
1SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

User's Guide
SLAU324A–March 2011–Revised July 2018

MSP430L092 Loader Code

The MSP430L092 microcontroller (MCU) is a development, prototyping, and small series member of the
MSP430x09x device family. It contains a loader code as ROM firmware. This user's guide describes how
the MSP430L092 loader code is used to build an autonomous microcontroller solution. The loader
approach is chosen as nonvolatile memory is not available for native ultra-low supply voltage.

Contents
1 Loader Code Introduction... 3

1.1 Typical Two-Chip Application ... 3
1.2 Code Generation, Conventions, and Restrictions .. 4

2 Loader Code Operation ... 5
2.1 Start-up Behavior and Timing ... 7
2.2 Start-up Code (SUC) ... 8
2.3 Data Structure of SPI Memory .. 9
2.4 Data and Program Containers... 10
2.5 Failsafe Mechanism... 11
2.6 API Functions of Loader.. 12
2.7 Software Registers and Public Data Elements .. 30
2.8 Interrupt Handling ... 35
2.9 Sockets and Plug-Ins ... 35
2.10 Power Efficient Program Loading ... 35
2.11 Programming With Overlays ... 36
2.12 Debugging Checkpoints for Code Development .. 37
2.13 Inner Mechanism of Loader.. 38
2.14 SPI Commands Used by Loader .. 38

3 Target Hardware ... 39
3.1 Booster Converters ... 39
3.2 Adaptation Networks.. 41

List of Figures

1 Debugging Scenarios With MSP430x09x Devices .. 3
2 Component-Optimized Application Circuit for 0.9-V Supply ... 4
3 Structure of Loader Code With API ... 5
4 Flow Chart of Loader .. 6
5 Flow Chart of XOVL Function .. 6
6 Timing of Successful Load Operation... 7
7 Flow Chart of the Start-Up Code for 'C09x devices ... 8
8 Data Structures in SPI Memory.. 9
9 Data/Program Container .. 10
10 Timing of Error Signature ... 11
11 Stack Behavior of XOVL()... 17
12 Stack Behavior of LOVL() ... 18
13 Stack Behavior of COVL() .. 19
14 Stack Behavior of ROVL() .. 20
15 CurOvlSpiH Register... 31

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

www.ti.com

2 SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

16 CurOvlSpiL Register ... 31
17 CurOvlAdrH Register .. 32
18 CurOvlAdrL Register... 32
19 Status_Reg Register... 33
20 LedOffPtr Register ... 34
21 LedOnPtr Register ... 34
22 UnexpCnt Register ... 34
23 Secondary Interrupt Vectors .. 35
24 Two-Level Boot Approach... 36
25 Complex Application With Three Overlays Segments... 36
26 Debugging Checkpoints ... 37
27 Private and Public Functions of API and Dependencies.. 38
28 Generic Block Diagram of Target Hardware.. 39
29 Booster Converter Type A .. 40
30 Booster Converter Type B .. 40
31 Booster Converter Type C .. 40
32 Booster Converter Type D .. 40
33 Booster Converter Type E .. 40
34 Booster Converter Type F .. 41
35 Adaptation Network Type A... 41
36 Adaptation Network Type B... 41
37 Adaptation Network Type C... 41
38 Adaptation Network Type D... 41

List of Tables

1 Debugging Scenarios With MSP430x09x Devices .. 3
2 Public API Functions... 13
3 Software Registers ... 30
4 Secondary Interrupt Vectors .. 30
5 CurOvlSpiH Register Description .. 31
6 CurOvlSpiLRegister Description.. 31
7 CurOvlAdrH Register Description .. 32
8 CurOvlAdrL Register Description .. 32
9 Status_Reg Register Description .. 33
10 LedOffPtr Register Description ... 34
11 LedOnPtr Register Description ... 34
12 UnexpCnt Register Description... 34
13 SPI Commands Used by Loader... 38
14 Values of the Components.. 39

Trademarks
MSP430 is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

+ + +

8-inch active JTAG cable

L
0
9
2

L
0
9
2

L
0
9
2

S
P

I

S
P

I

S
P

I

L
0
9
2

C
0
9
1

C
0
9
2

www.ti.com Loader Code Introduction

3SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

1 Loader Code Introduction
The loader code in the MSP430L092 MCU is ROM code from Texas Instruments that provides a series of
services. The loader code lets customers build autonomous applications without the need for a custom
ROM mask. Such an application consists of a MSP430™ MCU containing the loader (for example,
MSP430L092) and an SPI memory device (for example, the '95512 or '25AA40). These and similar
memory devices are available from various manufacturers.

The most common reasons to make an application that uses a loader device and external SPI memory for
native 0.9-V supply voltage are late development, prototyping, and small series production. Table 1 show
various debugging scenarios possible for ultra-low supply voltage. A loader approach is the only choice for
an autonomous application, because no nonvolatile memories are available on the market for native ultra-
low supply voltage, as of this writing.

Table 1. Debugging Scenarios With MSP430x09x Devices

Use Case Early
Development Late Development Prototyping Small Series Mass Production

Number of Units Up to 10 Up to 100 Up to 1000 Up to 100000 100000 or more
Device MSP430L092 MSP430L092 MSP430L092 MSP430L092 MSP430C091/C092
Cost per Unit High Medium Medium Medium Low

Code Stored in IDE, RAM External memory,
RAM

External memory,
RAM

External memory,
RAM

External memory,
ROM, RAM

Galvanic Separation No Yes Yes Yes Yes
Code Size (typical) 1984 bytes 1984 bytes 1984 bytes 1984 bytes 1984 bytes
RAM Size (typical) 64 bytes 64 bytes 64 bytes 64 bytes 1024 or 2048 bytes

Overlays Supported by L092 Supported Supported Supported Depends on
customer code

Figure 1. Debugging Scenarios With MSP430x09x Devices

The user can determine the type of SPI memory device to use with the MSP430 device with loader code.
SPI-EEPROM, SPI-Flash, SPI-SRAM, SPI-FRAM, and SPI-byte-alterable flash devices with supply
voltages ranging from 1.8 V to 6 V and various memory sizes are on the market.

1.1 Typical Two-Chip Application
An application with the MSP430L092 device can be as simple as the one in Figure 2. The loader code
initializes the MSP430 device, generates an external clock on port P1.2; this clock enables an external
boost converter that generates the necessary supply voltage for the SPI device containing the user
program. After approximately 500 µs, the loader code starts to load the user code into the L092 RAM.
After a successful load procedure, the user code is started. During the code loading process, the LED that
is used to stabilize the voltage for the SPI device lights briefly. The LED may be used for regular signaling
purposes in the application, because the SPI device is inactive after the initial loading process.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

0.9 V Supply

MSP430L092

TMS

P1.2

TDI/P2.2

TDO/P2.3

TMS/P2.1

R5

R4

R3R2

R1

D

Q

C2

LED

C1

NPN

SPI-Flash or
SPI-EEPROM

SCLK

SO

SI

L

Loader Code Introduction www.ti.com

4 SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

Figure 2. Component-Optimized Application Circuit for 0.9-V Supply

1.2 Code Generation, Conventions, and Restrictions
The application code is generated with the standard tools for MSP430 devices. The user application may
(but does not have to) use other service provided by the loader API. If the API services are used, then
special conventions must be followed (see Section 2.6); otherwise, the user code can be written without
any restrictions.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

MSP430 Hardware

Hardware Abstraction Layer (HAL)

API Core Functions

API Interface (API-IF)

Any User Code or Application

Loader Application

Hardware

Firmware

User Application

M
S

P
4
3
0
L
0
9
2

L
o
a
d
e
r

C
o
d
eAPI

www.ti.com Loader Code Operation

5SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

2 Loader Code Operation
The L092 loader code consists of two blocks, the loader application and the loader API, as shown in
Figure 3. After the loader gains control, it initializes itself, load the user application code from the image in
the SPI device into the internal RAM of the MSP430 MCU, and invokes the user code (see Figure 4). The
user application has full access to the public functions and services of the loader using a standardized API
interface. The API consists of the hardware abstraction layer (HAL), the API core functions, and the API
interface (API IF).
• The HAL is a set of low-level device- and platform-oriented functions that all other higher-level

functions are based on.
• The API core functions are higher-level functions that provide more complex operations such as

copying memory.
• The API IF provides a standardized way to provide the HAL and API core functions to the user. The

API IF should remain the same in any versions that the loader API core might go through in future. The
API IF should also remain the same in all of the devices into which the loader is ported in the future.
The API IF might be extended if the functions of the API grows over time; the functions or the earlier
versions should still behave the same way in the newer code versions (so that backward and forward
compatibility for common functions is maintained) (see Figure 5).

Figure 3. Structure of Loader Code With API

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

Error ?

Start Application

Error Blink

Go to LPM 4

Y

N

Turn Off Clock on
Port P1.2

XOVL

Load Data Container

SPI_Adr < 800h

Appkey==
JTAGMailbox?

Y

Stop WDTA

Initialize Variables

Initialize Vector Tables

Turn On Clock on
Port P1.2

Wait 500 µs

Load Code Image
From Location #2

XOVL(2,0,0);

Loader Start

Loader Code Operation www.ti.com

6 SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

Figure 4. Flow Chart of Loader

Figure 5. Flow Chart of XOVL Function

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

Code
Execution

In
it

P
o

rt
s

Start up

code (SUC)
L092 Loader Customer Application

T
u

rn
o

n
B

o
o

s
t

L
o

a
d

C
o

d
e

500 µs~1.2 ms

SPI activity
Software SPI

P2.x

P1.2

S
ta

rt
in

g

A
p

p
li
c
a

ti
o

n

V and RSTCC

Time

f = 250 kHz

2.2 ms +
239 µs/byte of code

www.ti.com Loader Code Operation

7SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

2.1 Start-up Behavior and Timing
Immediately after startup, devices with the loader code behave the same as devices with any other user
code. After VCC ramp-up or reset release, the control is given to the start-up code (SUC) (for details, see
Section 2.2). The SUC initializes the device and performs device integrity checks, then it passes control to
the code in ROM by branching to the location where the ROM code start vector is pointing (in this case,
the vector points to the loader code).

The loader performs its initialization and turns on a 250-kHz clock on port P1.2. After approximately 500
µs, the user application code residing in the external SPI memory is loaded into the internal MSP430
RAM. When stored in the external SPI memory, the application code is embedded in a data container that
is protected with checksums (see Section 2.3 and Section 2.3). During the loading process, the checksum
is verified, and control is passed to the application code only if the checksum is correct (see Figure 6).

Figure 6. Timing of Successful Load Operation

NOTE: The ROM code start vector is located at 0xF840 for the MSP430x09x devices. It is a
reduced length 16-bit address pointer that points to the start of the loader.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

SUC Start

Initialize Stack, CCS

Configure Device

Appkey ==
JTAG Mailbox?

Open JTAG

Go to LPM4

Calibrate Oscillator

Application

Y

Stop WDTA

Loader Code Operation www.ti.com

8 SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

2.2 Start-up Code (SUC)
The SUC is firmware that is provided by TI and is the first code that is invoked after reset. The SUC
configures the device, checks the JTAG password to allow debugging on correct password, performs a
checksum-based code integrity check, calibrates the oscillator based on optional available calibration data,
and finally invokes the application (that is, the user code).

The SUC of the L092 device differs slightly from that of the 'C09x devices. L092 devices are always open
and ready for debugging. On C092 devices, the password must be provided through the JTAG mailbox
input registers before reset release. A valid password causes the device to enter LPM4 and wait for JTAG
emulation (see Figure 7).

Figure 7. Flow Chart of the Start-Up Code for 'C09x devices

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

0x0 0x55

0xAA

0xFFFF

0xFFFFFF Maximum address range
for a 16MB SPI device

Maximum address range
for a 64KB SPI device

0x7FF Last address range
for auto LED off

First
Boot
Data

Container

0x2

First boot
start location

www.ti.com Loader Code Operation

9SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

2.3 Data Structure of SPI Memory
The application code is typically kept in external SPI memory when using the loader approach (see
Figure 8). One-bit-wide SPI devices with 16-bit and 24-bit address ranges are supported. At location 0x0,
a format indication is expected for both address types. The loader code automatically adapts its SPI
address width to the identified SPI memory device size by checking for the format indicator at memory
location at addresses 0x0 and 0x1. The first boot data/program container is expected at address 0x2.
Other data/program containers may be stored anywhere in the SPI memory. Loading data/program
containers from SPI addresses below 0x800 automatically causes an LED turn off operation and an
password check with a stop for debugging purposes. Data/program containers loaded from SPI addresses
at or above 0x800 do not cause an automated LED off operation; this area is typically used for overlay
programming.

Figure 8. Data Structures in SPI Memory

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

*+ 0x0 Length (LoByte)

Length (HiByte)

*+ 0x2 LoadAddr (LoByte)

LoadAddr (LoByte)

*+ 0x4 StartAddr (LoByte)

StartAddr (HiByte)

First CodeWord (Lo)

First CodeWord (Hi)

*+ 0x6

Checksum (LoByte)

Checksum (HiByte)

Checksum (LoByte)

Checksum (HiByte)

n CodeWord (Hi)
th

n CodeWord (Lo)
th

*+2n+ 0x6

*+2n+ 0x8

Header

Payload

Trailer

Loader Code Operation www.ti.com

10 SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

2.4 Data and Program Containers
A data or program container is a structure stored in SPI memory that contains data or program (code)
elements as payload (see Figure 9). The header of the data container consists of a 16-bit length field, a
16-bit destination address where the code should be loaded, and a 16-bit start address field that is
invoked after code load.

The length field represents the count of the payload in bytes. The payload itself is always of even length.
Zero padding at the end of payload is used if the length is an odd value. The theoretical maximum block
length is 65536 bytes.

The load address points to the MSP430 memory location where the payload should be written (when not
overridden). This is between 0x0 and 0xFFFF.

The start address points to the start of code when loaded into the MSP430 memory in the case of the first
bootable data/program container for proper operation. For all the other containers loaded later, it may
point outside the loaded destination address.

The trailer of the container provides two copies of the checksum that is based on the header and payload.
The checksum is calculated using a word-wide XOR operation initialized with zero.

Figure 9. Data/Program Container

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

Code

Execution SUC L092 Loader

0.5 ms~1.2 ms

Software SPI

P2.x

P1.2

V and RST
CC

Time

f = 250 kHz

LPM4

500 ms

SPI error

500 ms 500 ms 500 ms 500 ms 500 ms

www.ti.com Loader Code Operation

11SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

2.5 Failsafe Mechanism
A visible error signature is generated (see Figure 10) if no SPI device is connected or if the SPI power is
not generated or if an error during user code load is detected. The voltage stabilization LED blinks three
times with a frequency of approximately 1 Hz, the user's application code is not executed, and the device
enters LPM4. This mechanism prevents execution of erroneous code.

Figure 10. Timing of Error Signature

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

Loader Code Operation www.ti.com

12 SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

2.6 API Functions of Loader
The API interface is implemented as a set of pointers to the core functions. This method lets the API core
functionality be extended or changed without changing the access conventions. Although an application
can call each function with an pointer to an absolute address, TI recommends using symbolic addressing
to help simplify future migration of the application. The file loader.h provides the required definitions for
assembler and ANSI-C.

Before calling the API functions, several peripherals must be initialized, and the API software registers
must be unlocked and initialized. Perform the following steps to configure the clock, GPIO, Timer_A, and
API software registers:
1. Configure the Compact Clock System:

a. Unlock the Compact Clock System registers by writing the CCSKEY to the CCSCTL0 register.
b. Clear any XOFFG and HOFFG faults by setting CCSCTL7 to 0.
c. Clear any pending system interrupts by setting the SYSIFG1 register to 0.
d. Set ACLK = SMCLK = MCLK = DCO at 1 MHz by setting CCSCTL4 and CCSCTL5 to 0.

2. Disable JTAG communication:
a. Set P2SEL0 and P2SEL1 to 0

3. Configure Port 2 for SPI communication:
a. P2.0, P2.1, P2.2, P2.3 are CS, MOSI, CLK, and MISO signals, respectively.
b. Set CS high by setting bit 2 of P2OUT to 1.
c. Set MOSI and CLK low by setting bits 1 and 2 of P2OUT to 0.
d. Set CS, MOSI, and CLK pins to output by setting bits 0, 1, and 2 in P2DIR to 1.
e. Set MISO to an input by setting bit 3 in P2DIR to 0.

4. Configure the API software registers:
a. Unlock registers by setting the RAMLCK1 and RAMLCK0 bits in SYSCNF to 0.
b. Set Status_Reg, CurOvlSpiH, and CurOvlAdrL to 0.
c. Set CurOvlSpiL to 0x0002.
d. Set LedOnPtr to user defined function for turning on power to the EEPROM (see Section 2.7.7).
e. Set LedOffPtr to user defined function for turning power off to the EEPROM (see Section 2.7.6).
f. Lock registers by setting the RAMLCK1 and RAMLCK0 bits in SYSCNF to 1.

Before calling any API function, software must unlock the API software registers using the process
described in step 4a. If calling multiple API functions, it is common practice to unlock the API registers one
time before calling the multiple functions and then locking them after all calls have completed. See the
examples provided in MSP430Ware for MSP430x09x devices for the correct implementation of API
initialization and function calls.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A
http://www.ti.com/tool/MSPWARE

www.ti.com Loader Code Operation

13SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

(1) TF = Stack bytes used by target function

Table 2. Public API Functions

Name Comment
Target

Function
Number

Stack Bytes
Used

Vector
Position Context Save

Loader Loader entry – 2 0xF880 –
ApiCall API call of target function – 20 + TF (1) 0xF882 16 bit
SWID Software ID 0 2 0xF884 16 bit
LedOn Turn on SPI boost voltage 1 2 0xF886 16 bit
LedOff Turn off SPI boost voltage 2 2 0xF888 16 bit
XOVL Load and execute overlay 3 36 0xF88A 16 bit
LOVL Load overlay ant continue at old 4 38 0xF88C 16 bit
COVL Load overlay and execute as call 5 42 0xF88E 16 bit
ROVL Load old overlay and resume execution 6 36 0xF890 16 bit
SpiReadByte Read byte from SPI memory 7 18 0xF892 16 bit
SpiReadWord Read word from SPI memory 8 20 0xF894 16 bit
SpiReadStream Read stream from SPI memory 9 16 0xF896 16 bit
SpiStreamEnd Terminate read stream from SPI 10 2 0xF898 16 bit
SpiWriteByte Write byte to SPI memory 11 22 0xF89A 16 bit
SpiReadWrite Read/write swap with SPI memory 12 4 0xF89C 16 bit
CpyToSpi Copy from MSP430 to SPI 13 30 0xF89E 16 bit
CpyTo430 Copy from SPI to MSP430 14 18 0xF8A0 16 bit
SpiGenerateImage Generate bootable SPI memory image 15 40 0xF8A2 partly
CRC CRC function 16 2 0xF8A4 16 bit

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

Loader Code Operation www.ti.com

14 SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

2.6.1 Loader(), Loader Entry Function
This function starts the loader application, which performs the tasks as shown in Figure 4. It is not a true
function, as it does not return to its caller.

Assembler access absolute
CALL &0F880h

(valid for MSP430L092 devices only)

Assembler access symbolic
CALL &Loader

ANSI-C
void Loader(void);

2.6.2 ApiCall(), Low Convention API Call Function
This function may be used to call all of the other API functions with only one argument. All of the other
arguments and return values are put into a memory structure. The pointer to that memory structure is then
the only argument for ApiCall(). The content of the structure depends on the called target function and is
described in each function description in the following sections.

The loader.h file also provides type definitions for these structures for each function callable by the ApiCall
function.

Assembler access absolute
CALL &0F882h

(valid for MSP430L092 devices only)

Assembler access symbolic
CALL &ApiCall

...with R12.A pointing to the argument structure

ANSI-C
void ApiCall(unsigned short *args);

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

www.ti.com Loader Code Operation

15SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

2.6.3 SWID(), Software Identifier Function
This function runs an integrity check and identifies the type and version of the software code. This function
returns the value 0x28435000 as identifier for the first revision of the code and the value –1/0xFFFFFFFF
if the integrity check fails.

The return value is composed of four fields:

Upper byte: 0x28 IEEE identifier for Texas Instruments
Upper middle byte: 0x43 Identifies MSP430
Lower middle byte: 0x50 Identifies loader software (may vary depending on software revision)
Lower byte: 0x00 Identifies revision code (may vary depending on software revision)

Assembler access absolute
CALL &0F884h

(valid for MSP430L092 devices only)

Assembler access symbolic
CALL &SWID

...with R12.W = 2843h and R13.W = 5000h as return value on success

ANSI-C
unsigned long SWID(void);

For calls by ApiCall
typedef struct
{

unsigned short SWIDNum; // Function number (here #0)
unsigned short IdLow; // Reserved for returned low byte
unsigned short IdHigh; // Reserved for returned high byte

}swid_api_args;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

Loader Code Operation www.ti.com

16 SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

2.6.4 LedOn(), Turn LED On HAL Function
This function enables the clock on the port pin P1.2, which signals an external boost circuit to generate
the voltage for the SPI memory. In most circuits, an LED turns on as well as. For this API function, a
socket is implemented that lets the user provide a customized plug-in function (see Section 2.9).

Assembler access absolute
CALL &0F886h

(valid for MSP430L092 devices only)

Assembler access symbolic
CALL &LedOn

ANSI-C
void LedOn(void);

For calls by ApiCall
typedef struct
{

unsigned short LedOnNum; // Function number (here #1)
}ledon_api_args;

2.6.5 LedOff(), Turn LED Off HAL Function
This function disables the clock on the port pin P1.2, which stops the voltage generation for the SPI
memory. In most circuits, an LED turns off as well as. For this API function, a socket is implemented that
lets the user provide a customized plug-in function (see Section 2.9).

Assembler access absolute
CALL &0F888h

(valid for MSP430L092 devices only)

Assembler access symbolic
CALL &LedOff

ANSI-C
void LedOff(void);

For calls by ApiCall
typedef struct
{

unsigned short LedOffNum; // Function number (here #2)
}ledoff_api_args;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

old TOSSP

Before XOVL()

old TOS

SP

Inside XOVL()

address after
call &XOVL

old TOSSP

In new Overlay

address after
call &XOVL

www.ti.com Loader Code Operation

17SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

2.6.6 XOVL(), Execute Code Overlay Function
This function loads a code image into the internal MSP430 memory and invokes it after a successful load
process.

On errors, it generates an error signature on port P1.2 as shown in Figure 10. The error signature is
generated by using LedOn() and LedOff() and may, therefore, be generated on other ports, depending on
the plug-in functions the user may have installed (see Section 2.9).

When ladr (alternate load address in MSP430 memory space) is not zero, ladr is used instead of the
address given in the data image loaded. When sadr (alternate start address of code after load) is not zero,
sadr is used instead of the address given in the data image loaded.

SpiAdr uses the 16 least significant bits for SPI devices with up to 64KB of memory space and the 24
least significant bits for SPI devices with more than 64KB of memory space.

XOVL() is not a true function, as it does not return to the caller.

Program execution on the new overlay continues at the same stack depth, as shown in Figure 11.

Assembler access absolute
CALL &0F88Ah

(valid for MSP430L092 devices only)

Assembler access symbolic
CALL &XOVL

Arguments
R12.W for SPI address upper part
R13.W for SPI address lower part
R14.W for alternate loading address
R15.W for alternate start address

ANSI-C
void XOVL (unsigned short SpiAdrHigh, unsigned short SpiAdrLow,

unsigned short ladr, unsigned short sadr);

For calls by ApiCall
typedef struct
{

unsigned short XOVLNum; // Function number (here #3)
unsigned short SpiAdrHigh; // SPI address high word
unsigned short SpiAdrLow; // SPI address low word
unsigned short ladr; // Alternate 430 load address when != 0
unsigned short sadr; // Alternate 430 start address when != 0

}xovl_api_args;

Figure 11. Stack Behavior of XOVL()

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

old TOSSP

Before LOVL()

old TOS

SP

Inside LOVL()

address after
call &LOVL

old TOSSP

After LOVL()

address after
call &LOVL

Loader Code Operation www.ti.com

18 SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

2.6.7 LOVL(), Load Code Overlay Function
This function loads a code image into the internal MSP430 memory and continues at the old overlay
segment.

On errors, it generates an error signature on port P1.2 as shown in Figure 10. The error signature is
generated by using LedOn() and LedOff() and may, therefore, be generated on other ports, depending on
the plug-in functions the user may have installed (see Section 2.9).

When ladr (alternate load address in MSP430 memory space) is not zero, ladr is used instead of the
address given in the data image loaded.

SpiAdr uses the 16 least significant bits for SPI devices with up to 64KB of memory space and the 24
least significant bits for SPI devices with more than 64KB of memory space.

The stack behavior is shown in Figure 12.

Assembler access absolute
CALL &0F88Ch

(valid for MSP430L092 devices only)

Assembler access symbolic
CALL &LOVL

Arguments
R12.W for SPI address upper part
R13.W for SPI address lower part
R14.W for alternate loading address

ANSI-C
void LOVL(unsigned short SpiAdrHigh, unsigned short SpiAdrLow, unsigned short ladr);

For calls by ApiCall
typedef struct
{

unsigned short LOVLNum; // Function number (here #4)
unsigned short SpiAdrHigh; // SPI address high word
unsigned short SpiAdrLow; // SPI address low word
unsigned short ladr; // Alternate 430 load address when != 0

}lovl_api_args;

Figure 12. Stack Behavior of LOVL()

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

old TOSSP

Before COVL()

old TOS

SP

Inside COVL()

address after
call &COVL

old TOS

SP

address after
call &COVL

In new Overlay

SpiHigh_address
of old overlay

SpiLow_address
of old overlay

www.ti.com Loader Code Operation

19SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

2.6.8 COVL(), Call Code Overlay Function
This function stores the current code position (SPI address of overlay and position within overlay) on the
stack, loads a code image as overlay into the internal MSP430 memory, and invokes it after a successful
load process.

On errors, it generates an error signature on port P1.2 as shown in Figure 10. The error signature is
generated by using LedOn() and LedOff() and may, therefore, be generated on other ports, depending on
the plug-in functions the user may have installed (see Section 2.9).

When ladr (alternate load address in MSP430 memory space) is not zero, ladr is used instead of the
address given in the data image loaded.

SpiAdr uses the 16 least significant bits for SPI devices with up to 64KB of memory space and the 24
least significant bits for SPI devices with more than 64KB of memory space.

The stack behavior is shown in Figure 13.

Assembler access absolute
CALL &0F88Eh

(valid for MSP430L092 devices only)

Assembler access symbolic
CALL &COVL

Arguments
R12.W for SPI address upper part
R13.W for SPI address lower part
R14.W for alternate loading address

ANSI-C
void COVL (unsigned short SpiAdrHigh, unsigned short SpiAdrLow, unsigned short ladr);

For calls by ApiCall
typedef struct
{

unsigned short COVLNum; // Function number (here #5)
unsigned short SpiAdrHigh; // SPI address high word
unsigned short SpiAdrLow; // SPI address low word
unsigned short ladr; // Alternate 430 load address when != 0

}covl_api_args;

Figure 13. Stack Behavior of COVL()

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

old TOS

SP

Before ROVL()

old TOS

SP

Inside ROVL()

address after
call &ROVL

old TOSSP

address after
old call &COVL

In Previous
Overlay

SpiHigh_address
of previous overlay

SpiLow_address
of previous overlay

SpiHigh_address
of previous overlay

address after previous
call &COVL

SpiLow_address
of previous overlay

address after
call &ROVL

SpiLow_address
of previous overlay

SpiHigh_address
of previous overlay

address after previous
call &COVL

Loader Code Operation www.ti.com

20 SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

2.6.9 ROVL(), Return and Resume Previous Code Overlay Function
This function terminates the code execution of the current overlay, loads the previous code image as an
overlay into the internal MSP430 memory, and continues code execution where it was interrupted by the
last COVL() function. SPI memory loading address of previous overlay and continuation address of that
overlay is found on the stack.

This function performs the complementary operation to COVL() on the stack as shown in Figure 14.

Assembler access absolute
CALL &0F890h

(valid for MSP430L092 devices only)

Assembler access symbolic
CALL &ROVL

ANSI-C
void ROVL(void);

For calls by ApiCall
typedef struct
{

unsigned short ROVLNum; // Function number (here #6)
}rovl_api_args;

Figure 14. Stack Behavior of ROVL()

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

www.ti.com Loader Code Operation

21SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

2.6.10 SpiReadByte(), SPI Memory Read Byte Function
This function reads one byte of data from an SPI memory at location SpiAdr. SpiAdr uses the 16 least
significant bits for SPI devices with up to 64KB of memory space and the 24 least significant bits for SPI
devices with more than 64KB of memory space.

Assembler access absolute
CALL &0F892h

(valid for MSP430L092 devices only)

Assembler access symbolic
CALL &SpiReadByte

Arguments
R12.W for SPI address upper part
R13.W for SPI address lower part

Return Values
R12.B byte value read at SpiAdr

ANSI-C
unsigned char SpiReadByte(unsigned short SpiAdrHigh, unsigned short SpiAdrLow);

For calls by ApiCall
typedef struct
{

unsigned short SpiReadByteNum; // Function number (here #7)

union
{

unsigned short SpiAdrHigh; // SPI address high word
unsigned char SpiRxData; // Reserved for returned byte

};

unsigned short SpiAdrLow; // SPI address low word
}spireadbyte_api_args;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

Loader Code Operation www.ti.com

22 SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

2.6.11 SpiReadWord(), SPI Memory Read Word Function
This function reads one word of data from an SPI memory at location SpiAdr. SpiAdr uses the 16 least
significant bits for SPI devices with up to 64KB of memory space and the 24 least significant bits for SPI
devices with more than 64KB of memory space.

Assembler access absolute
CALL &0F894h

(valid for MSP430L092 devices only)

Assembler access symbolic
CALL &SpiReadWord

Arguments
R12.W for SPI address upper part
R13.W for SPI address lower part

Return Values
R12.B word value read at SpiAdr

ANSI-C
unsigned short SpiReadWord(unsigned short SpiAdrHigh, unsigned short SpiAdrLow);

For calls by ApiCall
typedef struct
{

unsigned short SpiReadWordNum; // Function number (here #8)

union
{

unsigned short SpiAdrHigh; // SPI address high word
unsigned short SpiRxData; // Reserved for returned word

};

unsigned short SpiAdrLow; // SPI address low word
}spireadword_api_args;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

www.ti.com Loader Code Operation

23SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

2.6.12 SpiReadStream(), SPI Memory Read Stream Function
This function opens a read stream and returns the first byte of the stream from an SPI memory at location
SpiAdr. SpiAdr uses the 16 least significant bits for SPI devices with up to 64KB of memory space and the
24 least significant bits for SPI devices with more than 64KB of memory space. All the other elements of
the stream are read using SpiXfer. A read stream is terminated with SpiStrEnd.

Assembler access absolute
CALL &0F986h

(valid for MSP430L092 devices only)

Assembler access symbolic
CALL &SpiReadStream

Arguments
R12.W for SPI address upper part
R13.W for SPI address lower part

Return Values
R12.B byte value read at SpiAdr

ANSI-C
unsigned char SpiReadStream (unsigned short SpiAdrHigh, unsigned short SpiAdrLow);

For calls by ApiCall
typedef struct
{

unsigned short SpiReadStreamNum; // Function number (here #9)

union
{

unsigned short SpiAdrHigh; // SPI address high word
unsigned char SpiRxData; // Reserved for returned byte

};

unsigned short SpiAdrLow; // SPI address low word
}spireadstream_api_args;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

Loader Code Operation www.ti.com

24 SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

2.6.13 SpiStreamEnd(), SPI Memory Read Stream End HAL Function
This function terminates a read stream from SPI memory. A read stream is opened using SpiRdStr.
Elements of the read stream are received using SpiXfer.

Assembler access absolute
CALL &0F898h

(valid for MSP430L092 devices only)

Assembler access symbolic
CALL &SpiStreamEnd

ANSI-C
void SpiStreamEnd(void);

For calls by ApiCall
typedef struct
{

unsigned short SpiStreamEndNum; // Function number (here #10)
}spistreamend_api_args;

2.6.14 SpiWriteByte(), SPI Byte Write-Function
This function writes one byte to an SPI device. The address in SPI memory space is given in SpiAdr.
SpiAdr uses the 16 least significant bits for SPI devices with up to 64KB of memory space and the 24
least significant bits for SPI devices with more than 64KB of memory space.

Assembler access absolute
CALL &0F89Ah

(valid for MSP430L092 devices only)

Assembler access symbolic
CALL &SpiWriteByte

Arguments
R12.W for SPI address upper part
R13.W for SPI address lower part
R14.B for byte to be written to SPI address

ANSI-C
void SpiWriteByte(unsigned short SpiAdrHigh, unsigned short SpiAdrLow, unsigned char
data);

For calls by ApiCall
typedef struct
{

unsigned short SpiWriteByteNum; // Function number (here #11)
unsigned short SpiAdrHigh; // SPI address high word
unsigned short SpiAdrLow; // SPI address low word
unsigned char SpiData; // Byte to write to SPI address

}spiwritebyte_api_args;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

www.ti.com Loader Code Operation

25SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

2.6.15 SpiReadWrite(), SPI Byte Read Write HAL Function
This function exchanges one byte with an SPI device. The data argument provided by the caller is
transmitted to the SPI device, while the data pattern received from the SPI device during transmit is
returned to the caller of this function. The chip select of the SPI device is not affected by this function

NOTE: SPI devices may ignore some transmitted data depending on the internal state of the
executed SPI command. See the data sheet of the SPI device for details.

Assembler access absolute
CALL &0F89Ch

(valid for MSP430L092 devices only)

Assembler access symbolic
CALL &SpiReadWrite

Arguments
R12.B for byte data to be transmitted

Return Values
R12.B byte value read during transmission

ANSI-C
unsigned char SpiReadWrite(unsigned char TxData);

For calls by ApiCall
typedef struct
{

unsigned short SpiReadWriteNum; // Function number (here #12)
union
{

unsigned char SpiTxData; // Byte to send to SPI device
unsigned char SpiRxData; // Reserved for byte received from SPI device

};
}spireadwrite_api_args;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

Loader Code Operation www.ti.com

26 SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

2.6.16 CpyToSpi(), Copy From MSP430 to SPI Function
This function copies a data block from MSP430 memory space to SPI memory space. SpiAdr uses the 16
least significant bits for SPI devices with up to 64KB of memory space and the 24 least significant bits for
SPI devices with more than 64KB of memory space.

Assembler access absolute
CALL &0F89Eh

(valid for MSP430L092 devices only)

Assembler access symbolic
CALL &CpyToSpi

Arguments
R12.W for MSP430 source address
R13.W for SPI address lower part
R14.W for SPI address upper part
R15.W length of block in bytes

ANSI-C
void CpyToSpi(unsigned short SrcAdr, unsigned short SpiAdrHigh, unsigned short
SpiAdrLow, unsigned short Count);

For calls by ApiCall
typedef struct
{

unsigned short CpyToSpiNum; // Function number (here #13)
unsigned short SrcAdr; // Source address for MSP430
unsigned short SpiAdrHigh; // SPI address high word
unsigned short SpiAdrLow; // SPI address low word
unsigned char Count; // Length in bytes

}cpytospi_api_args;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

www.ti.com Loader Code Operation

27SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

2.6.17 CpyTo430(), Copy SPI to MSP430 Function
This function copies a data block from SPI memory space to MSP430 memory space. SpiAdr uses the 16
least significant bits for SPI devices with up to 64KB of memory space and the 24 least significant bits for
SPI devices with more than 64KB of memory space.

Assembler access absolute
CALL &0F8A0h

(valid for MSP430L092 devices only)

Assembler access symbolic
CALL &CpyTo430

Arguments
R12.W for SPI address upper part
R13.W for SPI address lower part
R14.A for MSP430 destination address
R15.W length of block in bytes

ANSI-C
void CpyTo430(unsigned short SpiAdrHigh, unsigned short SpiAdrLow, unsigned short
DstAdr, unsigned short Count);

For calls by ApiCall
typedef struct
{

unsigned short CpyTo430Num; // Function number (here #14)
unsigned short SpiAdrHigh; // SPI address high word
unsigned short SpiAdrLow; // SPI address low word
unsigned short DstAdr; // Destination address for MSP430
unsigned char Count; // Length in bytes

}cpyto430_api_args;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

Loader Code Operation www.ti.com

28 SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

2.6.18 SpiGenerateImage(), Generate Program Image in SPI Memory Utility Function
This function generates a bootable program image in SPI memory. SpiAdr uses the 16 least significant
bits for SPI devices with up to 64KB of memory space and the 24 least significant bits for SPI devices with
more than 64KB of memory space. This function is not a true function, as it does not return to the caller.
This function stops with an LPM4 state.

Assembler access absolute
CALL &0F8A2h

(valid for MSP430L092 devices only)

Assembler access symbolic
CALL &SpiGenerateImage

Arguments
R12.W for program address in MSP430 space
R13.W for SPI destination address upper word
R14.W for SPI destination address lower word
R15.W length of block in bytes
R11.W start address of code

ANSI-C
void SpiGenerateImage(unsigned short SrcAdr, unsigned short SpiAdrHigh, unsigned short
SpiAdrLow, unsigned short Count, unsigned short sadr);

For calls by ApiCall
typedef struct
{

unsigned short SpiGenerateImageNum; // Function number (here #15)
unsigned short SrcAdr; // Program address in MSP430 space
unsigned short SpiAdrHigh; // SPI address high word
unsigned short SpiAdrLow; // SPI address low word
unsigned char Count; // Length in bytes
unsigned short StartAdr; // Start address of code

}spigenerateimage_api_args;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

www.ti.com Loader Code Operation

29SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

2.6.19 CRC(), Calculate CRC
This function calculates the CRC over the given parameters and returns the calculated value.

Assembler access absolute
CALL &0F8A4h

(valid for MSP430L092 devices only)

Assembler access symbolic
CALL &CRC

Arguments
R12.W for initial CRC seed
R13.W for CRC start address
R14.W for CRC end address

Return Values
R12.W for calculated CRC value

ANSI-C
unsigned short CRC(unsigned short Seed, unsigned short StartAdr, unsigned short
EndAdr);

For calls by ApiCall
typedef struct
{

unsigned short CRCNum; // Function number (here #16)

union
{

unsigned short Seed; // Initial CRC seed
unsigned short CRCVal; // Reserved for returned CRC value

};

unsigned short StartAdr; // Address to start calculating CRC from
unsigned short EndAdr; // Address to stop calculating CRC

}spireadword_api_args;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

Loader Code Operation www.ti.com

30 SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

2.7 Software Registers and Public Data Elements
Table 3 lists the software registers. The software registers allow observation and operation mode control
of the loader and its API for debug purposes and advanced API use.

Table 3. Software Registers

Register Name Acronym Register
Type

Register
Access

Address
(in L092) Initial State Section

Current overlay SPI address CurOvlSpiH
CurOvlSpiL

read/write
read/write

word
word

1C50h
1C52h

0000h
0002h

Section 2.7.1
Section 2.7.2

Current overlay MSP430 program
address

CurOvlAdrH
CurOvlAdrL

read/write
read/write

word
word

1C54h
1C56h

0000h
0000h

Section 2.7.3
Section 2.7.4

Status register Status_Reg read/write word 1C58h 0000h Section 2.7.5
LED off function pointer LedOffPtr read/write word 1C5Ah Undefined Section 2.7.6
LED on function pointer LedOnPtr read/write word 1C5Ch Undefined Section 2.7.7
Unexpected interrupt count UnexpCnt read/write word 1C5Eh 0000h Section 2.7.8

Table 4 lists the secondary interrupt vectors. These vectors provide a vector field, similar to the INTVECS
section, that allows a dynamic attachment of interrupt handlers on devices with a loader code.

Table 4. Secondary Interrupt Vectors

Register Name Acronym Register Type Register
Access

Address
(in L092)

Reserved vectors RESERVED_xx_IV2 read/write word 1C60h to 1C68h
P2IFG.0 to PGIFG.3 interrupt vector PORT2_IV2 read/write word 1C6Ah
TA0CCR1 CCIFG1 interrupt vector TIMER0_A1_IV2 read/write word 1C6Ch
TA0CCR0 CCIFG0 interrupt vector TIMER0_A0_IV2 read/write word 1C6Eh
P1IFG.0 to P1IFG.6 interrupt vector PORT1_IV2 read/write word 1C70h
CxIFG interrupt vector APOOL_IV2 read/write word 1C72h
WDT interrupt vector WDT_IV2 read/write word 1C74h
TA1CCR1 CCIFG1 interrupt vector TIMER1_A1_IV2 read/write word 1C76h
TA1CCR0 CCIFG0 interrupt vector TIMER1_A0_IV2 read/write word 1C78h
User NMI vector UNMI_IV2 read/write word 1C7Ah
System NMI vector SYSNMI_IV2 read/write word 1C7Ch
Reset vector RST_IV2 read/write word 1C7Eh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

www.ti.com Loader Code Operation

31SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

2.7.1 CurOvlSpiH, Current Overlay SPI Source Address High Register

Figure 15. CurOvlSpiH Register
15 14 13 12 11 10 9 8

Reserved
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0
CurOvlSpiH

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Table 5. CurOvlSpiH Register Description

Bit Field Type Reset Description
15-8 Reserved RW 0h Reserved. Reads as 0.
7-0 CurOvlSpiH RW 0h Bit [23:16] of the SPI address that the last data/program container was loaded

from. This field is usually observed by debugging tools. This field is updated by
the load image private function of the loader

2.7.2 CurOvlSpiL, Current Overlay SPI Source Address Low Register

Figure 16. CurOvlSpiL Register
15 14 13 12 11 10 9 8

CurOvlSpiL
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0
CurOvlSpiL

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-1 RW-0

Table 6. CurOvlSpiLRegister Description

Bit Field Type Reset Description
15-0 CurOvlSpiL RW 2h Bit [15:0] of the SPI address that the last data/program container was loaded

from. This field is usually observed by debugging tools. This field is updated by
the load image private function of the loader.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

Loader Code Operation www.ti.com

32 SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

2.7.3 CurOvlAdrH, Current Overlay'Running Address High Register

Figure 17. CurOvlAdrH Register
15 14 13 12 11 10 9 8

Reserved
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0
Reserved CurOvlAdrH

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Table 7. CurOvlAdrH Register Description

Bit Field Type Reset Description
15-4 Reserved RW 0h Reserved. Reads as 0.
3-0 CurOvlAdrH RW 0h Bit [19:16] of the MSP430 address at which the current data/program container is

executed (also see Section 2.7.4). This field is usually observed by debugging
tools. This field is updated by the load image private function of the loader.

2.7.4 CurOvlAdrL, Current Overlay Running Address Low Register

Figure 18. CurOvlAdrL Register
15 14 13 12 11 10 9 8

CurOvlAdrL
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0
CurOvlAdrL

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-1 RW-0

Table 8. CurOvlAdrL Register Description

Bit Field Type Reset Description
15-0 CurOvlAdrL RW 2h Bit [15:0] of the MSP430 address at which current data/program container is

executed (also see Section 2.7.3). This field is usually observed by debugging
tools. This field is updated by the load image private function of the loader.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

www.ti.com Loader Code Operation

33SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

2.7.5 Status_Reg, Status Register

Figure 19. Status_Reg Register
15 14 13 12 11 10 9 8

Reserved
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0
Reserved SpiSize DebStp LedState

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Table 9. Status_Reg Register Description

Bit Field Type Reset Description
15-3 Reserved RW 0h Reserved. Reads as 0.
2 SpiSize RW 0h This bit indicates the address size of the SPI memory device detected.

0 = SPI memory device with 16-bit address size detected
1 = SPI memory device with 24-bit address size detected

1 DebStp RW 0h This bit controls the execution flow for debugging purposes.
0 = Program execution may be continued after data/program container load
1 = Program execution is stopped after data/program container load and LPM4 is
entered.

0 LedState RW 0h This bit reflects the state of external boost circuit for SPI device supply. This bit
is controlled by LedOn() and LedOff() or their custom plug-ins.
0 = Boost circuit is off (LED is off)
1 = Boost circuit is on (LED is on)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

Loader Code Operation www.ti.com

34 SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

2.7.6 LedOffPtr, Pointer to LedOff() Function Register

Figure 20. LedOffPtr Register
15 14 13 12 11 10 9 8

LedOffPtr
RW-1 RW-1 RW-1 RW-1 RW-1 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0
LedOffPtr

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Table 10. LedOffPtr Register Description

Bit Field Type Reset Description
15-0 LedOffPtr RW F800h This field points to the location where the default LedOff() function is located.

This field is initialized during loader startup with the address of the LedOff()
function of the loader itself. This location is used to redirect to a customer's
variant of a LedOff() function as a plug-in.

2.7.7 LedOnPtr, Pointer to LedOn() Function Register

Figure 21. LedOnPtr Register
15 14 13 12 11 10 9 8

LedOnPtr
RW-1 RW-1 RW-1 RW-1 RW-1 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0
LedOnPtr

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Table 11. LedOnPtr Register Description

Bit Field Type Reset Description
15-0 LedOnPtr RW F800h This field points to the location where the default LedOn() function is located.

This field is initialized during loader startup with the address of the LedOn()
function of the loader itself. This location is used to redirect to a customer's
variant of a LedOn() function as a plug-in.

2.7.8 UnexpCnt, Unexpected Interrupt Count Register

Figure 22. UnexpCnt Register
15 14 13 12 11 10 9 8

UnexpCnt
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0
UnexpCnt

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Table 12. UnexpCnt Register Description

Bit Field Type Reset Description
15-0 UnexpCnt RW 0h This field reflects the number of unexpected interrupts counted by the dummy

interrupt handler. By default, all possible interrupts are terminated after startup.
This value can be cleared by the debugging tool after the user application is
loaded and initialized. If this field is incremented, then at least one interrupt
source is not covered by the user application.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

Int_x_ Vec
Int_x_ Vec

Int_x_ VecInt_x_Vec
0xFFE0

0xFFFC

Interrupt Vectors Software ISR Stubs

Dummy Int_x
service routine

Int_x_ Vec
Int_x_ Vec

Int_x_ Vecmov &1C60h,PC
0x1C60

Int_x_ Vec
Int_x_ Vec

Int_x_ VecInt_x_Vec

Secondary Interrupt Vectors

0x1C7C
Int_x

service routine
Int_x

service routine
Int x

service routine
Int_x

service routine

User ISRs

Part of Loader in ROM Part of Application in RAM

www.ti.com Loader Code Operation

35SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

2.8 Interrupt Handling
The loader provides a method that lets an application program use all of the interrupt resources of a
device. A hardware interrupt causes the interrupt service routine at which the corresponding interrupt
vector is pointing to be run. In the case of the loader, a simple instruction (called a software stub or SW-
stub) is placed in that location and forwards control to the interrupt service routine at which the secondary
interrupt vector is pointing. The secondary interrupt vector is a software element in RAM that points to the
user's interrupt service routine (see Figure 23). Such SW-stubs and secondary interrupt vectors are
implemented for all interrupt sources. The secondary interrupt vectors are initialized to point to a dummy
interrupt handlers. This ensures that all interrupts, even unexpected ones, are terminated before the user
application takes control. The dummy interrupt handler counts the number of unexpected interrupts (see
Section 2.7.8).

There are slight differences between the L092 interrupt handling behavior and the C091/C092 behavior.
• The interrupt response of the L092 takes four cycles longer due to the redirection by the SW-stub.
• Unexpected interrupts are always terminated on the L092. If the user code does not terminate the

interrupts, the default L092 loader terminates them. The C091 and C092 do not terminate interrupts, so
the user code on these devices must handle all interrupts.

NOTE: It is strongly recommended that production applications terminate all interrupt vectors.

Figure 23. Secondary Interrupt Vectors

2.9 Sockets and Plug-Ins
The user can provide optimized functions to generate the signals for the boost converter by replacing the
default LedOn() and LedOff() functions that are supplied with the loader. To use custom functions:
1. Load the custom LedOn() and LedOff() functions into the MSP430 internal memory.
2. Set the function pointer registers, LedOnPtr (see Section 2.7.7) and LedOffPtr (see Section 2.7.6), to

the addresses of the custom functions.
The custom LedOn() and LedOff() functions are now used by the API core functions.

2.10 Power Efficient Program Loading
The original LedOn() and LedOff() functions generate a signal of 250 kHz with an 50% duty cycle. This
signal allows a variety of charge pumps to be used; however, this signal might not be the most power-
efficient one. An application might need a 125-kHz signal with a duty cycle of 25%, because this is the
optimum setting for the inductor used in the charge pump. A two-step boot approach can be used to save
power. In Figure 24 the first boot portion "B1" installs own LedOn() or simply changes the duty cycle of the
signal generator, and the secondary boot process called with XOVL() then loads the real application with a
significantly reduced power budget.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

OVL
Application Overlay 1

Loader

SUC

Stack

SPI Activity Ovl1 Ovl2 Ovl3 Ovl2

x x-2 x-.. x-4 x-.. x-4 x-.. x-10 x-.. x-4 x-2

X
O

V
L
(2

,0
,0

)

X
O

V
L
(#

O
v
l2

,0
,0

)

C
O

V
L
(#

O
v
l3

,0
,0

)

R
O

V
L
()

API Calls
Process Start

Process End

Process Suspend

Process Resume

Event Posting

0x55, 0xAA

OVL1

OVLOVL2

OVLOVL3

0x0
0x2

0x800

Content of
SPI Memory

Application

time

Application Overlay 2

Application Overlay 3

Code
Execution SUC L092 Loader

Software SPI
P2.x

P1.2

IAPP

Time

f = 250 kHz, 50%

VSPI

B
1

L092 Loader

f = 125 kHz, 25%

Application

Load
B

1

Code
Load Application

Loader Code Operation www.ti.com

36 SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

Figure 24. Two-Level Boot Approach

2.11 Programming With Overlays
The loader API allows the use of applications that are split into overlay sections. The functions XOVL()
(execute overlay), COVL() (call overlay), and ROVL() (return overlay), allow hierarchical program
structures using overlaid code. Figure 25 shows a complex application using the overlay mechanisms.

Figure 25. Complex Application With Three Overlays Segments

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

Ovl_x

First Boot Overlay

Loader

SUC

OpMode

SPI Activity B- Ovl Ovl _x

Time

CP 1

CP 2

CPx

X
O

V
L

(2
,0

,0
)

API Calls

a
n

y

L
O

V
L

()
,

X
O

V
L

()
,

C
O

V
L

()
,

R
O

V
L

()

Process Start

Process End

Lifetime of data

Event Posting

www.ti.com Loader Code Operation

37SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

2.12 Debugging Checkpoints for Code Development
Three checkpoints are implemented to ease debugging of code for regular and overlaid code (see
Figure 26).

Checkpoint CP1
This checkpoint is implemented inside the SUC. The execution is stopped when the application
password is found in the JTAG mailbox. The device enters LPM4 and waits for a debugger to start a
session. This stop is done before application execution on C091 and C092 and before loader
execution on L092.

Checkpoint CP2
This checkpoint is implemented in the loader core. The execution is stopped when the application
password is found in the JTAG mailbox. The device enters LPM4 and waits for an debugger to start a
session. This stop is done before application execution on L092.

Checkpoint CPx
This checkpoint is implemented inside the loader API. The execution is stopped when OpMode1 is set.
This stop is done after overlay load and before program continuation. This stop is done before
application execution on L092. The device enters LPM4 and waits for a debugger to continue the
debug session.

Figure 26. Debugging Checkpoints

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

LOVL(),
COVL(),
ROVL()

LOVL(),
COVL(),
ROVL()

‘L 092 loader core

‘L 092 loader core

All possible int.All possible int

Vec_x_Stub()Vec_x_Stub()LedOff () LedOn() SpiReadWrite()
SpiReadSta-

tusReg()

SpiWait()

RestoreTo

Defaults()

SpiWriteEnable()

SpiWriteStat-

usReg()

SpiWrite

Byte()

DLY500()

JTAG Sleep()

ErrBlink()

SpiGenenerate
Image()

SpiWrite

Word()

SWID()

XOVL()

LOVL(),
COVL(),
ROVL()

InitAPI ()

SpiLoad

Image() CpyTo430()

CpyToSPI ()

Common function pointer array to public L092 API functions

Vec_x_Stub()

MSP430 Hardware

MSP430 Firmware
(API)

Secondary Int.

Vector Table

Port 2 used as

SW SPI-IF

All possible
interrupt sources

Dummy_Hndl()

Reset Logic

Start-Up CodeMSP430L092
Loader Code

User Code xyz
MSP430 higher

layer software

Clock generation
for LED booster

funct ()
private

function

funct ()
public

function

Code
complex

code

element

Struct
public

structure

transaction

dependency

HW hardware

element

optional

dependency

domain

boundary

Symbol Legend
:

funct () HAL

function

ErrAndSleep ()

SpiErase ()

CheckJtag()

SpiRead

Stream ()

SpiStream
End()

CRC()

SpiRead

Word ()

SpiRead

Byte()
Address

LengthTest ()

Loader Code Operation www.ti.com

38 SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

2.13 Inner Mechanism of Loader
Figure 27 shows the inner mechanism of loader API, start-up code, and loader core.

Figure 27. Private and Public Functions of API and Dependencies

2.14 SPI Commands Used by Loader
MOSFET SPI memory devices share a common command set. The loader uses only the common
command set; special device-dependent commands are not used.

Table 13. SPI Commands Used by Loader

SPI Command Code EEPROMS Flash FRAM
Read status register 0x05 used used used
Write status register 0x01 used used used
Write Enable 0x06 used used used
Read memory 0x03 used used used
Write memory 0x02 used used used
Bulk Erase 0xC7 ignored (exp.) used ignored (exp.)
Read Stream 0x03, ... used used used

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

0.9-V to 1.65-V Supply

MSP430L092

P1.6

TDO/P2.2

TCK/P2.3

TDI/P2.1

TMS/P2.0

Optional
ULV-JTAG
Interface

C1C2

SPI-Flash
or

SPI-EEPROM

SCLK

SO

SI

CS

Adaptation
Network

(Level Shifter,...)

SPI Device
Voltage Supply

(Boost
Converter,...)

www.ti.com Target Hardware

39SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

3 Target Hardware
Devices with the loader like the MSP430L092 require a target hardware to operate. Figure 2 shown in the
introduction is such a target hardware optimized for a particular device. A more generic block diagram for
such a target hardware is shown in Figure 28. It is the user's choice to select one of the proposed SPI
device voltage supply booster circuits and adapter networks or to develop different circuits. It is also the
user's choice to select the type of SPI memory device used.

Figure 28. Generic Block Diagram of Target Hardware

3.1 Booster Converters
The circuits in Figure 29 through Figure 34 represent a variety of booster circuits that have been verified
and can be used to generate SPI device supply voltages from 1.9 V to 6 V.

Table 14 lists the values of the components shown in the following figures.

Table 14. Values of the Components

Component Value
R1 1 kΩ
R2 47 kΩ
C1 330 nF
C2 330 nF
C3 10 nF
D1 1N4148
D2 1N4148
L 33 µH/160 mA
Q BC807/BC817

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

Q

D2

C3LED

C1

L

P1.2

0.9-V supply

C2

SPI supply
D1

R1

R2

Blue on EPCOS

SIMID 1210-T

33 µH / 70 (1.17=>5.98)

Q

C1 L

P1.2

0.9-V supply

R1

R2

C2

LED

D1

D2

C3
SPI supply

Green on EPCOS

SIMID 1210-100

33 µH / 105 (1.17=>3.80)

Q D1
C2

LEDC1 L

P1.2

0.9-V supply

SPI supply

R1

R2

Red on Murata

LQH2MCN330K02

33 µH / 160 (1.17=>2.79)

Q D1

C2

LED

C1
L

P1.2

0.9-V supply

SPI supply

R1

R2

Yellow on Coilcraft

0805PS-333KL

33 µH / 160 (1.17=>3.19)

Q

D1

C2

LED

C1
L

P1.2

0.9-V supply

SPI supply

R1

R2

Orange on Murata

LQH 2MCN 330 K02

33 µH / 160 (1.17=>1.89)

Target Hardware www.ti.com

40 SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

Figure 29. Booster Converter Type A

Figure 30. Booster Converter Type B

Figure 31. Booster Converter Type C

Figure 32. Booster Converter Type D

Figure 33. Booster Converter Type E

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

TMS/P2.1

SO TDI/P2.3

SCLK
TDI/P2.2

CS
TCK/P2.0

Rb

Ra

VSPI

Rg

Rh

3 x SN65LVDS2

SI TMS/P2.1

SO TDO/P2.3

SCLK TDI/P2.2

CS TCK/P2.0

Rb

Ra

V
SPI

Rc Rd Re

SI TMS/P2.1

SO TDO/P2.3

SCLK TDI/P2.2

CS

Rb

Ra

V
SPI

Rc Rd

SI TMS/P2.1

SO TDO/P2.3

SCLK TDI/P2.2

CS TCK/P2.0

Rf

Re

Q
C2

LED

C1
L

P1.2

0.9-V supply

SPI supply

R1

R2

Orange on Murata

LQH2MCN330K02

33 µH / 160 (1.17=>1.89)

LED

www.ti.com Target Hardware

41SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

MSP430L092 Loader Code

Figure 34. Booster Converter Type F

3.2 Adaptation Networks
The circuits in Figure 35 through Figure 38 represent a variety of adaptation networks circuits suitable for
level adaptation for an SPI device being supplied from 1.8 V to 6 V.

Figure 35. Adaptation Network Type A Figure 36. Adaptation Network Type B

Figure 37. Adaptation Network Type C Figure 38. Adaptation Network Type D

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

Revision History www.ti.com

42 SLAU324A–March 2011–Revised July 2018
Submit Documentation Feedback

Copyright © 2011–2018, Texas Instruments Incorporated

Revision History

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from March 26, 2011 to July 18, 2018 .. Page

• Added the paragraph that begins "Before calling the API functions..." and the following steps and paragraph in
Section 2.6, API Functions of Loader ... 12

• Removed former "Calling Method" column from Table 2, Public API Functions .. 13
• Corrected the "Vector Position" value for all rows from "LedOff" to the end of Table 2, Public API Functions 13
• Changed ANSI-C example in Section 2.6.1, Loader(), Loader Entry Function .. 14
• Added the second paragraph in Section 2.6.2, ApiCall(), Low Convention API Call Function 14
• Changed ANSI-C example in Section 2.6.2, ApiCall(), Low Convention API Call Function 14
• Changed all examples from "Assembler access symbolic" to the end of section and deleted "Returned structure" in

Section 2.6.3, SWID(), Software Identifier Function... 15
• Updated ANSI-C and ApiCall examples in Section 2.6.4, LedOn(), Turn LED On HAL Function 16
• Updated ANSI-C and ApiCall examples in Section 2.6.5, LedOff(), Turn LED Off HAL Function 16
• Updated examples in assembler, ANSI-C, and ApiCall in Section 2.6.6, XOVL(), Execute Code Overlay Function....... 17
• Updated examples in assembler, ANSI-C, and ApiCall in Section 2.6.7, LOVL(), Load Code Overlay Function........... 18
• Deleted sadr (alternate start address) in Section 2.6.8, COVL(), Call Code Overlay Function 19
• Updated examples in assembler, ANSI-C, and ApiCall in Section 2.6.8, COVL(), Call Code Overlay Function 19
• Updated examples for ANSI-C and ApiCall in Section 2.6.9, ROVL(), Return and Resume Previous Code Overlay

Function ... 20
• Updated examples in assembler, ANSI-C, and ApiCall and deleted Returned Structure in Section 2.6.10, SpiReadByte(),

SPI Memory Read Byte Function.. 21
• Added Section 2.6.11, SpiReadWord(), SPI Memory Read Word Function .. 22
• Updated examples in assembler, ANSI-C, and ApiCall and deleted Returned Structure in Section 2.6.12,

SpiReadStream(), SPI Memory Read Stream Function .. 23
• Updated examples in assembler, ANSI-C, and ApiCall in Section 2.6.13, SpiStreamEnd(), SPI Memory Read Stream End

HAL Function ... 24
• Updated examples in assembler, ANSI-C, and ApiCall in Section 2.6.14, SpiWriteByte(), SPI Byte Write-Function 24
• Updated examples in assembler, ANSI-C, and ApiCall and removed Returned Structure in Section 2.6.15,

SpiReadWrite(), SPI Byte Read Write HAL Function ... 25
• Updated examples in assembler, ANSI-C, and ApiCall and removed Returned Structure in Section 2.6.16, CpyToSpi(),

Copy from MSP430 to SPI Function .. 26
• Updated examples in assembler, ANSI-C, and ApiCall and removed Returned Structure in Section 2.6.17, CpyTo430(),

Copy SPI to MSP430 Function .. 27
• Updated examples in assembler, ANSI-C, and ApiCall and removed Returned Structure in Section 2.6.18,

SpiGenerateImage(), Generate Program Image in SPI Memory Utility Function ... 28
• Added Section 2.6.19, CRC(), Calculate CRC... 29
• Changed Operation mode to Status register and changed Inital State of LED off function pointer and LED on function

pointer in Table 3, Software Registers .. 30
• Updates throughout Table 4, Secondary Interrupt Vectors .. 30
• Changed title of Section 2.7.5, Status_Reg, Status Register .. 33
• Changed Figure 29 .. 40

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU324A

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	MSP430L092 Loader Code
	1 Loader Code Introduction
	1.1 Typical Two-Chip Application
	1.2 Code Generation, Conventions, and Restrictions

	2 Loader Code Operation
	2.1 Start-up Behavior and Timing
	2.2 Start-up Code (SUC)
	2.3 Data Structure of SPI Memory
	2.4 Data and Program Containers
	2.5 Failsafe Mechanism
	2.6 API Functions of Loader
	2.6.1 Loader(), Loader Entry Function
	2.6.2 ApiCall(), Low Convention API Call Function
	2.6.3 SWID(), Software Identifier Function
	2.6.4 LedOn(), Turn LED On HAL Function
	2.6.5 LedOff(), Turn LED Off HAL Function
	2.6.6 XOVL(), Execute Code Overlay Function
	2.6.7 LOVL(), Load Code Overlay Function
	2.6.8 COVL(), Call Code Overlay Function
	2.6.9 ROVL(), Return and Resume Previous Code Overlay Function
	2.6.10 SpiReadByte(), SPI Memory Read Byte Function
	2.6.11 SpiReadWord(), SPI Memory Read Word Function
	2.6.12 SpiReadStream(), SPI Memory Read Stream Function
	2.6.13 SpiStreamEnd(), SPI Memory Read Stream End HAL Function
	2.6.14 SpiWriteByte(), SPI Byte Write-Function
	2.6.15 SpiReadWrite(), SPI Byte Read Write HAL Function
	2.6.16 CpyToSpi(), Copy From MSP430 to SPI Function
	2.6.17 CpyTo430(), Copy SPI to MSP430 Function
	2.6.18 SpiGenerateImage(), Generate Program Image in SPI Memory Utility Function
	2.6.19 CRC(), Calculate CRC

	2.7 Software Registers and Public Data Elements
	2.7.1 CurOvlSpiH, Current Overlay SPI Source Address High Register
	2.7.2 CurOvlSpiL, Current Overlay SPI Source Address Low Register
	2.7.3 CurOvlAdrH, Current Overlay'Running Address High Register
	2.7.4 CurOvlAdrL, Current Overlay Running Address Low Register
	2.7.5 Status_Reg, Status Register
	2.7.6 LedOffPtr, Pointer to LedOff() Function Register
	2.7.7 LedOnPtr, Pointer to LedOn() Function Register
	2.7.8 UnexpCnt, Unexpected Interrupt Count Register

	2.8 Interrupt Handling
	2.9 Sockets and Plug-Ins
	2.10 Power Efficient Program Loading
	2.11 Programming With Overlays
	2.12 Debugging Checkpoints for Code Development
	2.13 Inner Mechanism of Loader
	2.14 SPI Commands Used by Loader

	3 Target Hardware
	3.1 Booster Converters
	3.2 Adaptation Networks

	Revision History
	Important Notice

