMORY OXBE | The operation requested required a memory
resource that is not available.

RTI_ERROR_ALLOW_PAIRING_TIMEOUT 0x23 A timeout occurred before a pairing operation took
place.

RTI_ERROR_UNKNOWN_STATUS_RETURNED 0x20 A status from one of the RTI's subsystems returned
a status that currently is not mapped to a RTI status.

RTI_ERROR_OSAL_NO_TIMER_AVAIL 0x08 | The operation requested required an OS timer
resource that is not available.

RTI_ERROR_OSAL_NV_OPER_FAILED O0xO0A | The operation requested required access to OS NV
memory, which failed.

RTI_ERROR_OSAL_NV_ITEM_UNINIT 0x09 | The operation requested required access to an OS
NV memory item that has not been previously
initialized.

RTI_ERROR_OSAL_NV_BAD_ITEM_LEN 0x0C | The operation requested required access to an OS
NV memory item using an invalid length.

RTI_ERROR_MAC_TRANSACT ION_EXP IRED O0xFO The operation requested required a MAC

38 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

Status Value Description
transaction which timed out.

RTI_ERROR_MAC_TRANSACTION_OVERFLOW O0xF1 | The operation requested required a MAC
transaction that failed because a data queue was
already full.

RTI_ERROR_MAC_NO_RESOURCES 0x1A [The operation requested required a MAC resource
that is unavailable.

RTI_ERROR_MAC_BAD_STATE 0x19 The operation requested required a MAC operation
that failed because it was received in a state that
was not allowed.

RTI_ERROR_MAC_CHANNEL_ACCESS_FAILURE OXE1 [The operation requested required a MAC operation
that failed because of activity on the channel.

RTI_ERROR_MAC_NO_ACK OXE9 | The operation requested required a MAC operation
that failed because no acknowledgement was
received.

RTI_ERROR_MAC_BEACON_LOST OXEO | The operation requested required a MAC operation
that failed because the beacon was lost following a
synchronization request.

RTI_ERROR_MAC_PAN_ID_CONFLICT OXEE | The operation requested required a MAC operation
that failed because a PAN identifier conflict was
detected.

RTI_ERROR_MAC_SCAN_IN_PROGRESS OXFC | The operation requested required a MAC scan
operation that failed because a scan was already in
progress.

RTI_ERROR_FAILED_TO_DISCOVER 0x21 The RTI stack failed to discovery, as part of API pair
request.

RTI_ERROR_FAILED_TO_PAIR 0x22 The RTI stack discovered, but failed to pair a target.

RTI_ERROR_FAILED_TO_CONFIGURE_ZRC 0x50 | The configuration phase following the pairing
process failed at the ZRC profile.

RTI_ERROR_FAILED_TO_CONFIGURE_ZID 0x51 The configuration phase following the pairing
process failed at the ZID profile.

RTI_ERROR_NO_PAIRING_INDEX 0xB2 [The pairing table reference passed was not valid.

RTI1_ERROR_ALLOW_PAIRING_TIMEOUT 0x23 The target RTI stack was set to allow pairing, but
none occurred before it timed out.

RTI_ERROR_PAIR_COMPLETE 0x24 Pairing process already completed and hence
cannot be aborted.

RT1_ERROR_SYNCHRONOUS_NPI_TIMEOUT OXFF [The synchronous request via the inter-processor
interface timed out.

Table 6: RTI APl Return Status Summary

39 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

1. RCN API

7.1 Overview
RCN API implements network layer primitives defined in Error! Reference source not found..

RCN API comprises of C functions callable from application and callback functions callable from RCN.
The C functions callable from application correspond to request and response primitives defined in the
RFACE network layer specification. The callback function corresponds to confirmation and indication
primitives. The application/upper layer has to implement RCN callback functions.

Parameters of the primitives are implemented either as C structure fields or as function arguments and
return values. They should be interpreted in the same way as in RFACE network layer specification with
the exception of parameters relating to time durations. The parameters representing time duration use
unit of milliseconds for every relevant RCN API, instead of symbol unit as defined in the RF4CE network
layer specification. Such time duration parameter shall be of uintlé (16 bit) data type and whenever
symbol value Oxffffff indicate a special purpose in RFACE network layer specification, the value of Oxffff
will be used for the same purpose (for example, as in NLME-RX-ENABLE . request).

Request and responses are accepted by RCN only in a proper state. For example, RCN will send
confirmation with failure (not permitted) when NLME-DISCOVERY .request is issued without NLME-
RESET .request (SetDefaultNIB=TRUE) and NLME-START . request after cold boot up.

Function prototypes and structure definitions are included in “rcn_nwk.h” file and NIB attribute indices
are defined in “rcen_attribs.h” along with pairing table structure.

Support of certain RCN API functions are removed from controller-specific library (See 1.3.3) to optimize
code size. See Table 7 for API functions supported in each library. Note that such selection is tied only to
which library to use and that a controller node can still support discovery recipient feature
(RCN_NImeAutoDiscoveryReq and RCN_NImeDiscoveryRsp) if combined library is used.

RCN API Controller Combined
only library library
RCN_CbackEvent . °
RCN_CbackRxCount . .
RCN_NldeDataAlloc . °
RCN_NldeDataReq . .
RCN_NImeAutoDiscoveryReq .
RCN_NImeAutoDiscoveryAbortReq .
RCN_NImeDiscoveryReq . .
RCN_NImeDiscoveryAbortReq . °
RCN_NImeDiscoveryRsp °
RCN_NImeGetReq . .
RCN_NImePairReq . .
RCN_NImePairRsp °
RCN_NImeResetReq . .

40 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

RCN API Controller Combined
only library library
RCN_NImeRxEnableReq . .
RCN_NImeSetReq . .
RCN_NImeStartReq * .
RCN_NImeUnpairReq . *
RCN_NImeUnpairRsp . *
RCN_NImeUpdateKeyReq . *

Table 7: RCN API support

7.2 RCN_CbackEvent

This is a callback function which application should implement to receive RCN events corresponding to
confirmation and indication primitives.

7.2.1 Prototype
void RCN_CbackEvent(rcnCbackEvent t *pEvent)

7.2.2 Input Parameters
pEvent: Pointer to an event structure.

7.2.3 Output Parameters

None.
7.2.4 Return
None.
7.2.5 Notes

Event structure corresponds to union of network layer indication and confirmation primitives. One
RCN_CbackEvent() function call will be made per one such primitive with an exception which will be
described in a separate section. “eventld” field of the event structure indicates which primitive the event
is associated with. The value of callback event id is defined in “rcn_nwk.h” file as
“RCN_NLDE_DATA_IND", “RCN_NLDE_DATA_CNF”, “RCN_NLME_COMM_STATUS_IND", etc. using similar
names as standard primitive names.

“ IND” postfix corresponds to indication primitive and “ CNF” postfix corresponds to confirmation
primitive.

Event structure includes “prim” field which is a union of all primitive structures such as “datalnd” field
for “RCN_NLDE_DATA_IND” event, “dataCnf” for “RCN_NLDE_DATA CNF” event, “commStatusind”
field for “RCN_NLME_COMM_STATUS_IND” event and so on. The individual union field is a C structure

which looks very similar to a standard primitive, with a few exceptions which will be described in separate
sections.

An example RCN_CbackEvent() function implementation will look like the following:
void RCN_CbackEvent(rcnCbackEvent_t *pEvent)

switch (pEvent->eventld)

{
case RCN_NLDE_DATA_IND:

41 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

/* handle NLDE-DATA.indication primitive */
/* L/
break;
case RCN_NLDE_DATA_CNF:
/* NLDE-DATA.confirm primitive */
if (pEvent->prim.dataCnf.status == RCN_SUCCESS)

/* Status parameter of NLDE-DATA.confirm is SUCCESS */
/* handle successful data confirm */
/* . */

}

else

/* handle other cases */

/* . */
T
break;
/* other case statements */
/* .. */
¥
H

7.3 RCN_CbackRxCount
This is another callback function from RCN.

RCN shall call this function to indicate that a CRC passed MAC frame was received. The application
should increment its receive counter for receive test mode implementation upon this function call.

7.3.1 Prototype
void RCN_CbackRxCount(void)

7.3.2 Input Parameters
None.

7.3.3 Output Parameters
None.

7.3.4 Return
None.

7.4 RCN_NIdeDataAlloc

This function is a special function to allocate a memory block where NSDU should be copied into before
making RCN_NIdeDataReq() function call.

This function is introduced to optimize memory copy operation for NLDE-DATA.request service provided
by RCN.

7.4.1 Prototype
uint8 RCN_NIdeDataAlloc(rcnNldeDataReq_t *pPrim)

7.4.2 Input Parameters
pPrim: Pointer to a C structure corresponding to NLDE-DATA.request primitive.

7.4.3 Output Parameters

pPrim: Nsdu field of the C structure pointed by this pointer will be set to address of newly
allocated memory block if this function successfully allocates memory.

42 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

7.4.4 Return

Either RCN_SUCCESS for successful memory allocation or RCN_ERROR_OUT_OF MEMORY in case
memory block for NSDU cannot be allocated.

7.4.5 Notes

Application should fill in all rcnNldeDataReq_t structure fields except for “internal” and “nsdu”
fields, before calling this function. Actual network layer payload should be copied into memory block
pointed by nsdu after this function returns.

7.5 RCN_NIdeDataReq

This function corresponds to sending NLDE-DATA . request primitive to network layer.

7.5.1 Prototype
void RCN_NIdeDataReq(rcnNldeDataReq_t *pPrim)

7.5.2 Input Parameters
pPrim: Pointer to a C structure corresponding to NLDE-DATA.request primitive.

7.5.3 Output Parameters

None.
7.5.4 Return
None.
755 Notes

A call to RCN_CbackEvent will occur as a consequence of this function call, corresponding to NLDE-
DATA.confirm primitive. Its argument pEvent->eventld shall be set to RCN_NLDE_DATA CNF and
pEvent->prim.dataCnf will be the valid union field in such callback.

This function does not queue data transmission request when the request cannot be handled
immediately. Hence, application has to queue data transmissions by itself, if necessary. When this
function cannot handle data transmission request immediately, RCN_CbackEvent() will be called
immediately with pEvent->prim.dataCnf._status == RCN_ERROR_NOT_PERMITTED.

Application must not set pPrim->nsdu by itself, but rather call RCN_NldeDataAlloc() function to
allocate memory for NSDU.

The following is an example code making RCN_NldeDataReq() call.

{
static uint8 myExampleCommand[] = { OxFF, 0x12, 0x34 };

/* Generate NLDE-DATA.request for myExampleCommand */
rcnNldeDataReq_t myPrim;

myPrim.pairingRef = destinationPairingRef;
myPrim._profileld = 0x01; // ZRC profile
myPrim.vendorld = 0x07; // Tl vendor specific command
myPrim.txOptions = RCN_TX_OPTION_ACKNOWLEDGED |
RCN_TX_OPTION_VENDOR_SPECIFIC;
myPrim._nsduLength = sizeof(myExampleCommand) ;

/* allocate memory for NSDU */
iT (RCN_NldeDataAlloc(&myPrim) == RCN_SUCCESS)

/* Copy NSDU into allocated memory buffer */
myMemcpy(myPrim.nsdu, myExampleCommand, sizeof(myExampleCommand));

43 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

/* lIssue the primitive */
RCN_NIdeDataReq(&myPrim);
}

else

/* handle memory allocation failure */
}
}
7.6 RCN_NImeDiscoveryReq

This function corresponds to sending NLME-DISCOVERY . request to network layer.

7.6.1 Prototype
void RCN_NImeDiscoveryReq(rcnNImeDiscoveryReq_t *pPrim)

7.6.2 Input Parameters

pPrim: Pointer to a C structure corresponding to NLME-DISCOVERY .request primitive.
7.6.3 Output Parameters
None.
7.6.4 Return
None.
7.6.5 Notes

One or more calls to RCN_CbackEvent() will occur as a consequence of this function call,
corresponding to NLME-DISCOVERY .confirm.

NLME-DISCOVERY.confirm is implemented in multiple event callbacks in RCN. RCN will call
RCN_CbackEvent() with its argument pEvent->eventld set to RCN_NLME_DISCOVERED_ EVENT and
its pEvent->prim.discoveredEvent union field valid one per each node descriptors of NLME-
DISCOVERY.confirm primitive. Upon making all such callbacks for every node descriptors, RCN
will call RCN_CbackEvent() with its argument pEvent->eventld set to RCN_NLME_DISCOVERY_CNF and
its pEvent->prim.discoveryCnf union field valid to complete the NLME-DISCOVERY.confirm
primitive.

In other words, node descriptor list is split into individual pEvent->prim.discoveredEvent structures
and pEvent->prim.discoveryCnf structure. The discoveredEvent structure contains a single node
descriptor structure and discoveryCnf structure contain all the remaining parameters of NLME-
DISCOVERY .confirm.

The reason the single primitive is split into multiple event callbacks is to optimize memory usage.
Application can make decision on whether or not to store node descriptor as it gets callback for
RCN_NLME_DISCOVERED_EVENT instead of network layer having to allocate memory to store all node
descriptors and pass them all up to application which application may choose to use only one of them.
ZRC profile application, for example, will not use more than one node descriptor.

The following is an example code snippet for RCN_CbackEvent() function handling NLME-
DISCOVERY .confirm for ZRC profile.

void RCN_CbackEvent(rcnCbackEvent_t *pEvent)
{

static rcnNImeDiscoveredEvent_t myNodeDescCache;
static enum

NO_VALID_DESC, /* no valid descriptor */

44 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

VALID_DESC /* at least one valid descriptor */
} discoveryState = NO_VALID_DESC;

switch (pEvent->eventld)
{
case RCN_NLME_DISCOVERED_EVENT:
/* handle Node Descriptor of NLME-DISCOVERY.confirm */
/* ZRC profile will use only one node descriptor and hence
* only one node descriptor storage is provided and it will be
* overwritten. */
ifT (pEvent->prim.discoveredEvent.status == RCN_SUCCESS)
{
/* Status field of the node descriptor is SUCCESS */
myMemcpy (myNodeDescCache, pEvent->prim.discoveredEvent,
sizeof(myNodeDescCache));
discoveryState = VALID_DESC;
}
break;
case RCN_NLME_DISCOVERY_CNF:
/* NLME-DISCOVERY.confirm primitive conclusion */
it (pEvent->prim.discoveryCnf.status == RCN_SUCCESS &&
discoveryState == VALID_DESC)

/* Successful discovery.
Use myNodeDescCache to build NLME-PAIR.request primitive */
/* . */
}

else

/* handle discovery failure */

/* . */
¥
discoveryState = NO_VALID DESC; // Reset the state
break;
/* other case statements */
/* .. */
s
¥

7.7 RCN_NImeDiscoveryAbortReq

This function aborts discovery procedure triggered by a prior RCN_NImeDiscoveryReq() call.

7.7.1 Prototype
void RCN_NImeDiscoveryAbortReq(void)

7.7.2 Input Parameters
None.

7.7.3 Output Parameters

None.
7.7.4 Return
None.
7.7.5 Notes

This function does not correspond to any functionality in Error! Reference source not found.. When this
function is called, the discovery procedure is aborted immediately or when the pending MAC transmission
of discovery request command frame is completed. However, due to race condition, the application which

45 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

issued this function call may still get RCN_CbackEvent() callback for RCN_NLME_DISCOVERY_CNF
event.

A call to RCN_CbackEvent() will occur as a consequence of this function call with eventld field set to
RCN_NLME_DISCOVERY_ABORT_CNF. The application may use this callback event to know when to
initiate other actions such as transmitting a data.

7.8 RCN_NImeDiscoveryRsp
This function corresponds to sending NLME-DISCOVERY.response to network layer.

7.8.1 Prototype
void RCN_NImeDiscoveryRsp(rcnNImeDiscoveryRsp_t *pPrim)

7.8.2 Input Parameters
pPrim: Pointer to a C structure corresponding to NLME-DISCOVERY .response primitive.

7.8.3 Output Parameters

None.
7.8.4 Return
None.
7.8.5 Notes

A call to RCN_CbackEvent() will occur as a consequence of this function call corresponding to NLME-
COMM-STATUS . indication primitive. Its argument pEvent->eventld shall be set to
RCN_NLME_COMM_STATUS_IND and pEvent->prim.commStatusind will be the valid union field in
such callback.

7.9 RCN_NImeGetReq

This function corresponds to sending NLME-GET.request to network layer and receiving NLME-
GET .confirm from network layer.

7.9.1 Prototype
Uint8 RCN_NImeGetReq(uint8 attribute, uint8 attributelndex, uint8 *pvValue)

7.9.2 Input Parameters

attribute: NIBAttribute parameter of NLME-GET.request primitive
attributelndex: NIBAttributelndex parameter of NLME-GET.request primitive
pValue: Pointer to a buffer to where to store the resulting NIBAttributeValue of NLME-

GET.confirm primitive

7.9.3 Output Parameters

pValue: The buffer which this argument points to, will be overwritten with NIBAttributeValue
of NLME-GET.confirm primitive resulting from this function call.

7.9.4 Return

Status parameter value of NLME-GET.confirm primitive resulting from NLME-GET . request service
triggered by this function call.

7.9.5 Notes
This function call will be blocked until RCN completes NLME-GET . request service.

46 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

This function supports not only all the standard NIB attributes but also certain custom attributes described
in Table 8.

Custom Attribute Index Literal Note

This corresponds to
nwkcNodeCapabilities
constant. RCN allows
RCN_NIB_NWK_NODE_CAPABILITIES application to program this
constant value. But it is not
expected that application
will change the value once
it is written.

Node Capabilities

IEEE address RCN_NIB_1EEE_ADDRESS This Shoulld be used as a
read-only item.

PAN Id as a target node.
PAN Id RCN_NTB_PAN_ID This should be used as a
read-only item.

Network address as a
RCN_NIB_SHORT_ADDRESS target node. This should be

used as a read-only item.

Network address

This attribute turns on and
off the frequency agility
feature. When this attribute
RCN_NIB_AGILITY_ENABLE is set to 1, frequency agility
is turned on. When it is set
to 0, frequency agility is
turned off.

Frequency agility flag

Transmit power level in
dBm of network layer
packets except for key
seed frames shall be
Transmit Power Level | RCN_NIB_TRANSMIT_POWER determined by this attribute.
The negative value must be
represented as two’s
complement.

See Table 4 for details.

Table 8: Custom Attributes

7.10 RCN_NImePairReq

This function corresponds to sending NLME-PAIR . request to network layer.

7.10.1 Prototype
void RCN_NImePairReq(rcnNImePairReq_t *pPrim)

7.10.2 Input Parameters
pPrim: Pointer to a C structure corresponding to NLME-PAIR.request primitive.

7.10.3 Output Parameters
None.

47 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

7.10.4 Return
None.

7.10.5 Notes

A call to RCN_CbackEvent() will occur as a consequence of this function call, corresponding to NLME-
PAIR.confirm primitive. Its argument pEvent->eventld shall be set to RCN_NLME_PAIR_CNF and
pEvent->prim.pairCnf will be the valid union field in such callback.

7.11 RCN_NImePairRsp

This function corresponds to sending NLME-PAIR . response to network layer.

7.11.1 Prototype
void RCN_NImePairRsp(rcnNImePairRsp_t *pPrim)

7.11.2 Input Parameters
pPrim: Pointer to a C structure corresponding to NLME-PAIR.response primitive.

7.11.3 Output Parameters
None.

7.11.4 Return
None.

7.11.5 Notes

A call to RCN_CbackEvent() will occur as a consequence of this function call, corresponding to NLME-
COMM-STATUS.indication primitive. Its argument pEvent->eventld shall be set to
RCN_NLME_COMM_STATUS_IND and pEvent->prim.commStatusind will be the valid union field in
such callback.

7.12 RCN_NImeResetReq
This function corresponds to sending NLME-RESET . request to network layer.

7.12.1 Prototype
void RCN_NImeResetReq(uint8 setDefaultNib)

7.12.2 Input Parameters
setDefaultNib: SetDefaultNIB parameter of NLME-RESET.request primitive.

7.12.3 Output Parameters
None.

7.12.4 Return
None.

7.12.5 Notes

No callback will be made as a consequence to this function call. NLME-RESET . request is assumed to
always succeed in RCN implementation. When the function is called by a host application to reset RCN
on a network processor over serial communication, communication failure could actually occur. Such
case should be handled in NPI implementation on the host processor.

48 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

7.13 RCN_NImeRxEnableReq

This function corresponds to sending NLME-RX-ENABLE . request to network layer.

7.13.1 Prototype
uint8 RCN_NImeRxEnableReq(uintl6é rxOnDurationinMs)

7.13.2 Input Parameters

rxOnDurationInMs: RxOnDuration parameter of NLME-RX-ENABLE.request primitive. However, the
unit is in milliseconds instead of symbols and it supports only up to Oxfffe
milliseconds. Oxffff is used to turn on receiver forever till next
RCN_NImeRxEnableReq() call.

7.13.3 Output Parameters
None.

7.13.4 Return

RCN_SUCCESS, MAC_PAST_TIME, MAC_ON_TIME_TOO_LONG or MAC_INVALID_PARAMTER. Return
value correspond to status field value of NLME-RX-Enable.confirm primitive. See Error! Reference
source not found. for the primitive status field value details.

7.13.5 Notes

No callback will be made as a consequence to this function call. The return value shall correspond to
Status parameter of NLME-RX-ENABLE.confirm primitive resulting from this request. Host application
could get return value of RCN_ERROR_COMMUNICATION in case the serial communication with the
network processor fails.

7.14 RCN_NImeSetReq

This function corresponds to sending NLME-SET.request to network layer.

7.14.1 Prototype
uint8 RCN_NImeSetReq(uint8 attribute, uint8 attributelndex, uint8 *pValue)

7.14.2 Input Parameters

attribute: NIBAttribute parameter of NLME-SET.request primitive.
attributelndex: NIBAttributelndex parameter of NLME-SET.request primitive.
pValue: Pointer to a buffer that contains NIBAttributeValue of NLME-SET.request primitive.

7.14.3 Output Parameters
None.

7.14.4 Return

RCN_SUCCESS, RCN_ERROR_UNSUPPORTED_ATTRIBUTE or RCN_ERROR_INVALID_INDEX. Return
values correspond to Status field value of NLME-SET .confirm primitive described in Error! Reference
source not found..

49 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

7.14.5 Notes

No callback will be made as a consequence to this function call. The return value shall correspond to
Status parameter of NLME-SET .confi rm primitive resulting from this request. Host application could get
return value of RCN_ERROR_COMMUNICATION in case the serial communication with the network
processor fails.

This function can also be used for non-standard state attributes such as RCN_NIB_AGILITY_ENABLE
and RCN_NIB_TRANSMIT_POWER. See Table 8 for details.

7.15 RCN_NImeStartReq
This function corresponds to sending NLME-START . request to network layer.

7.15.1 Prototype
void RCN_NImeStartReq(void)

7.15.2 Input Parameters
None.

7.15.3 Output Parameters
None.

7.15.4 Return
None.

7.15.5 Notes

A call to RCN_CbackEvent() will occur as a consequence of this function call, corresponding to NLME-
START.confirm primitive. Its argument pEvent->eventld shall be set to RCN_NLME_START_CNF and
pEvent->prim.startCnf will be the valid union field in such callback.

7.16 RCN_NImeUnpairReq
This function corresponds to sending NLME-UNPAIR . request to network layer.

7.16.1 Prototype
void RCN_NImeUnpairReq(uint8 pairingRef)

7.16.2 Input Parameters
pairingRef: PairingRef parameter of NLME-UNPAIR.request primitive.

7.16.3 Output Parameters
None.

7.16.4 Return
None.

7.16.5 Notes

A call to RCN_CbackEvent() will occur as a consequence of this function call, corresponding to NLME-
UNPAIR.confirm primitive. Its argument pEvent->eventld shall be set to RCN_NLME_UNPAIR_CNF
and pEvent->prim.unpairCnf will be the valid union field in such callback.

50 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

7.17 RCN_NImeUnpairRsp
This function corresponds to sending NLME-UNPAIR. response to network layer.

7.17.1 Prototype
void RCN_NImeUnpairRsp(uint8 pairingRef)

7.17.2 Input Parameters
pairingRef: PairingRef parameter of NLME-UNPAIR.response primitive.

7.17.3 Output Parameters
None.

7.17.4 Return
None.

7.18 RCN_NImeAutoDiscoveryReq
This function corresponds to sending NLME-AUTO-D I SCOVERY . request to network layer.

7.18.1 Prototype
void RCN_NImeAutoDiscoveryReq(rcnNImeAutoDiscoveryReq t *pPrim)

7.18.2 Input Parameters

pPrim: Pointer to a C structure corresponding to NLME-AUTO-DISCOVERY .request
primitive.

7.18.3 Output Parameters

None.

7.18.4 Return
None.

7.18.5 Notes

A call to RCN_CbackEvent() will occur as a consequence of this function call, corresponding to NLME-
AUTO-DISCOVERY.confirm primitive. Its argument pEvent->eventld shall be set to
RCN_NLME_AUTO_DISCOVERY_CNF and pEvent->prim.autoDiscoveryCnf will be the valid union
field in such callback.

7.19 RCN_NImeAutoDiscoveryAbortReq

This function aborts auto discovery procedure triggered by a prior RCN_NImeAotoDiscoveryReq()
call.

7.19.1 Prototype
void RCN_NImeAutoDiscoveryAbortReq(void)

7.19.2 Input Parameters
None.

51 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

7.19.3 Output Parameters
None.

7.19.4 Return
None.

7.19.5 Notes

This function does not correspond to any functionality in Error! Reference source not found.. When this
function is called, the auto discovery procedure is aborted immediately. However, due to race condition,
the application which issued this function call may still get RCN_CbackEvent() callback for
RCN_NLME_AUTO_DISCOVERY_CNF event.

No RCN_CbackEvent() call is made specifically in response to this function call.

7.20 RCN_NImeUpdateKeyReq
This function corresponds to sending NLME-UPDATE-KEY . request to network layer.

7.20.1 Prototype
uint8 RCN_NImeUpdateKeyReq(uint8 pairingRef, uint8 *pNewLinkKey)

7.20.2 Input Parameters

pairingRef: PairingRef parameter of NLME-UPDATE-KEY.request primitive.
pNewLinkKey: Pointer to NewLinkKey parameter of NLME-UPDATA-KEY.request primitive.

7.20.3 Output Parameters
None.

7.20.4 Return

RCN_SUCCESS, RCN_ERROR_NO_PAIRING or RCN_ERROR_NOT_PERMITTED. Return values correspond
to the Status field values of NLME-UPDATE-KEY.confirm primitive, described in Error! Reference
source not found..

7.20.5 Notes

No callback will be made as a consequence to this function call. The return value shall correspond to
Status parameter of NLME-UPDATE-KEY . confirm primitive resulting from this request. Host application
could get return value of RCN_ERROR_COMMUNICATION in case the serial communication with the
network processor fails.

7.21 Asynchronous RCN_CbackEvent() calls

All RCN_CbackEvent() calls are asynchronous to request or response function calls. That is, the
callback is made without blocking the function call. However, the callbacks described in the request or
response function calls are triggered only by such function calls.

There are certain network layer indication primitives that could be issued irrespective to any requests or
responses that an application sends to network layer, such as NLDE-DATA.indication, NLME-
DISCOVERY . indication, NLME-PAIR._indication and NLME-UNPAIR_indication. They are truly
asynchronous to any requests or responses.

RCN_CbackEvent() callback function is used to notify the occurrence of such primitive as well. Table 9
describes eventld and valid union field for such primitives.

Primitive pEvent->eventld value Valid union field

52 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI API SWRA268I

Primitive pEvent->eventld value Valid union field
NLDE-DATA.indication RCN_NLDE_DATA_IND pEvent->prim.datalnd.
NLME- RCN_NLME_DISCOVERY_IND pEvent-

DISCOVERY . indication >prim.discoverylnd.
NLME-PAIR.indication RCN_NLME_PAIR_IND pEvent->prim.pairind.
NLME- RCN_NLME_UNPAIR_IND pEvent->prim.unpairind.
UNPAIR.Indication

Table 9: Asynchronous Callbacks

Among the primitive structures datalnd (corresponding to RCN_NLDE_DATA IND) includes a pointer.
“nsdu” field is a pointer to a data buffer that corresponds to nsdu parameter of NLDE-
DATA. indication primitive. Neither the data buffer nor the pointer is valid once the callback function
returns and hence application must copy the content of the buffer to its own managed buffer if it needs to
access the data content after the callback returns.

8. Using RCN API from Host Application

Host application can choose to use RCN API instead of RTI APl with the same RemoTI| network
processor. Host application in such a case has to indicate which API to use at the beginning. By default,
after boot up or reset of network processor, network processor is configured to work with RTI API calls
from host application. In order to switch to RCN API mode, host application should call
RCN_NImeResetReq() before making other calls. Either TRUE or FALSE value of setDefaultNib
parameter will work to switch mode to RCN API mode. As a general rule, RTI API functions should not be
used when RCN API is used. However, there are exceptions in both not using RCN calls before
RCN_ResetReq() call and not using RTI API functions mixed with RCN API functions.

RCN_NImeGetReq() and RCN_NImeSetReq() can be used regardless of network processor mode.
That is, it can be used before calling RCN_NImeResetReq(). This is to address a typical use case of
RCN_NImeSetReq() to custom attributes such as node capabilities before calling
RCN_NImeResetReq(TRUE) and RCN_NImeStartReq() to start up a node for cold boot (first boot up
for the node). There is no reason to mix use RCN_NImeGetReq() and RCN_NImeSetReq() together
with RTI API otherwise because RTI API function RTI_Readltem() and RTI_Writeltem() supports
access to all NIB attributes and custom attributes supported by network layer.

On the other hand, RTI_EnableSleepReq(), RTI_DisableSleepReq() and callbacks thereof can be
used together with other RCN API functions. As standard network layer does not provide interface to
enable and disable entire system power savings which may affect serial communication itself, these
functions are exceptionally allowed to be used together with RCN API functions.

9. General Information
9.1 Document History
Table 10: Document History
Revision Date Description/Changes
1.0 2009-04-15 Initial release.

53 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

RemoTI| API SWRA268I
Revision Date Description/Changes
1.1 2009-06-30 Added RTI_UnpairReq, RTI_UnpairCnf, RTI_Unpairind, RTI_PairAbortReq,
RTI_PairAbortCnf, RTI_AllowPairAbortReq, RCN_NImeDiscoveryAbortReq and
RCN_NImeAutoDiscoveryAbortReq functions.
Corrected RTI_SendDataCnf result code list.
Corrected rcnNwkPairingEntry_t structure in Table 4.
Corrected Table 6 and added hex values.
Corrected hardware platform names in Figure 1 and Figure 2.
swra268a 2009-09-18 Revision numbering scheme was corrected.
swra268b 2009-10-27 Missing RTI return status values were added.
swra268c 2010-07-06 Added references to CC2533.
swra268d 2011-03-02 Changed CERC to ZRC; added extended RTI_Read/WriteEx() and deprecatd the
old RTI_Read/Write(); added ZID.
swra268e 2011-10-06 Added description of Non-Standard Descriptor read/write helper interface.
swra268f 2012-09-20 Changed description of PanID and ShortAddress to RW.
swra268g 2012-10-02 Fixed default value of DiscoveryLQIThreshold SA item.
swra268h 2012-10-31 Updated representation of software version number
swra268i 2012-11-20 Updated for latest release.
- Changed name of reference SWRU191
- Rephrased description of RTI
- Added reference to embedded Linux host support
- Changed default nwkScanDuration from 6 to 3
- Updated ZID revision reference from r15 to r18
- Corrected ZID mask
- Formatting

Address Information

Texas Instruments Norway AS

Gaustadalléen 21
N-0349 Oslo
NORWAY
Phone:

Fax:

Web site:

Texas Instruments Incorporated

+47 22 95 85 44
+47 22 95 85 46

http://www.ti.com/lpw

Low-Power RF Software Development

9276 Scranton Road, Suite 450

San Diego CA 92121
United States of America

Phone:
Fax:
Web site:

54

+1 858 638 4294
+1 858 638 4202

http://www.ti.com/Ipw

Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

http://www.ti.com/lpw�
http://www.ti.com/lpw�

RemoTI API SWRA268I

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.
Tl warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except
where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using Tl components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any Tl patent right, copyright, mask
work right, or other Tl intellectual property right relating to any combination, machine, or process in which Tl products or services are
used. Information published by TI regarding third-party products or services does not constitute a license from Tl to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from Tl under the patents or other intellectual property of TI.
Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation. Information of third parties
may be subject to additional restrictions.
Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. Tl is not responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of
their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of Tl products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify Tl and its
representatives against any damages arising out of the use of Tl products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the Tl products are
specifically designated by Tl as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of Tl products which Tl has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection
with such use.
Tl products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are
designated by Tl as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-
designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security
Telephony www.ti.com/telephony
Video & Imaging www.ti.com/video
Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright 2008-2012, Texas Instruments Incorporated

55 Copyright © 2009-2012 Texas Instruments, Inc. All rights reserved.

http://amplifier.ti.com/�
http://www.ti.com/audio�
http://dataconverter.ti.com/�
http://www.ti.com/automotive�
http://dsp.ti.com/�
http://www.ti.com/broadband�
http://interface.ti.com/�
http://www.ti.com/digitalcontrol�
http://logic.ti.com/�
http://www.ti.com/military�
http://power.ti.com/�
http://www.ti.com/opticalnetwork�
http://microcontroller.ti.com/�
http://www.ti.com/security�
http://www.ti.com/telephony�
http://www.ti.com/video�
http://www.ti.com/wireless�

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESDA48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI's terms and conditions of sale
supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent Tl deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

Tl assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of significant portions of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. Tl is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
Tl is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify Tl and its representatives against any damages arising out of the use
of any Tl components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No Tl components are authorized for use in FDA Class Ill (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those Tl components which Tl has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, Tl will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters
DLP® Products

DSP

Clocks and Timers
Interface

Logic

Power Mgmt
Microcontrollers
RFID

OMAP Applications Processors
Wireless Connectivity

dataconverter.ti.com

www.dlp.com

dsp.ti.com
www.ti.com/clocks

interface.ti.com

logic.ti.com

power.ti.com
microcontroller.ti.com

www.ti-rfid.com
www.ti.com/omap

Computers and Peripherals
Consumer Electronics
Energy and Lighting
Industrial

Medical

Security

Space, Avionics and Defense
Video and Imaging

Tl E2E Community

www.ti.com/wirelessconnectivity

www.ti.com/computers

www.ti.com/consumer-apps

www.ti.com/energy
www.ti.com/industrial

www.ti.com/medical

www.ti.com/security
www.ti.com/space-avionics-defense

www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Table Of Contents
	List of Figures
	List of Tables
	Acronyms and Definitions
	References
	1. Introduction
	1.1 Interface Layers
	1.2 Software architecture
	1.2.1 Remote
	1.2.2 Network processor

	1.3 Software components
	1.3.1 OSAL
	1.3.2 Hardware abstraction layer
	1.3.3 RCN library
	1.3.4 RTI
	1.3.5 RTI interface library for PC
	1.3.6 RTI interface code for host processor

	2. RTI API Overview
	3. RTI Configuration Interface
	3.1 Overview
	3.2 RTI_ReadItemEx and RTI_WriteItemEx
	3.2.1 Prototype
	3.2.2 Input Parameters
	3.2.3 Output Parameters
	3.2.4 Return
	3.2.5 Notes

	3.3 Configuration Parameters
	3.3.1 Overview
	3.3.2 Parameter List

	3.4 State Attributes
	3.4.1 Overview
	3.4.2 Attribute list

	3.5 Constants
	3.5.1 Overview
	3.5.2 Constant list

	3.6 RTI_ReadItem and RTI_WriteItem - Deprecated
	3.7 ZID Attribute Read & Write
	3.8 ZID Non-Standard Descriptor Component Read/Write Interface
	3.8.1 zidAdaAppHlp_ReadNonStdDescComp
	3.8.1.1 Prototype
	rStatus_t
	zidAdaAppHlp_ReadNonStdDescComp(uint8 pairIdx,
	 uint8 descNum,
	 zid_non_std_desc_comp_t *pBuf)
	3.8.1.2 Input Parameters
	3.8.1.3 Output Parameters
	3.8.1.4 Return

	3.8.2 zidCldAppHlp_WriteNonStdDescComp
	3.8.2.1 Prototype
	rStatus_t
	zidCldAppHlp_WriteNonStdDescComp(uint8 descNum,
	 zid_non_std_desc_comp_t *pBuf)
	3.8.2.2 Input Parameters
	3.8.2.3 Output Parameters
	3.8.2.4 Return

	3.8.3 zidCldAppHlp_WriteNullReport
	3.8.3.1 Prototype
	rStatus_t
	zidCldAppHlp_WriteNullReport(uint8 descNum,
	 zid_null_report_t *pBuf)
	3.8.3.2 Input Parameters
	3.8.3.3 Output Parameters
	3.8.3.4 Return

	4. RTI Application Profile Interface
	4.1 Overview
	4.2 RTI_InitReq
	4.2.1 Prototype
	void RTI_InitReq(void)

	4.2.2 Input Parameters
	4.2.3 Output Parameters
	4.2.4 Return
	4.2.5 Notes

	4.3 RTI_InitCnf
	4.3.1 Prototype
	4.3.2 Input Parameters
	4.3.3 Output Parameters
	4.3.4 Return
	4.3.5 Notes

	4.4 RTI_PairReq
	4.4.1 Prototype
	void RTI_PairReq(void)

	4.4.2 Input Parameters
	4.4.3 Output Parameters
	4.4.4 Return
	4.4.5 Notes

	4.5 RTI_PairCnf
	4.5.1 Prototype
	void RTI_PairCnf(rStatus_t status,
	 uint8 dstIndex,
	 uint8 devType)

	4.5.2 Input Parameters
	4.5.3 Output Parameters
	4.5.4 Return
	4.5.5 Notes

	4.6 RTI_PairAbortReq
	4.6.1 Prototype
	void RTI_PairAbortReq(void)

	4.6.2 Input Parameters
	4.6.3 Output Parameters
	4.6.4 Return
	4.6.5 Notes

	4.7 RTI_PairAbortCnf
	4.7.1 Prototype
	void RTI_PairAbortCnf(rStatus_t status)

	4.7.2 Input Parameters
	4.7.3 Output Parameters
	4.7.4 Return
	4.7.5 Notes

	4.8 RTI_AllowPairReq
	4.8.1 Prototype
	void RTI_AllowPairReq(void)

	4.8.2 Input Parameters
	4.8.3 Output Parameters
	4.8.4 Return
	4.8.5 Notes

	4.9 RTI_AllowPairCnf
	4.9.1 Prototype
	void RTI_AllowPairCnf(rStatus_t status,
	 uint8 dstIndex,
	 uint8 devType)

	4.9.2 Input Parameters
	4.9.3 Output Parameters
	4.9.4 Return
	4.9.5 Notes

	4.10 RTI_AllowPairAbortReq
	4.10.1 Prototype
	void RTI_AllowPairAbortReq(void)

	4.10.2 Input Parameters
	4.10.3 Output Parameters
	4.10.4 Return
	4.10.5 Notes

	4.11 RTI_UnpairReq
	4.11.1 Prototype
	void RTI_UnpairReq(uint8 dstIndex)

	4.11.2 Input Parameters
	4.11.3 Output Parameters
	4.11.4 Return
	4.11.5 Notes

	4.12 RTI_UnpairCnf
	4.12.1 Prototype
	void RTI_UnpairCnf(rStatus_t status,
	 uint8 dstIndex)

	4.12.2 Input Parameters
	4.12.3 Output Parameters
	4.12.4 Return
	4.12.5 Notes

	4.13 RTI_UnpairInd
	4.13.1 Prototype
	void RTI_UnpairInd(uint8 dstIndex)

	4.13.2 Input Parameters
	4.13.3 Output Parameters
	4.13.4 Return
	4.13.5 Notes

	4.14 RTI_SendDataReq
	4.14.1 Prototype
	void RTI_SendDataReq(uint8 dstIndex,
	 uint8 profileId,
	 uint16 vendorId,
	 uint8 txOptions,
	 uint8 len,
	 uint8 *pData)

	4.14.2 Input Parameters
	4.14.3 Output Parameters
	4.14.4 Return
	4.14.5 Notes

	4.15 RTI_SendDataCnf
	4.15.1 Prototype
	void RTI_SendDataCnf(rStatus_t status)

	4.15.2 Input Parameters
	4.15.3 Output Parameters
	4.15.4 Return
	4.15.5 Notes

	4.16 RTI_ReceiveDataInd
	4.16.1 Prototype
	void RTI_ReceiveDataInd(uint8 srcIndex,
	 uint8 profileId,
	 uint16 vendorId,
	 uint8 rxLQI,
	 uint8 rxFlags,
	 uint8 len,
	 uint8 *pData)

	4.16.2 Input Parameters
	4.16.3 Output Parameters
	4.16.4 Return
	4.16.5 Notes

	4.17 RTI_StandbyReq
	4.17.1 Prototype
	void RTI_StandbyReq (uint8 mode)

	4.17.2 Input Parameters
	4.17.3 Output Parameters
	4.17.4 Return
	4.17.5 Notes

	4.18 RTI_StandbyCnf
	4.18.1 Prototype
	void RTI_StandbyCnf(rStatus_t status)

	4.18.2 Input Parameters
	4.18.3 Output Parameters
	4.18.4 Return
	4.18.5 Notes

	4.19 RTI_RxEnableReq
	4.19.1 Prototype
	void RTI_RxEnableReq (uint16 duration)

	4.19.2 Input Parameters
	4.19.3 Output Parameters
	4.19.4 Return
	4.19.5 Notes

	4.20 RTI_RxEnableCnf
	4.20.1 Prototype
	void RTI_RxEnableCnf(rStatus_t status)

	4.20.2 Input Parameters
	4.20.3 Output Parameters
	4.20.4 Return
	4.20.5 Notes

	4.21 RTI_EnableSleepReq
	4.21.1 Prototype
	void RTI_EnableSleepReq (void)

	4.21.2 Input Parameters
	4.21.3 Output Parameters
	4.21.4 Return
	4.21.5 Notes

	4.22 RTI_EnableSleepCnf
	4.22.1 Prototype
	void RTI_EnableSleepCnf(rStatus_t status)

	4.22.2 Input Parameters
	4.22.3 Output Parameters
	4.22.4 Return
	4.22.5 Notes

	4.23 RTI_DisableSleepReq
	4.23.1 Prototype
	void RTI_DisableSleepReq (void)

	4.23.2 Input Parameters
	4.23.3 Output Parameters
	4.23.4 Return
	4.23.5 Notes

	4.24 RTI_DisableSleepCnf
	4.24.1 Prototype
	void RTI_DisableSleepCnf(rStatus_t status)

	4.24.2 Input Parameters
	4.24.3 Output Parameters
	4.24.4 Return
	4.24.5 Notes

	5. RTI Test Mode interface
	5.1 RTI_TestModeReq
	5.2 RTI_TestRxCounterGetReq
	5.3 RTI_SwResetReq

	6. Summary of RTI Return Status Values
	7. RCN API
	7.1 Overview
	7.2 RCN_CbackEvent
	7.2.1 Prototype
	void RCN_CbackEvent(rcnCbackEvent_t *pEvent)

	7.2.2 Input Parameters
	7.2.3 Output Parameters
	7.2.4 Return
	7.2.5 Notes

	7.3 RCN_CbackRxCount
	7.3.1 Prototype
	void RCN_CbackRxCount(void)

	7.3.2 Input Parameters
	7.3.3 Output Parameters
	7.3.4 Return

	7.4 RCN_NldeDataAlloc
	7.4.1 Prototype
	uint8 RCN_NldeDataAlloc(rcnNldeDataReq_t *pPrim)

	7.4.2 Input Parameters
	7.4.3 Output Parameters
	7.4.4 Return
	7.4.5 Notes

	7.5 RCN_NldeDataReq
	7.5.1 Prototype
	void RCN_NldeDataReq(rcnNldeDataReq_t *pPrim)

	7.5.2 Input Parameters
	7.5.3 Output Parameters
	7.5.4 Return
	7.5.5 Notes

	7.6 RCN_NlmeDiscoveryReq
	7.6.1 Prototype
	void RCN_NlmeDiscoveryReq(rcnNlmeDiscoveryReq_t *pPrim)

	7.6.2 Input Parameters
	7.6.3 Output Parameters
	7.6.4 Return
	7.6.5 Notes

	7.7 RCN_NlmeDiscoveryAbortReq
	7.7.1 Prototype
	void RCN_NlmeDiscoveryAbortReq(void)

	7.7.2 Input Parameters
	7.7.3 Output Parameters
	7.7.4 Return
	7.7.5 Notes

	7.8 RCN_NlmeDiscoveryRsp
	7.8.1 Prototype
	void RCN_NlmeDiscoveryRsp(rcnNlmeDiscoveryRsp_t *pPrim)

	7.8.2 Input Parameters
	7.8.3 Output Parameters
	7.8.4 Return
	7.8.5 Notes

	7.9 RCN_NlmeGetReq
	7.9.1 Prototype
	Uint8 RCN_NlmeGetReq(uint8 attribute, uint8 attributeIndex, uint8 *pValue)

	7.9.2 Input Parameters
	7.9.3 Output Parameters
	7.9.4 Return
	7.9.5 Notes

	7.10 RCN_NlmePairReq
	7.10.1 Prototype
	void RCN_NlmePairReq(rcnNlmePairReq_t *pPrim)

	7.10.2 Input Parameters
	7.10.3 Output Parameters
	7.10.4 Return
	7.10.5 Notes

	7.11 RCN_NlmePairRsp
	7.11.1 Prototype
	void RCN_NlmePairRsp(rcnNlmePairRsp_t *pPrim)

	7.11.2 Input Parameters
	7.11.3 Output Parameters
	7.11.4 Return
	7.11.5 Notes

	7.12 RCN_NlmeResetReq
	7.12.1 Prototype
	void RCN_NlmeResetReq(uint8 setDefaultNib)

	7.12.2 Input Parameters
	7.12.3 Output Parameters
	7.12.4 Return
	7.12.5 Notes

	7.13 RCN_NlmeRxEnableReq
	7.13.1 Prototype
	uint8 RCN_NlmeRxEnableReq(uint16 rxOnDurationInMs)

	7.13.2 Input Parameters
	7.13.3 Output Parameters
	7.13.4 Return
	7.13.5 Notes

	7.14 RCN_NlmeSetReq
	7.14.1 Prototype
	uint8 RCN_NlmeSetReq(uint8 attribute, uint8 attributeIndex, uint8 *pValue)

	7.14.2 Input Parameters
	7.14.3 Output Parameters
	7.14.4 Return
	7.14.5 Notes

	7.15 RCN_NlmeStartReq
	7.15.1 Prototype
	void RCN_NlmeStartReq(void)

	7.15.2 Input Parameters
	7.15.3 Output Parameters
	7.15.4 Return
	7.15.5 Notes

	7.16 RCN_NlmeUnpairReq
	7.16.1 Prototype
	void RCN_NlmeUnpairReq(uint8 pairingRef)

	7.16.2 Input Parameters
	7.16.3 Output Parameters
	7.16.4 Return
	7.16.5 Notes

	7.17 RCN_NlmeUnpairRsp
	7.17.1 Prototype
	void RCN_NlmeUnpairRsp(uint8 pairingRef)

	7.17.2 Input Parameters
	7.17.3 Output Parameters
	7.17.4 Return

	7.18 RCN_NlmeAutoDiscoveryReq
	7.18.1 Prototype
	void RCN_NlmeAutoDiscoveryReq(rcnNlmeAutoDiscoveryReq_t *pPrim)

	7.18.2 Input Parameters
	7.18.3 Output Parameters
	7.18.4 Return
	7.18.5 Notes

	7.19 RCN_NlmeAutoDiscoveryAbortReq
	7.19.1 Prototype
	void RCN_NlmeAutoDiscoveryAbortReq(void)

	7.19.2 Input Parameters
	7.19.3 Output Parameters
	7.19.4 Return
	7.19.5 Notes

	7.20 RCN_NlmeUpdateKeyReq
	7.20.1 Prototype
	uint8 RCN_NlmeUpdateKeyReq(uint8 pairingRef, uint8 *pNewLinkKey)

	7.20.2 Input Parameters
	7.20.3 Output Parameters
	7.20.4 Return
	7.20.5 Notes

	7.21 Asynchronous RCN_CbackEvent() calls

	8. Using RCN API from Host Application
	9. General Information
	9.1 Document History

	Address Information

