
���������� ������ �� ���
��
������ �
	

Application
Report

1996 Digital Signal Processing Solutions

Printed in U.S.A., June 1996 SPRA040A

19
95

Report
Application

�� ��� ��
������ �
	
���������� ������

Interfacing Memory to the
TMS320C32 DSP

Peter Galicki
Digital Signal Processing Solutions—Semiconductor Group

SPRA040A
June 1996

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright 1996, Texas Instruments Incorporated

iii

Contents

ABSTRACT 1.

INTRODUCTION 1.

OVERVIEW OF THE ENHANCED MEMORY INTERFACE 2.

FUNCTIONAL DESCRIPTION OF THE ENHANCED MEMORY INTERFACE 4.

LOGICAL VERSUS PHYSICAL ADDRESS 12.

32-BIT MEMORY CONFIGURATION DESIGN EXAMPLES 14.

16/8-BIT MEMORY CONFIGURATION DESIGN EXAMPLES 20.

ONE BANK/TWO STROBES (32-BIT-WIDE MEMORY) DESIGN EXAMPLES 28.

RDY SIGNAL GENERATION 37.

iv

List of Illustrations
1 STRB0 and STRB1 Control Registers and the PRGW Pin 3.

2 STRB0 and STRB1 Data Access: Data Size = Memory Width 5.

3 STRB0 and STRB1 Data Access: Data Size ≠ Memory Width 7.

4 Program Fetch From 16-Bit STRB0 Memory 9.

5 Program Fetch From 32-Bit STRB1 Memory 11.

6 Description of Terms Involved in TMS320C32 Memory Interface 13.

7 32-Bit Memory Configuration (STRB0 and IOSTRB) 15.

8 32-Bit Memory Address Translation: Data Size = Memory Width 16.

9 32-Bit Memory Configuration (STRB0 and STRB1) 18.

10 32-Bit Memory Address Translation: Data Size < Memory Width 19.

11 16/8-Bit Memory Configuration: A Complete Minimum Design 21.

12 16/8-Bit Memory Address Translation: Data Size = Memory Width 23.

13 16/8-Bit Memory Address Translation: Data Size > Memory Width 25.

14 16/8-Bit Memory Address Translation: Data Size < Memory Width 27.

15 One Bank/Two Strobes Memory Configuration: Memory Width = 32 Bits 29.

16 One Bank/Two Strobes Address Translation: Data Size = 16 and 8 Bits 31.

17 One Bank/Two Strobes Address Translation: Data Size = 32 and 8 Bits 33.

18 One Bank/Two Strobes Address Translation: Data Size = 16 and 32 Bits 35.

19 RDY Signal Timing for STRB0 and STRB1 Cycles 38.

20 RDY Signal Generation for STRB0 Cycles 40.

21 RDY Signal Generation Timing Waveforms 41.

22 Address Decode for Multiple Memory Banks 43.

List of Examples
1 STRB0 and STRB1 Data Access: Data Size = Memory Width 4.

2 STRB0 and STRB1 Data Access: Data Size ≠ Memory Width 6.

3 Program Fetch From 16-Bit STRB0 Memory 8.

4 Program Fetch From 32-Bit STRB1 Memory 10.

5 32-Bit Memory Address Translation for Data Size = Memory Width 14.

6 32-Bit Memory Address Translation for Data Size < Memory Width 17.

7 16/8-Bit Memory Address Translation for Data Size = Memory Width 22.

8 16/8-Bit Memory Address Translation for Data Size > Memory Width 24.

9 16/8-Bit Memory Address Translation for Data Size < Memory Width 26.

10 One Bank/Two Strobes Address Translation for Data Size = 16 and 8 Bits 30.

11 One Bank/Two Strobes Address Translation for Data Size = 32 and 8 Bits 32.

12 One Bank/Two Strobes Address Translation for Data Size = 16 and 32 Bits 34.

13 RDY Signal Generation 39.

1

ABSTRACT

The TMS320C32, a low-cost floating-point digital signal processor, makes the advanced 32-bit
architecture of the TMS320C3x family available to a wider variety of applications than ever before. This
application report explains the features of the ’C32 enhanced memory interface and gives examples of ways
to interface external memory to the ’C32. These examples include interfacing to 32-, 16-, and 8-bit-wide
external memories. Also discussed is generation of the RDY signal when a single strobe controls multiple
external memory banks or peripherals, with some of them requiring wait states.

INTRODUCTION

The TMS320C32 digital signal processor is a low-cost member of the TMS320C3x generation of 32-bit
floating-point processors. The features of the TMS320C32 reduce the chip and system costs and increase
system performance, making the advanced 32-bit floating-point architecture of the ’C3x DSPs available
to a wide spectrum of cost-sensitive applications. This application report explains the features of the
TMS320C32 enhanced memory interface, and, by using design examples, it applies these features to
illustrate the many possible ways to interface external memory to the ’C32. By emphasizing system
solutions, this report also highlights the inherent flexibility of the memory interface to adapt efficiently to
a variety of low-cost applications.

In addition to interfacing to 32-bit-wide memory, the ’C32 fully supports program fetches from 16-bit-wide
memory and data access cycles from 16- and 8-bit-wide memory. Memory of any width (8, 16, or 32 bits)
can be used to store data of any size (8, 16, or 32 bits); that is, memory width and data size need not be the
same. Multiple strobes of the enhanced memory interface give the ’C32 the flexibility to directly access
several memory banks of different widths and speeds. Up to three banks can be simultaneously interfaced
without any glue logic. The ’C32’s ability to internally pack and unpack individual bytes of data can
significantly reduce the external memory chip count to just one 8-bit-wide SRAM (with programs running
internally).

Like the previous members of the ’C3x generation, the TMS320C32 is a 32-bit device with 32-bit internal
memory, 32/40-bit internal registers, 32-bit internal buses, and other features. In fact, the 8/16-bit external
memory interface can be completely transparent to the programmer after initializing two control registers.
For example, an application running on the ’C32 can operate exclusively on 32-bit data types, but the
external memory can be limited to one 8-bit-wide SRAM. In this case, the ’C32 processes the data just like
the ’C30 or ’C31, but when it reads or stores the 32-bit words, it accesses the external memory in four cycles
(one byte at a time) instead of one cycle.

As a different example, a ’C32 program can access integer data that never exceeds a value of 256. The
enhanced memory interface can be programmed to convert the internal 32-bit words to external 8-bit words
every time this data is accessed. The external 8-bit-wide memory is accessed in one cycle, and each 32-bit
internal word is accessed as a single byte externally, resulting in memory savings of three bytes per 32-bit
word.

2

OVERVIEW OF THE ENHANCED MEMORY INTERFACE

The ’C32 accesses external memory with one 24-bit address bus, one 32-bit data bus, and three strobes:
IOSTRB, STRB0, and STRB1. The strobes are mapped to selected portions of the memory map as shown
in Figure 1. For example, if the CPU is reading data from location 881234h, the active strobe during the
read bus cycle is STRB0. Unlike the other two strobes, STRB0 is assigned to two noncontiguous address
spaces within the memory map to provide extra flexibility in address decoding for glueless memory
interfaces.

The behavior of IOSTRB is similar to its counterpart in the TMS320C30. Its timing characteristics are
slightly relaxed in comparison with STRB0 and STRB1 cycles to better accommodate slower I/O
peripherals. In contrast to STRB0 and STRB1, IOSTRB uses a single signal line and accesses the external
data one full 32-bit word at a time. STRB0 and STRB1 are composed of four signal lines each. The multiple
signal lines per strobe enable the STRB0 and STRB1 cycles to access external memory one byte, a
half-word, or a full word at a time. For example, to read a single byte from a 32-bit-wide external memory
location mapped to STRB0, the address on the address bus points to the selected 32-bit word and only one
STRB0 signal is activated (driven low) to select the desired byte. To access two bytes of data at the memory
location mapped to STRB1, two STRB1 signal lines are asserted during the bus cycle. Full 32-bit bus cycles
involving STRB0 or STRB1 memory space result in four strobe signals simultaneously accessing four
bytes of data. The 32-bit STRB0 and STRB1 bus cycles are no different functionally from the IOSTRB
cycles but simply have tighter timing parameters.

The STRB0 and STRB1 cycles are not limited to just selecting bytes out of 32-bit memory locations. There
are two strobe control registers that configure the data size and memory width for STRB0 and STRB1 bus
cycles (one control register per strobe). With proper initialization of the strobe control registers, the bus
cycles can be configured to encompass any combination of data size and physical memory widths. For
example, a byte can be read from a 16-bit-wide memory or a 32-bit word can be written to an 8-bit-wide
memory by configuring memory width and data size fields of the corresponding strobe control registers
(see Figure 1).

As is the case with the other members of the ’C3x generation, the ’C32 program, as well as data, can reside
in any portion of the memory map. The ’C32 program fetches from address space mapped to IOSTRB are
indistinguishable from IOSTRB data reads or writes. However, the STRB0 and STRB1 cycles are
configured slightly differently for program fetches than for data accesses. Program and data can still share
the same portions of the memory map, but instead of setting the memory width and data size fields in
STRB0 and STRB1 control registers, the program fetch cycles from the memory spaces mapped to STRB0
and STRB1 are configured by hardwiring the PRGW (program memory width select) pin. There is no need
to use the data size fields, because all program fetches apply only to instruction words that are 32 bits wide.
The memory width field of the strobe control register is useless at reset, when the processor is fetching the
reset vector from memory. At that point the strobe control register is always configured in the same way,
but different systems can have different memory widths. The PRGW pin indicates to the memory interface
whether the program memory is 16 or 32 bits wide. Eight-bit program memory is not supported, because
four cycles per instruction degrade the performance too much to be useful for most applications.

3

D0 – D31

PRGW pin

A0 – A23

FFFFFFh

880000h

8FFFFFh

900000h

82FFFFh

810000h

7FFFFFh

0h

VCC

STRB0 CONTROL REGISTER

STRB0_B2

STRB0_B1

STRB0_B0

IOSTRB

STRB1_B3

STRB1_B2

STRB1_B1
STRB1_B0

STRB1 CONTROL REGISTER

STRB0

STRB0

STRB1

Applies only to
data access
cycles to/from

memory
addresses
mapped to

Applies only to
program fetch

cycles from
memory

addresses
mapped to

Applies only to
data access
cycles to/from

memory
addresses
mapped to

IOSTRB cycles
are always
32-bits wide

(data access or
program fetch)

EXTERNAL
MEMORY

BANK
1

EXTERNAL
MEMORY

BANK
2

EXTERNAL
MEMORY

BANK
3

MEM
WIDTH

DATA
SIZE

MEM
WIDTH

DATA
SIZE

STRB
CONFIG

PHYSICAL
MEMORY

32-bit
program
memory

16-bit
program
memory

LOGICAL
MEMORY

MAP
TMS320C32 ENHANCED MEMORY INTERFACE

IOSTRB

STRB0_B3

STRB0

STRB0, STRB1

STRB0

Figure 1. STRB0 and STRB1 Control Registers and the PRGW Pin

4

FUNCTIONAL DESCRIPTION OF THE ENHANCED MEMORY INTERFACE

As evident in Figure 1, Figure 2, Figure 3, and Figure 4, the enhanced memory interface controls all data
and program traffic between data buses inside the chip and the 32-bit external memory bus. For any bus
cycle involving a logical memory address range mapped to IOSTRB, the memory interface simply
connects the external data bus with an appropriate internal data bus without further data manipulation.

The memory interface is much busier when the ’C32 is accessing logical memory addresses mapped to
STRB0 and STRB1. Depending on the data size and external memory width (as defined by corresponding
strobe control registers), data can be packed, unpacked, truncated, or shifted on its way to and from the chip.

The following examples illustrate how the data is manipulated when the interface has to match
variable-size data with 8-, 16-, and 32-bit-wide physical memories. In these examples, five lines of code
(included in each example’s program space) read five integers from one data space, convert them to
floating-point format, and write them to another memory space that is assigned to a different strobe. Each
example has a different combination of data sizes and external memory widths to illustrate the range of
possible combinations.

For data access and program fetch cycles in which the data size exceeds the physical memory width, the
least significant bytes/half-words are always transferred first.

Example 1. STRB0 and STRB1 Data Access: Data Size = Memory Width

This example illustrates a savings in external memory by using bytes and half-words to store data that is
less than 32 bits in size (see Figure 2). As in all cases, the data size and memory width for STRB0 and
STRB1 data access cycles are configured in the corresponding strobe control registers (see Table 1).

The short program stored in the internal RAM0 memory begins with the LDI instruction reading an 8-bit
integer from 8-bit-wide STRB0 memory. As the integer data passes through the memory interface, it is
sign-extended to 32 bits and loaded to R0 as a 32-bit integer. Next, the FLOAT instruction converts the
integer in R0 to a 40-bit floating-point number and loads it to R1. Finally, the STF instruction truncates the
40-bit contents of R1 to 32 bits and stores it in the 16-bit-wide STRB1 memory. As the data passes through
the memory interface, the 24-bit mantissa is truncated to eight bits (the 8-bit exponent remains
unmodified).

Table 1. STRB0 and STRB1 Data Access: Data Size = Memory Width

Strobe Data Size
Memory
Width

Input Data STRB0 8 8

Output Data STRB1 16 16

Program RAM0 32 32

5

0 1 0 1

32 bits

32 bits

RAM0

fetch)

MEM
WIDTH

16 bits 16 bits

SIZE
DATA

STRB1 CNTRL REG

LDI

RPTB

LDI

FLOAT

L1

(data write)

STRB0

STRB
CONFIG

0

RAM0

(data read)

FPU

DATAMEM

MAP

LOGICAL

8 bits

1002h

1001h

logical address

87FE81h

1004h

1005h

1003h

102

101

104

105

32 bits

101.0

physical memory

STRB0

8 bits

(program

103

logical address

87FE83h

87FE84h

87FE85h

910005h

910004h

910003h

910002h

910001h

105.0

104.0

16 bits

physical memory

STRB1

16 bits

102.0

87FE82h

32 bits
32 bits

103R0

STRB0

MEMORY

TMS320C32

IR

CONTROL

ALU
PC

AR1

103.0R1

00 00

8 bits

WIDTH

32 bits

SIZE

8 bits

40 bits

IOSTRB

STRB1

STRB0

910003h

87FE83h

STRB0 CNTRL REG

1003h AR0

M
E

M
 IN

T
E

R
FA

C
E

(S
T

R
B

0)
M

E
M

 IN
T

E
R

FA
C

E
(S

T
R

B
1)

103.0

STF

4,RC

L1

*AR0++,R0

R0,R1

R1,*AR1++

Figure 2. STRB0 and STRB1 Data Access: Data Size = Memory Width

6

Example 2. STRB0 and STRB1 Data Access: Data Size � Memory Width

This example shows that the input/output data does not have to be the same size as the memory from which
it is being read or to which it is being written (see Table 2). As in all cases, the data size and memory width
for STRB0 and STRB1 data access cycles are configured in the corresponding strobe control registers.

The short program stored in the RAM1 memory begins with the LDI instruction reading an 8-bit integer
from 16-bit-wide STRB0 memory (see Figure 3). Since each address contains two data bytes, the memory
interface uses different STRB0 lines to differentiate between the high byte and the low byte (both STRB0
and STRB1 comprise four signals each, one for each byte of the 32 bits). Next, the FLOAT instruction
converts the integer in R0 to a 40-bit floating-point number and loads it to R1. Finally, the STF instruction
stores the contents of R1 to 16-bit-wide memory as a 32-bit number. Before the data arrives at the memory
interface, the 32-bit mantissa is truncated to 24 bits (the 8-bit exponent remains unmodified). The memory
interface then stores the 24-bit mantissa and the 8-bit exponent in 16-bit-wide memory, two bytes at a time,
using two cycles and two physical memory addresses.

Table 2. STRB0 and STRB1 Data Access: Data Size � Memory Width

Strobe Data Size
Memory
Width

Input Data STRB0 8 16

Output Data STRB1 32 16

Program RAM1 32 32

7

1

32 bits

32 bits fetch)

11

MEM

0

WIDTH

16 bits 32 bits

SIZE
DATA

STRB1 CNTRL REG

(data write)

STRB0

STRB
CONFIG

0

RAM1

(data read)

FPU

DATAMEM
16 bits

102 1001h

logical address

87FF81h

1005h

1003h

32 bits

physical memory

STRB0

8 bits

(program

logical address

87FF83h
87FF84h
87FF85h

910005h

910004h

910003h

910002h

910001h

16 bits

physical memory

STRB1

16 bits

87FF82h

32 bits
32 bits

104R0

TMS320C32

IR

CONTROLALU
PC

AR1

104.0R1

00

16 bits

WIDTH

32 bits

SIZE

8 bits

40 bits

910004h

87FF83h

STRB0 CNTRL REG

1004h AR0

MAP

LOGICAL

STRB0

MEMORY

IOSTRB

STRB1

STRB0

RAM1

M
E

M
 IN

T
E

R
FA

C
E

(S
T

R
B

0)

LDI
RPTB
LDI
FLOAT

L1 STF

4,RC
L1
*AR0++,R0
R0,R1
R1,*AR1++

104

101

103

105

101.0

102.0

103.0

104.0

105.0

M
E

M
 IN

T
E

R
FA

C
E

(S
T

R
B

1)

0 0 0 01

0 111

Figure 3. STRB0 and STRB1 Data Access: Data Size � Memory Width

8

Example 3. Program Fetch From 16-Bit STRB0 Memory

This example shows that program memory mapped to STRB0 or STRB1 space can be configured to 16
bits by hardwiring the PRGW pin to a high state (see Table 3). It also demonstrates that 32-bit data transfers
to and from the 32-bit-wide external memory do not involve any data operations in the memory interface.

The short program stored in STRB0 memory begins with the LDI instruction reading a 32-bit integer from
32-bit-wide IOSTRB memory and loading it to R0 (see Figure 4). Next, the FLOAT instruction converts
the integer in R0 to a 40-bit floating-point number and loads it into R1. Finally, the STF instruction
truncates the 40-bit contents of R1 to 32 bits and stores it in the 32-bit-wide STRB1 memory. The data is
not modified as it passes through the memory interface.

The program controlling the data conversion in this example is stored in the 32-bit-wide memory bank
mapped to STRB0. As discussed earlier, program fetch cycles do not reference the strobe control register
to determine the width of the program memory. Instead, the memory interface checks the state of the PRGW
pin to determine the memory width. Because the program memory is 16 bits wide, the PRGW pin should
be pulled up to VCC, effectively directing the memory interface to fetch instructions in two bus cycles per
instruction (16 bits at a time).

Table 3. Program Fetch From 16-Bit STRB0 Memory

Strobe Data Size
Memory
Width

Input Data STRB0 32 32

Output Data STRB1 32 32

Program IOSTRB 32 16

9

(data read)
IOSTRB

32 bits

(program
STRB0

DATAMEM

(data write)

ALU

16 bits

logical address

820001h

820002h

820003h

physical memory

103

101

102

32 bits

fetch)

16 bits

1001h

1002h

1003h

1004h

1005h

logical address

820004h

820005h

910005h

910004h

910003h

910002h

910001h

105

104

32 bits

physical memory

STRB1

103.0

102.0

104.0

105.0

101.032 bits

VCC

PRGW pin

32 bits

IR

103

32 bits

R0

AR0820003h

CONTROLFPUPC

AR1

103.0R1

WIDTH SIZE

40 bits 32 bits

910003h

1003h

STRB1 CNTRL REG

TMS320C32

1 1 1 1

MAP

LOGICAL

STRB0

MEMORY

IOSTRB

STRB1

STRB0

LDI

RPTB

LDI

FLOAT

L1 STF

4,RC

L1

*AR0++,R0

R0,R1

R1,*AR1++

M
E

M
 IN

T
E

R
FA

C
E

(S
T

R
B

0)
M

E
M

 IN
T

E
R

FA
C

E
(S

T
R

B
1)

32 bits 32 bits

32 bits

Figure 4. Program Fetch From 16-Bit STRB0 Memory

10

Example 4. Program Fetch From 32-Bit STRB1 Memory

This example shows that program memory mapped to STRB0 or STRB1 space can be configured to 32
bits by hardwiring the PRGW pin to a low state (see Table 4). It also demonstrates that 32-bit data transfers
to and from the 32-bit-wide external memory do not involve any data operations in the memory interface.

The small program stored in STRB1 memory begins with the LDI instruction reading a 32-bit integer from
32-bit-wide STRB0 memory and loading it to R0 (see Figure 5). Next, the FLOAT instruction converts the
integer in R0 to a 40-bit floating-point number and loads it into R1. Finally, the STF instruction truncates
the 40-bit contents of R1 to 32 bits and stores it in the 32-bit-wide IOSTRB memory. The data is not
modified as it passes through the memory interface.

The program controlling the data conversion in this example is stored in the 32-bit-wide memory bank
mapped to STRB1. As discussed earlier, program fetch cycles do not reference the strobe control register
to determine the width of the program memory. Instead, the memory interface checks the state of the PRGW
pin to determine the memory width. Because the program memory is 32 bits wide, the PRGW pin should
be grounded, effectively directing the memory interface to fetch instructions in one bus cycle per
instruction (32 bits at a time).

Table 4. Program Fetch From 32-Bit STRB1 Memory

Strobe Data Size
Memory
Width

Input Data STRB0 32 32

Output Data STRB1 32 32

Program IOSTRB 32 32

11

fetch)
(program

STRB0

STRB
CONFIG

IOSTRB

(data read)

FPU

DATAMEM

32 bits

1002h

1001h

logical address

820001h

1004h

1005h

1003h

102

101

104

105

32 bits

101.0

physical memory

STRB0

32 bits

(data write)

103

logical address

820003h

820004h

820005h

910005h

910004h

910003h

910002h

910001h

105.0

104.0

103.0

32 bits

physical memory

STRB1

32 bits

102.0 820002h

PRGW pin

32 bits
32 bits

103R0

TMS320C32

IR

CONTROL
ALU

PC

AR1

103.0R1

32 bits

WIDTH

32 bits

SIZE

32 bits

40 bits

820003h

910003h

STRB0 CNTRL REG

1003h AR0

MAP

LOGICAL

STRB0

MEMORY

IOSTRB

STRB1

STRB0
LDI

RPTB
LDI

FLOAT

L1 STF

4,RC

L1

*AR0++,R0

R0,R1

R1,*AR1++

M
E

M
 IN

T
E

R
FA

C
E

(S
T

R
B

1)

11 110

M
E

M
 IN

T
E

R
FA

C
E

(S
T

R
B

0)

32 bits

32 bits

101.0

102.0

104.0

105.0

Figure 5. Program Fetch From 32-Bit STRB1 Memory

12

LOGICAL VERSUS PHYSICAL ADDRESS

The ’C32 is a 32-bit processor. Its instruction set operates on 32-bit registers, and the CPU alone does not
understand 8- or 16-bit data or data transfers. When a ’C32 instruction writes to a physical address, it sends
all 32 bits of data to the memory interface unit via an internal bus. It is only in the memory interface that
the internal 32-bit data can assume 8-bit or 16-bit form, provided that the address is in the STRB0 or STRB1
range of the memory map. The data size field of the STRB0 or STRB1 control register determines the actual
size of the data portion that is placed on the external memory bus of the ’C32. Likewise, when a ’C32
instruction reads a portion of data from external memory, the memory interface always converts it to 32
bits as it enters the chip. What happens to the external data as it goes through the memory interface on the
way to the CPU depends on the contents of the STRB0 and STRB1 control registers. Once again, only the
data whose address falls within the STRB0 or STRB1 range of the memory map can be manipulated inside
the memory interface unit.

Throughout this document, the term logical address applies to a memory location as it is referenced by ’C32
instructions and that is a part of the processor’s logical memory map. The physical address refers to the
address that appears at the ’C32 address pins. The valid ranges of the logical memory map that the program
instructions can reference are determined by the external memory available in the system, how the external
memory address pins are matched with the ’C32 address pins (which depends on physical memory width),
and the contents of the STRB0 and STRB1 registers (which define physical memory width and the data
size).

The logical memory map shown in Figure 6 always contains 32-bit data as far as the CPU is concerned.
It is only when the data passes through the memory-interface block that the data size can actually change
to 8 or 16 bits, as directed by the appropriate strobe control register. For example, when the processor reads
a byte (eight bits) from external memory, the 8-bit data is sign-extended or padded with 0s as it passes
through the memory interface so that it becomes 32-bit data inside the ’C32. Likewise, when the processor
writes the contents of a 32-bit register to 16-bit-wide external memory, the internal 32-bit data is truncated
to 16 bits as it passes through the memory interface. The dashed lines inside the logical memory map in
Figure 6 show the internal 32-bit representation of the external data that has a physical size of 8 or 16 bits.

Figure 6 also has additional explanation of logical/physical addresses and other terms related to the ’C32
memory interface.

13

16 bits
SIZE =
DATA

DATA
SIZE =
8 bits

the CPU)
(as seen by
ADDRESS
LOGICAL

24-bit

PHYSICAL MEMORY
individual bytes from

signals can select
multiple STROBE

address pins)
the processor’s

(as presented on
ADDRESS
PHYSICAL

24-bit

address pins)
the processor’s
as presented on
(valid addresses
MEMORY MAP

PHYSICAL

(for this example)
16 bits

WIDTH =
MEMORY

devices
EXTERNAL MEMORY

byte-wide

wide
can be 32, 16, or 8 bits
EXTERNAL DATA BUS

packing/unpacking
mapping and data

PHYSICAL ADDRESS
pin control LOGICAL to

REGISTERS and the PRGW
STRB0, STRB1 CONTROL

bits wide
are always 32
DATA BUSES

INTERNAL

32 bits
SIZE =
DATA

by the 32-bit CPU)
(addresses as seen

MEMORY MAP
LOGICAL

< 16 bits>CS

ADDR

CS

ADDR

DATADATA

STROBES

ADDRADDR

CPU

DMA

TMS320C32

DATA

PRGW pin

DATA

STRB0 CNTRL REG

STRB1 CNTRL REG

E
X

T
E

R
N

A
L

M
E

M
O

R
Y

 IN
T

E
R

FA
C

E

IN
T

E
R

N
A

L
M

E
M

O
R

Y

for 16-bit-wide memory,
STRBx_B3 pin is

assigned to address bit
A-1

for 8-bit-wide memory,
STRBx_B3 and STRBx_B2

pins are assigned to
address bits A-1 and A-2

Figure 6. Description of Terms Involved in TMS320C32 Memory Interface

14

32-BIT MEMORY CONFIGURATION DESIGN EXAMPLES

The following two examples describe interfacing the ’C32 to 32-bit-wide external memory from both the
hardware and software-addressing viewpoints.

Example 5. 32-Bit Memory Address Translation for Data Size = Memory Width

This example demonstrates that when both data size and memory width are 32 bits, the STRB0 memory
interface has the same functionality as that for IOSTRB. The only difference between the two is the number
of strobe lines connected to the respective memory banks: four for STRB0 and one for IOSTRB.

Figure 7 is a schematic diagram of a 32-bit interface consisting of two memory banks, each controlled by
a separate strobe. The four signal lines of STRB0 are assigned to the chip-select pins of four
32K × 8 15-ns SRAMs, and the single IOSTRB signal line is connected to the chip-enable pins of four
32K × 8 30-ns EPROMs. For the 60-MHz version of the ’C32, the 15-ns SRAMs operate with zero wait
states and the 30-ns EPROMs require one wait state (software wait states can be programmed in the strobe
control registers).

Figure 8 illustrates the programmer’s view of the hardware memory configuration depicted in Figure 7.
The logical addresses (appearing in program instructions) are represented in the context of the entire
memory map to identify the respective strobes. The physical addresses are the values that actually appear
at the pins of the processor. Since IOSTRB operates exclusively on 32-bit data types, the memory interface
does not modify the address going in and out of the CPU, and the logical and physical addresses are
identical. In this example, STRB0 also operates on 32-bit data since the memory width field of the STRB0
control register contains a binary value of 11. Since the STRB0 physical memory width is also 32 (see data
size field), there is no need for any address translation from the logical address to its physical
representation.

15

WE

OE

D7

D4
D5

D3
D2

D6

D0
D1

A14

A11
A12
A13

WE

OE
A11

WE

OE A12

A14
A13

A10
A9

A7
A6

A8

A4
A5

A2
A1

A3

D15

D13
D12

D10
D11

D14

A0
D8

CS

D9

A10
A9

A7
A6

A8

A5
A4

A2
A1

A3

D23

D20
D21

D19
D18

D22

A0
D16

CS

D17

CS

D7
D6

D3
D4

D2
D1

D5

D0

D14
D15

D11
D12

D9
D10

D13

A10
A11

A9
A8

A6
A5

A7

A4
A3

A1
A0

A2

D23
D22D5

D7
D6

D19
D20

D18
D17D0

D4

D2
D1

D3
D21

A12

A14
A13

D16 D8

A14
A13
A12
A11

WE

OE

A14

A11
A12
A13

HOLDA

R/W

HOLD

RDY

PRGW
VCC

A9
A8
A7
A6

A4
A3

A0
A1
A2

A5
D7
D6

A9
A10

A7
A6

A8

D5
D4

D2
D1

D3

A5
A4

A2
A1

A3

D26
D27
D28
D29
D30
D31

D0A0

CS
D24
D25

STRB0_B2

STRB0_B1

STRB0_B3

A10

A0–A23

SHZ

MCBL/MP

RESET

INT0

INT2

INT3

INT1

IACK

XF0

XF1

CLKIN

H3

H1

D25

D31

D28
D29

D27
D26

D30

STRB0_B0

IOSTRB

CE
D24

TMS320C32

EMU3

EMU0

EMU1

EMU2

TCLK0

TCLK1

FSR0

DR0

DX0

CLKR0

CLKX0

FSX0

D0–D31

STRB1_B3/A–1
STRB1_B2/A–2
STRB1_B1
STRB1_B0

A6

A2
A1
A0

A5
A4
A3

A9
A8
A7

A12
A11
A10

A14
A13

A13
A12
A11

A9
A8
A7
A6

A4
A3

A0
A1
A2

A5

A10

A14

D7
D6
D5
D4

D2
D1

D3

D0

D7
D6
D5
D4

D2
D1

D3

D0

D7
D6
D5
D4

D2
D1

D3

D0

A13
A12
A11

A9
A8
A7
A6

A4
A3

A0
A1
A2

A5

A10

A14
A13
A12
A11

A9
A8
A7
A6

A4
A3

A0
A1
A2

A5

A10

A14

CE CE CE

A10
A11

A9
A8

A6
A5

A7

A4
A3

A1
A0

A2

A12

A14
A13

A10
A11

A9
A8

A6
A5

A7

A4
A3

A1
A0

A2

A12

A14
A13

D5

D7
D6

D0

D4

D2
D1

D3

D5

D7
D6

D0

D4

D2
D1

D3

A10
A11

A9
A8

A6
A5

A7

A4
A3

A1
A0

A2

A12

A14
A13

D5

D7
D6

D0

D4

D2
D1

D3

A13
A12
A11

A9
A8
A7
A6

A4
A3

A0
A1
A2

A5

A10

A14
A13
A12
A11

A9
A8
A7
A6

A4
A3

A0
A1
A2

A5

A10

A14
A13
A12
A11

A9
A8
A7
A6

A4
A3

A0
A1
A2

A5

A10

A14
A13
A12
A11

A9
A8
A7
A6

A4
A3

A0
A1
A2

A5

A10

A14

S
R

A
M

 (
32

K
 x

 8
)

E
P

R
O

M
 (

32
K

 x
 8

)

S
R

A
M

 (
32

K
 x

 8
)

E
P

R
O

M
 (

32
K

 x
 8

)

S
R

A
M

 (
32

K
 x

 8
)

E
P

R
O

M
 (

32
K

 x
 8

)

S
R

A
M

 (
32

K
 x

 8
)

E
P

R
O

M
 (

32
K

 x
 8

)

OEOEOEOE

Figure 7. 32-Bit Memory Configuration (STRB0 and IOSTRB)

16

STRB0
_B0

STRB0
_B1

STRB0
_B2_B3

STRB0

ADDRESS
PHYSICALSIZE

DATA
WIDTH
MEM

CONFIG
STRB

ADDRESS
LOGICAL

MAP
MEMORY
LOGICAL

10h

2

3

7FFFh

10h

32768

32767

32766

3

32766

2

IOSTRB
IOSTRB

7FFFh

IOSTRB

32767

32768

IOSTRB

1 10STRB0 CNTRL REG

32 BitsSTRB0 32 Bits

Logical Address

Physical Address

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0h1

2

3

1 0 0 1 0 0 0 0 0

Logical / Physical Address

1

7FFFh

810000h

3

2

32-bit Data Size – Address Not Shifted

IOSTRB – Address Not Shifted

817FFFh

32766

32767

32767

32766

1 0 0 1 0 0 0 0 0

1 1

1 0 0 0 0 0 0 1 0

32768

32768

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

STRB0

IOSTRB

STRB1

STRB0

A14 A0

A14 A0

A14 A0

Figure 8. 32-Bit Memory Address Translation: Data Size = Memory Width

17

Example 6. 32-Bit Memory Address Translation for Data Size < Memory Width

This example demonstrates that if the data can fit in 16 or 8 bits of precision, the effective addressing range
of the same physical 32-bit memory can be doubled or quadrupled by simply changing the data size field
of the appropriate strobe control register before the transfers begin. The logical-to-physical address
translation involves a 2-bit address shift if the data size is 8 bits and a 1-bit shift if the data size is 16 bits.
Address shifts and the activation of selected external memory bytes with appropriate strobe control lines
are automatically performed by the memory interface (as directed by strobe control registers) and can be
considered transparent to the programmer.

Figure 9 is the schematic diagram of a 32-bit interface consisting of two memory banks, each controlled
by a separate strobe. The four signal lines of STRB0 are assigned to the chip-select pins of four
32K × 8 15-ns SRAMs, and the four signal lines of STRB1 are connected to the chip-enable pins of four
32K × 8 30-ns EPROMs. For the 60-MHz version of the ’C32, the 15-ns SRAMs operate at zero wait states
and the 30-ns EPROMs require one wait state (software wait states can be programmed in strobe control
registers).

Figure 10 illustrates the programmer’s view of the hardware memory configuration depicted in Figure 9.
The logical addresses (appearing in program instructions) are represented in the context of the entire
memory map to identify the respective strobes. In this case, the STRB0 memory transfers operate on 16-bit
data to and from 32-bit-wide memory, as defined in the STRB0 control register. STRB1 accesses 8-bit data
to and from 32-bit-wide memory, as defined by the STRB1 control register. Since two 16-bit data types
can fit in a single 32-bit-wide memory location referenced by a single physical address, a mechanism is
needed to distinguish between the 16-bit data portions. This is accomplished by using the least significant
bit of the logical address to activate a different pair of the four STRB0 signal lines for each access, leaving
the second least significant bit of the logical address to become the least significant bit of the physical
address and effectively shifting the logical address by one bit. Similarly, STRB1 8-bit data transfers to the
32-bit-wide external memory cause the address to be shifted by two bits, because the two least significant
bits of the logical address are used to select one out of four bytes sharing the same physical 32-bit memory
location.

18

VCC

TMS320C32

D0 – D31

STRB1_B3
STRB1_B2
STRB1_B1
STRB1_B0

WE

OE

D7

D4
D5

D3
D2

D6

D0
D1

A14

A11
A12
A13

WE

OE
A11

WE

OE A12

A14
A13

A10
A9

A7
A6

A8

A4
A5

A2
A1

A3

D15

D13
D12

D10
D11

D14

A0
D8

CS

D9

A10
A9

A7
A6

A8

A5
A4

A2
A1

A3

D23

D20
D21

D19
D18

D22

A0
D16

CS

D17

CS

OE

D7
D6

D3
D4

D2
D1

D5

D0

OE

D14
D15

D11
D12

D9
D10

D13

A10
A11

OE

A9
A8

A6
A5

A7

A4
A3

A1
A0

A2

D23
D22D5

D7
D6

D19
D20

D18
D17D0

D4

D2
D1

D3
D21

A12

A14
A13

D16 D8

A14
A13
A12
A11

WE

OE

A14

A11
A12
A13

A9
A8
A7
A6

A4
A3

A0
A1
A2

A5
D7
D6

A9
A10

A7
A6

A8

D5
D4

D2
D1

D3

A5
A4

A2
A1

A3

D26
D27
D28
D29
D30
D31

D0A0

CS
D24
D25

A10

OE

D25

D31

D28
D29

D27
D26

D30

CE
D24

A6

A2
A1
A0

A5
A4
A3

A9
A8
A7

A12
A11
A10

A14
A13

A13
A12
A11

A9
A8
A7
A6

A4
A3

A0
A1
A2

A5

A10

A14

D7
D6
D5
D4

D2
D1

D3

D0

D7
D6
D5
D4

D2
D1

D3

D0

D7
D6
D5
D4

D2
D1

D3

D0

A13
A12
A11

A9
A8
A7
A6

A4
A3

A0
A1
A2

A5

A10

A14
A13
A12
A11

A9
A8
A7
A6

A4
A3

A0
A1
A2

A5

A10

A14

CE CE CE

A10
A11

A9
A8

A6
A5

A7

A4
A3

A1
A0

A2

A12

A14
A13

A10
A11

A9
A8

A6
A5

A7

A4
A3

A1
A0

A2

A12

A14
A13

D5

D7
D6

D0

D4

D2
D1

D3

D5

D7
D6

D0

D4

D2
D1

D3

A10
A11

A9
A8

A6
A5

A7

A4
A3

A1
A0

A2

A12

A14
A13

D5

D7
D6

D0

D4

D2
D1

D3

A13
A12
A11

A9
A8
A7
A6

A4
A3

A0
A1
A2

A5

A10

A14
A13
A12
A11

A9
A8
A7
A6

A4
A3

A0
A1
A2

A5

A10

A14
A13
A12
A11

A9
A8
A7
A6

A4
A3

A0
A1
A2

A5

A10

A14
A13
A12
A11

A9
A8
A7
A6

A4
A3

A0
A1
A2

A5

A10

A14

HOLDA

R/W

HOLD

RDY

PRGW

STRB0_B2

STRB0_B1

STRB0_B3

SHZ

MCBL/MP

RESET

INT0

INT2

INT3

INT1

IACK

XF0

XF1

CLKIN

H3

H1

STRB0_B0

IOSTRB

EMU3

EMU0

EMU1

EMU2

TCLK0

TCLK1

FSR0

DR0

DX0

CLKR0

CLKX0

FSX0

S
R

A
M

 (
32

K
 x

 8
)

E
P

R
O

M
 (

32
K

 x
 8

)

S
R

A
M

 (
32

K
 x

 8
)

E
P

R
O

M
 (

32
K

 x
 8

)

S
R

A
M

 (
32

K
 x

 8
)

E
P

R
O

M
 (

32
K

 x
 8

)

S
R

A
M

 (
32

K
 x

 8
)

E
P

R
O

M
 (

32
K

 x
 8

)

A0 – A23

Figure 9. 32-Bit Memory Configuration (STRB0 and STRB1)

19

8-bit Data Size – Address Shifted by 2 bits

16-bit Data Size – Address Shifted By 1 bit

131071

91FFFFh

2

131070

3

1

65535

65534

900000h

Logical Address

Physical Address

3

2

1 0h

Physical Address

Logical Address

8 Bits

0 0

32 Bits

1 1

0

16 Bits

0 1

32 Bits

1 1

131068

7FFFh

131067

131071 131070

131066

131069

131065

65531

65535

65533

8 67

131064 131063 131062

1112 10

0h

7FFFh

34 2

65534

65532

5

131061

9

1

6

4

5

3

0h 2 1

65536

131072

STRB0
_B0

STRB0
_B1

STRB0
_B2_B3

STRB0

ADDRESS
PHYSICAL

SIZE
DATA

WIDTH
MEM

CONFIG
STRB

ADDRESS
LOGICAL

MAP
MEMORY
LOGICAL

STRB0 CNTRL REG

STRB1 CNTRL REG

STRB1
_B0

STRB1
_B1

STRB1
_B2_B3

STRB1

STRB0

131072

FFFFh

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

STRB0

IOSTRB

STRB1

STRB0

A15 A1

A14 A0

A16 A2

A14 A0

11 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

11 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

65536

Figure 10. 32-Bit Memory Address Translation: Data Size < Memory Width

20

16/8-BIT MEMORY CONFIGURATION DESIGN EXAMPLES

The following examples describe from both the hardware and software-addressing perspectives how to
interface the ’C32 to both 8- and 16-bit-wide external memories in the same design.

Figure 11 contains a schematic diagram of the external memory interface consisting of two banks, each
controlled by a separate strobe. Two of four STRB0 signal lines are assigned to the chip-select pins of two
32K × 8 15-ns SRAMs, and one of four STRB1 signals is connected to a chip-enable pin of one
32K × 8 30-ns EPROM. For the 60-MHz version of the ’C32, the 15-ns SRAMs operate at zero wait states
and the 30-ns EPROMs require one wait state (software wait states can be programmed in strobe control
registers). Any time the external memory is less than 32 bits wide, some of the strobe pins switch functions
and become additional address pins. For 16-bit-wide memory, STRB0_B3 becomes A–1, and for
8-bit-wide memory, STRB1_B3 and STRB1_B2 become A–1 and A–2, respectively. This is the only
external change that differentiates the 32-bit-wide memory interface from the 16- and 8-bit-wide memory
interfaces. This feature can be considered transparent to the software programmer, except that the
programmer must configure the strobe control registers appropriately. The memory interface automatically
drives the additional address lines with correct values, depending on the size of the data being transferred.

The following three examples illustrate how the physical addresses are derived from the logical addresses
when the data size is equal to, greater than, and less than the width of the physical memory. Though address
translation is completely automatic, these cases provide insight into the range of physical addresses
actually affected during transfer of 32-, 16-, and 8-bit data.

21

Header
Port

Serial

Header
Cable

Emulator 60 MHz
OSC

Jumpers
Configuration
Boot Loader WE

OE

D7
D6

D6
D7

D5
D4

D2
D1

D3
D3
D4

D0
D1
D2

D5

D0

A13
A14

A11
A12

WE

OE

A11

A12

A9
A10
A11

A13VCC

VCC A12

A14
A13

A8
A9

A7
A6

A3
A4

A0
A1
A2

A5D14
D15

D7
D6

D13
D12

D9
D10
D11

D4
D3

D0
D1
D2

D5

D8
CS

A9
A8
A7
A6

A5
A4

A6
A7

A4
A3

A0
A1
A2

A2

A0
A1

A3 A5

A8 A10 A10

CS

OE

D7
D6
D5

D7
D6
D5
D4

D3
D2

D0
D1

D2
D1
D0

D3 D4

A14

A12
A11

A9
A10

A13

A6
A7

A5
A4

A1
A2

A0

A3

A8

CE

R/W

HOLDA

PRGW

RDY

HOLD
SHZ
RESET

INT0

INT1

VCC

VCC MCBL / MP

A–1

STRB0_B2

STRB0_B1

STRB0_B0

INT2

INT3

IACK

XF0

XF1

H1

CLKIN

H3

System Reset

TMS320C32

IOSTRB

EMU2

EMU3

EMU0

EMU1

TCLK0

TCLK1

DR0

FSR0

A–1

A–2

STRB1_B1

STRB1_B0D0–D31

CLKR0

FSX0

DX0

CLKX0

VCCkey

VCC

A0 – A23

A12

A9
A10
A11

A13

A5
A4

A6
A7

A2

A0
A1

A3

A8

A12

A9
A10
A11

A5
A4

A6
A7

A2

A0
A1

A3

A8

S
R

A
M

 (
32

K
 x

 8
)

S
R

A
M

 (
32

K
 x

 8
)

E
P

R
O

M
 (

32
K

 x
 8

)

Note:
The EPROM is connected for
data access (shifted address)
and not for boot table access.
This system is booted from the
serial port (see INT3 signal).

Figure 11. 16/8-Bit Memory Configuration: A Complete Minimum Design

22

Example 7. 16/8-Bit Memory Address Translation for Data Size = Memory Width

As shown in Figure 12, when the external memory width matches the size of data being transferred, the
physical address also matches the logical address with one exception: the physical address is shifted relative
to the logical address by one bit for 16-bit transfers and by two bits for 8-bit transfers. This means that the
address bit that would normally be expected on pin A0 actually appears on pin A–1 or A–2. As Figure 12
shows, there is one-to-one correspondence between logical data and its counterpart in physical memory.

23

8 Bits 8 Bits

0 1

0 0

0 1

0 0

STRB1
_B0

STRB0
_B0

STRB0
_B1

ADDRESS
PHYSICAL

WIDTH SIZE
MEM DATA

CONFIG
STRB

LOGICAL
ADDRESS

LOGICAL

MAP
MEMORY

10h

2

3
A0

A-1

1

3

32766

2

7FFFh

0h

A0

A-2

32767

32766

32767

327687FFFh

16 Bits 16 Bits

0

STRB0

STRB0 CNTRL REG

A14

A13

Logical Address

Physical Address

STRB1 CNTRL REG

0h1

2

3

A14

A12

Physical Address

Logical Address

7FFFh

900000h

32766

32767

32768

1

3

32766

2

907FFFh

32767

32768

16-bit Data Size – Address Shifted By 1 bit

8-bit Data Size – Address Shifted By 2 bits

32768

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

STRB0

IOSTRB

STRB1

STRB0

1 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 12. 16/8-Bit Memory Address Translation: Data Size = Memory Width

24

Example 8. 16/8-Bit Memory Address Translation for Data Size > Memory Width

Figure 13 depicts what happens when data that is larger than the physical memory in which it is to reside
is transferred. As shown by the contents of the strobe control registers, STRB0 controls transfers of 32-bit
data to/from 16-bit-wide physical memory and STRB1 controls transfers of 16-bit data to and from a
byte-wide memory. When an instruction stores 32-bit data to logical address 0h, the memory interface must
perform two write cycles to 16-bit-wide external memory. These two write cycles involve two consecutive
addresses, 0h and 1h. A 16-bit portion of data logically referenced with a single address actually takes two
physical addresses to store in 8-bit-wide physical memory (as is the case with the STRB1 transfer shown
at the bottom of Figure 13). To implement these extra bus cycles, the memory interface appends an extra
address bit to the least significant end of both addresses. As in Example 7, the least significant bits of the
STRB0 and STRB1 addresses appear at pins A–1 and A–2, respectively, because they represent 16- and
8-bit-wide memories.

25

1h

0h

1h

0h

7FFFh

7FFEh

0h

900000h

3FFFh

16-bit Data Size – Address Shifted By 1 bit

32-bit Data Size – Address Not Shifted

Logical Address

Physical Address

7FFFh

7FFEh
903FFFh

Logical Address

Physical Address

1

3

2

16382

16383

1

2

16382

16383

16384

3

16384

16384

16383

16383 (lw)

16383 (hw)

16383

2 (hb)

2 (lb)

1 (hb)

1 (lb)

1 (lw)

1 (hw)

2 (hw)

2 (lw)

8 Bits 16 Bits

1 1

0 1

0 1

0 0

STRB1
_B0

STRB0
_B0

STRB0
_B1

ADDRESS
PHYSICAL

WIDTH SIZE
MEM DATA

CONFIG
STRB

LOGICAL
ADDRESS

LOGICAL

MAP
MEMORY

16 Bits 32 Bits

0

STRB0

STRB0 CNTRL REG

STRB1 CNTRL REG

16384 (lw)

16384 (hw)

1 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X

1 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16384

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

A13 A0

A13 A-1

A13 A0

A12 A–2

STRB0

IOSTRB

STRB1

STRB0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X

Figure 13. 16/8-Bit Memory Address Translation: Data Size > Memory Width

26

Example 9. 16/8-Bit Memory Address Translation for Data Size < Memory Width

The example in Figure 14 is, in a way, an inverse of Example 8. The 8-bit data is transferred to/from
16-bit-wide external memory. To put this example in perspective, assume that the data transfer is triggered
by the following ’C32 instruction: STI R0,@7FFFh. While in R0, the data is sized at 32 bits, but when it
arrives at the memory interface, the STRB0 control register data size field indicates 8-bit-wide data. So,
the 32-bit data is truncated to eight bits. The next stop for the now byte-sized data is address 7FFFh of the
16-bit-wide external memory. Should it fill the high or low portion of that memory address? In this case,
the LSB of the logical address (as referenced by the instruction) is actually rerouted to control one of the
two STRB0 lines assigned to the 16-bit physical memory. If the LSB is 1 (as in this case), STRB0_B1 is
asserted during the write cycle. If the LSB is 0, STRB0_B0 is asserted during the write cycle. The remaining
bits of the original logical address are placed on the external address bus starting at pin A–1 (because the
memory width is 16 bits).

Summary: 16/8-Bit Memory Configuration Design Examples

Two conclusions can be drawn from these examples. First, while designing the external memory interface
to the TMS320C32, a hardware engineer must remember to match address pin A–1 of the ’C32 with the
A0 pin of a 16-bit-wide memory or to match the A–2 address pin of the ’C32 with the A0 pin of a byte-wide
memory. If the external memory is 32 bits wide, the pins are not shifted relative to each other and match
perfectly at A0.

Second, when writing code for the ’C32, the programmer does not have to be concerned about the structure
of the physical memory. The programmer must simply be aware of the logical memory map and the
configuration of the two strobe control registers. Furthermore, all the address translation tasks and byte
packing/unpacking necessary to match variable-size data with physical memories of different widths are
automatically performed by the ’C32 memory interface and controlled by the data size and memory width
fields of the STRB0 and STRB1 control registers.

27

1

3

5

20h

4

6
A0

A-1

65531

65535

65533

65532

65534

7FFFh

A15

A14

Physical Address

Logical Address

0h1

2

3

FFFFh

65534

65535

8-bit Data Size – Address Shifted By 2 bits

8 Bits16 Bits

1 10 1

ADDRESS
PHYSICALWIDTH SIZE

MEM DATA
CONFIG

STRB
LOGICAL
ADDRESS

LOGICAL

MAP
MEMORY

0

STRB0

STRB0 CNTRL REG

65536

STRB0
_B0

STRB0
_B1

STRB0
_B2_B3

STRB0

65536

STRB0

IOSTRB

STRB1

STRB0

0 00 0 0 00 0 1 11 1 1 11 1 1 11 1 1 11 1

0 00 0 0 00 0 1 11 1 1 11 1 1 11 1 1 11 1

Figure 14. 16/8-Bit Memory Address Translation: Data Size < Memory Width

28

ONE BANK/TWO STROBES (32-BIT-WIDE MEMORY) DESIGN EXAMPLES

The following examples describe how to use two strobes in interfacing the TMS320C32 to a single physical
bank of memory. Such configuration enables the access to 32-bit programs and two differently sized
portions of data out of the same bank of memory with no speed penalty. This feature is implemented by
internally ANDing STRB0 and STRB1 and outputting the combined strobes on STRB0 (a total of four
lines). The one bank/two strobes memory configuration is useful in systems where, for example, the
program requiring 32-bit instruction words for maximum execution speed operates on data that needs only
16 bits of precision (see Figure 18 on page 35).

Figure 15 is the schematic diagram of a 32-bit-wide external memory configuration arranged as one bank
with two separate logical control strobes sharing the same STRB0 physical signal lines. The four STRB0
signals are assigned to the chip-select pins of four 32K × 8 15-ns SRAMs, one signal per chip. For the
60-MHz version of the ’C32, the 15-ns SRAMs operate at zero wait states (for slower devices, additional
software wait states can be programmed in the appropriate fields of the strobe control registers). Because
the total memory width is 32 bits, there is no mismatch between the processor’s and the memory’s address
pins. Therefore, the ’C32 pin A0 is matched with memory pin A0; A1 is matched with A1; and so on. As
mentioned earlier, both STRB0 and STRB1 signals appear together on the four STRB0 control pins. This
is selected by setting the strobe configuration bit of the STRB0 control register to 1 (see Figure 15). Since
both STRB0 and STRB1 are mapped to different ranges of the logical memory map, the strobe that actually
appears on the physical STRB0 pins depends on the internal address of the data/program being accessed.
The two strobes effectively split the physical memory in two, with the high memory address bit selecting
either the STRB0 or STRB1 address space. For example, if all program instructions were fetched from
logical addresses 880000h – 881000h and all data reads/writes were confined between 980000h and
981000h, the program fetches would be associated with STRB0 and all data accesses would be driven by
STRB1 (see Figure 1 on page 3 for strobe/memory mapping). Since the behavior of each strobe is
determined by a different control register, the program fetches and data reads/writes in each case can vary
in how many STRB0 lines are simultaneously driven and in the number of bus cycles required per access,
as illustrated by the following examples.

29

BIT
CONFIG

STRB

D7

D4
D5

D3
D2

D6

D0
D1

D15

D13
D12

D10
D11

D14

D8
D9

D23

D20
D21

D19
D18

D22

D16
D17

WE

OE

A11
A12
A13

A14
A17

A13
A12
A11

VCC

D7
D6

A9
A10

A7
A6

A8

D5
D4

D2
D1

D3

A5
A4

A2
A1

A3

D26
D27
D28
D29
D30
D31

D0A0

CS
D24
D25

A9
A8
A7
A6

A4
A3

A1
A0

A2

A5

STRB0_B3

STRB0_B1

STRB0_B2

A10

A0–A23

1

STRB1_B3 & STRB0_B3

STRB1_B2 & STRB0_B2

STRB1_B1 & STRB0_B1

STRB0 CONTROL REG

STRB0_B0

IOSTRB

TMS320C32

D0–D31

STRB1_B3/A–1
STRB1_B2/A–2
STRB1_B1
STRB1_B0

STRB1_B0 & STRB0_B0

S
R

A
M

 (
32

 x
 8

)

WE

OE

A11
A12
A13

A14
A17

A13
A12
A11

D7
D6

A9
A10

A7
A6

A8

D5
D4

D2
D1

D3

A5
A4

A2
A1

A3

D0A0

CS

A9
A8
A7
A6

A4
A3

A1
A0

A2

A5

A10

S
R

A
M

 (
32

 x
 8

)

WE

OE

A11
A12
A13

A14
A17

A13
A12
A11

D7
D6

A9
A10

A7
A6

A8

D5
D4

D2
D1

D3

A5
A4

A2
A1

A3

D0A0

CS

A9
A8
A7
A6

A4
A3

A1
A0

A2

A5

A10

S
R

A
M

 (
32

 x
 8

)

WE

OE

A11
A12
A13

A14
A17

A13
A12
A11

D7
D6

A9
A10

A7
A6

A8

D5
D4

D2
D1

D3

A5
A4

A2
A1

A3

D0A0

CS

A9
A8
A7
A6

A4
A3

A1
A0

A2

A5

A10

S
R

A
M

 (
32

 x
 8

)

SHZ
RESET

INT0

INT1

MCBL / MP

INT2

INT3

IACK

XF0

XF1

H1

CLKIN

H3

EMU2

EMU3

EMU0

EMU1

TCLK0

TCLK1

DR0

FSR0

CLKR0

FSX0

DX0

CLKX0

R/W

HOLDA

PRGW

RDY

HOLD

Figure 15. One Bank/Two Strobes Memory Configuration: Memory Width = 32 Bits

30

Example 10. One Bank/Two Strobes Address Translation for Data Size = 16 and 8 Bits

Figure 16 illustrates how a single physical block of memory can be split into two separate logical halves,
one with 16-bit data and the other with 8-bit data. The access to each half is controlled by a separate strobe
control register with corresponding memory width and data size fields. Another STRB0 control register
field, STRB CONFIG (strobe configuration), is set to 1 to indicate that both STRB0 and STRB1 are mapped
to the same set of four STRB0 pins. As stated previously, the high memory address pin (in this case, A14)
selects between the two halves of the memory. For this example, the ’C32 address pin A17 was chosen to
drive the memory pin A14.

The state of the A17 bit of the physical address is derived from the logical address (logical as seen by the
instruction). The state of the A17 bit also depends on the logical/physical address shift as determined by
the size of the program/data that is being accessed. In this case, the logical STRB0 address range is
deliberately chosen to drive the physical address bit A17 to 0 (after accounting for a 1-bit address shift due
to the 16-bit width of the data). Similarly, the logical STRB1 range is chosen to drive the physical address
bit A17 to 1 (after accounting for a 2-bit address shift due to the 8-bit width of the data). Additionally, the
logical STRB0 and STRB1 address ranges that were selected to drive the physical address pin A17 to 0
and 1 still have to conform to the logical memory map that assigns fixed blocks of addresses to different
strobe spaces.

To the programmer writing software for this memory configuration, this simply means that an
STI R0,*AR0 instruction (with AR0 = 887FFFh) results in a STRB0 data access (data size = 16 bits)
driving the STRB0_B2 and STRB0_B3 control pins to write the contents of the 32-bit register R0 into a
16-bit data location in the lower half of the external memory addressed by 3FFFh. Similarly, an
LDI *AR1,R1 instruction (with AR1 = 98FFFFh) results in a STRB1 data access (data size = 8 bits) driving
the STRB0_B3 (because STRB CONFIG = 1) control pin to read the contents of an 8-bit data location in
the upper half of the external memory addressed by 7FFFh to the 32-bit R1 register. Once again, all address
translation is performed automatically by the ’C32, and the programmer merely has to watch the logical
memory map and the two strobe control registers.

31

120h

3

5

4

6
A1

A0

1

5

9

65525

32766

32764

2

6

4

32768

8 7

3

3FFFh

4000h

1012 11

655266552765528

32765

32767

32763

65529

65533

65530

6553465535

65531

7FFFh

65532

65536

A14

A13A17

Logical Address

Physical Address

880000h1

2

3
A18

A2A15

A13

Physical Address

Logical Address

887FFFh

980000h

32766

32767

1

3

65534

2
A19

A17

98FFFFh

65535

16-bit Data Size – Address Shifted By 1 bit

8-bit Data Size – Address Shifted By 2 bits

A0

32 Bits 8 Bits

0 1

0 0

1 1

1 1

ADDRESS
PHYSICAL

WIDTH SIZE
MEM DATA

CONFIG
STRB

LOGICAL
ADDRESS

LOGICAL

MAP
MEMORY

16 Bits32 Bits

1

STRB0&1

STRB0 CNTRL REG

STRB1 CNTRL REG

STRB0
_B0

STRB0
_B1

STRB0
_B2_B3

STRB0

STRB0
_B0

STRB0
_B1

STRB0
_B2_B3

STRB0

1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

65536

32768

STRB0

IOSTRB

STRB1

STRB0

1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 16. One Bank/Two Strobes Address Translation: Data Size = 16 and 8 Bits

32

Example 11. One Bank/Two Strobes Address Translation for Data Size = 32 and 8 Bits

Figure 17 illustrates how a single physical block of memory can be split into two separate logical halves,
one with 32-bit data and the other with 8-bit data. The access to each half is controlled by a separate strobe
control register with corresponding memory width and data size fields. Another STRB0 control register
field, STRB CONFIG, is set to 1 to indicate that both STRB0 and STRB1 are mapped to the same set of
four STRB0 pins. As stated previously, the high memory address pin (in this case, A14) selects between
the two halves of the memory. For this example, the ’C32 address pin A17 was chosen to drive the memory
pin A14.

The state of the A17 bit of the physical address is derived from the logical address (logical as seen by the
instruction). The state of the A17 bit also depends on the logical/physical address shift as determined by
the size of the program/data that is being accessed. In this case, the logical STRB0 address range is
deliberately chosen to drive the physical address bit A17 to 0. Similarly, the logical STRB1 range is chosen
to drive the physical address bit A17 to 1 (after accounting for a 2-bit address shift due to the 8-bit width
of the data). Additionally, the logical STRB0 and STRB1 address ranges that were selected to drive the
physical address pin A17 to 0 and 1 still have to conform to the logical memory map that assigns fixed
blocks of addresses to different strobe spaces.

To the programmer writing software for this memory configuration, this simply means that an
STI R0,*AR0 instruction (with AR0 = 883FFFh) results in a STRB0 data access (data size = 32 bits)
driving the STRB0_B0, STRB0_B1, STRB0_B2, and STRB0_B3 control pins to write the contents of the
32-bit register R0 into a 32-bit data location in the lower half of the external memory addressed by 3FFFh.
Similarly, an LDI *AR1,R1 instruction (with AR1 = 98FFFFh) results in a STRB1 data access (data size
= 8 bits) driving the STRB0_B3 (because STRB CONFIG = 1) control pin to read the contents of an 8-bit
data location in the upper half of the external memory addressed by 7FFFh to the 32-bit R1 register. Once
again, all address translation is performed automatically by the ’C32, and the programmer merely has to
watch the logical memory map and the two strobe control registers.

33

65536

10h

2

3
A0

A0

1

5

9

65525

16383

16382

2

6

4

8 7

3

3FFFh

4000h

1012 11

6552665527

A0

65528

65529

65533

65530

6553465535

65531

7FFFh

65532

A13A17

A13A17

Logical Address

Physical Address

880000h1

2

3

A2A15

A13A17

Physical Address

Logical Address

883FFFh

980000h

16382

16383

1

3

65534

2

32-bit Data Size – Address Not Shifted

A19

98FFFFh

65535

8-bit Data Size – Address Shifted By 2 bits

65536

32 Bits 8 Bits

1 1

0 0

1 1

1 1

ADDRESS
PHYSICAL

WIDTH SIZE
MEM DATA

CONFIG
STRB

LOGICAL
ADDRESS

LOGICAL

MAP
MEMORY

32 Bits32 Bits

1STRB0 CNTRL REG

STRB1 CNTRL REG

STRB0
_B0

STRB0
_B1

STRB0
_B2_B3

STRB0

STRB0
_B0

STRB0
_B1

STRB0
_B2_B3

STRB0

1 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

STRB0&1

16384

16384

1 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

STRB0

IOSTRB

STRB1

STRB0

1 0 10 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 10 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 17. One Bank/Two Strobes Address Translation: Data Size = 32 and 8 Bits

34

Example 12. One Bank/Two Strobes Address Translation for Data Size = 16 and 32
Bits

Figure 18 illustrates how a single physical block of memory can be split into two separate logical halves,
one with 16-bit data and the other with 32-bit data. The access to each half is controlled by a separate strobe
control register with corresponding memory width and data size fields. Another STRB0 control register
field, STRB CONFIG, is set to 1 to indicate that both STRB0 and STRB1 are mapped to the same set of
four STRB0 pins. As stated previously, the high memory address pin (in this case, A14) selects between
the two halves of the memory. For this example, the ’C32 address pin A17 was chosen to drive the memory
pin A14.

The state of the A17 bit of the physical address is derived from the logical address (logical as seen by the
instruction). The state of the A17 bit also depends on the logical/physical address shift as determined by
the size of the program/data that is being accessed. In this case, the logical STRB0 address range is
deliberately chosen to drive the physical address bit A17 to 0 (after accounting for a 1-bit address shift due
to the 16-bit width of the data). Similarly, the logical STRB1 range is chosen to drive the physical address
bit A17 to 1. Additionally, the logical STRB0 and STRB1 address ranges that were selected to drive the
physical address pin A17 to 0 and 1 still have to conform to the logical memory map that assigns fixed
blocks of addresses to different strobe spaces.

To the programmer writing software for this memory configuration, this simply means that an
STI R0,*AR0 instruction (with AR0 = 887FFFh) results in a STRB0 data access (data size = 16 bits)
driving the STRB0_B2 and STRB0_B3 control pins to write the contents of the 32-bit register R0 into a
16-bit data location in the lower half of the external memory addressed by 3FFFh. Similarly, an LDI
*AR1,R1 instruction (with AR1 = 923FFFh) results in a STRB1 data access (data size = 32 bits) driving
the STRB0_B0, STRB0_B1, STRB0_B2, and STRB0_B3 (because STRB CONFIG = 1) control pins to
read the contents of a 32-bit data location in the upper half of the external memory addressed by 7FFFh
to the 32-bit R1 register. Once again, all address translation is performed automatically by the ’C32, and
the programmer merely has to watch the logical memory map and the two strobe control registers.

35

120h

3

5

4

6

A0

32764

32766

1

2

3FFFh

4000h

3

16382

A0

A0

32765

32767

32763

16383

7FFFh

A14A18

A13A17

Logical Address

Physical Address

880000h1

2

3

A13A17

A13A17

Physical Address

Logical Address

887FFFh

920000h

32766

32767

1

3

16382

2

32-bit Data Size – Address Not Shifted

923FFFh

16383

A1

16-bit Data Size – Address Shifted By 1 bit

32 Bits 32 Bits

0 1

1 1

1 1

1 1

ADDRESS
PHYSICAL

WIDTH SIZE
MEM DATA

CONFIG
STRB

LOGICAL
ADDRESS

LOGICAL

MAP
MEMORY

16 Bits32 Bits

1STRB0 CNTRL REG

STRB1 CNTRL REG

STRB0
_B0

STRB0
_B1

STRB0
_B2_B3

STRB0

1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

STRB0&1

STRB0
_B0

STRB0
_B1

STRB0
_B2_B3

STRB0

16384

32768

16384

32768

1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 1 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 1 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

STRB0

IOSTRB

STRB1

STRB0

Figure 18. One Bank/Two Strobes Address Translation: Data Size = 16 and 32 Bits

36

Summary: One Bank/Two Strobes (32-Bit Memory) Design Examples

To summarize these examples, the one bank/two strobes memory interface to the ’C32 supports any
combination of data size pairs (16/8, 32/8, and 16/32 bits) with no speed penalty (the strobe control registers
do not have to be reconfigured each time data size changes). Likewise, a 16-bit external memory can be
divided into two halves, each containing data of a different size (8, 16, or 32 bits). The same holds true for
8-bit external memory. All address translation information given in Examples 1 through 9 applies to the
one bank/two strobes examples also.

To configure the external memory for one bank/two strobes access mode, the following steps are
recommended :

1. Set the strobe configuration field in the STRB0 control register to 1.
2. Set the memory width field in both the STRB0 and STRB1 control registers to reflect the width

of the physical memory.
3. Set the data size field in both the STRB0 and STRB1 control registers to reflect the size of the

data portions chosen for each strobe.
4. Choose one of the high physical address bits to split the physical memory into two halves.
5. For the two memory halves, choose the STRB0 and STRB1 logical address ranges to drive the

chosen bit to 0 and 1, respectively. The chosen STRB0 and STRB1 address ranges have to fit
inside the legal STRB0/STRB1 address spaces as defined by the memory map.

37

RDY SIGNAL GENERATION

The ’C32 uses the RDY pin to determine whether the current bus cycle will finish at the end of the current
clock cycle or require additional clock cycles to complete. Even though the ’C32 is capable of fetching
instructions and accessing data in one clock cycle, a slow memory may need additional clock cycles (wait
states) to complete the bus cycle. The generation of the RDY signal can be accomplished in three ways:

1. In many systems, all external memory is fast enough to preclude wait states. In these cases, the
RDY pin can be permanently grounded, indicating to the CPU that the external memory is
always ready for the next cycle.

2. Even if there are external devices that require wait states, as long as there is only one device per
strobe, the wait states can be programmed in software by setting bits in corresponding strobe
control registers. As in the first case, the RDY pin should be permanently grounded.

3. The active generation of the RDY signal is required only if a single strobe controls two or more
external memory banks or peripherals requiring different numbers of wait states.

The remainder of this section addresses the third method. The example involves three memory banks
controlled by STRB0, each requiring a different number of wait states. Note that this example directly
applies to RDY signal generation involving STRB1 and is similar to the case of IOSTRB, which involves
a more relaxed set of timing parameters.

RDY Signal Timing Parameters for STRB0 and STRB1

Figure 19 contains STRB0 and STRB1 timing parameters that would typically be used to generate the RDY
signal. As evident in the read and write timing waveforms, the RDY signal generated by the external logic
is clocked into the ’C32 on the falling edge of the H1 clock. The associated setup time is represented by
parameter (17) and the hold time by parameter (18). So, for the 60-MHz ’C32, the RDY signal must arrive
at the RDY pin at least 17 ns before the falling edge of H1 and remain valid at least until H1 goes low.
Timing parameters (11) and (12) represent the STRB0 and STRB1 low and high delays from the falling
edge of H1. Timing parameter (14) represents the address valid delay from the falling edge of H1. For
back-to-back write cycles, timing parameter (22) represents the address valid delay from the rising edge
of H1. Parameters (11), (12), (14), and (22) do not directly apply to RDY setup and hold, but are
nevertheless involved in the generation of the RDY signal.

38

(11)

(14)

(17)

(18)

(11)
(12)

(12)

(14)

(18)

(17)

R/W

STRB1

STRB0,

RDY

H1

H3

A

D

STRB0, STRB1, READ CYCLE STRB0 , STRB1, WRITE CYCLE

NO. DESCRIPTION
’320C32-40†

(50 ns)
’320C32-50†

(40 ns)
’320C32-60†

(33 ns) UNIT

MIN MAX MIN MAX MIN MAX

11 td(H1L-SL) Delay time, H1 low to STRBx low 0 11 0 9 0 8 ns

12 td(H1L-SH) Delay time, H1 low to SRBx high 0 11 0 9 0 8 ns

14 td(H1L-A) Delay time, H1 low to A valid 0 11 0 9 0 8 ns

17 tsu(RDY) Setup time, RDY before H1 low 21 19 17 ns

18 th(RDY) Hold time, RDY after H1 low 0 0 0 ns

22 td(H1H-A)
Delay time, H1 high to A valid on
back-to-back write cycles (write)

11 9 8 ns

† These timing specifications are subject to change without notice. See the TMS320C32 Data Sheet for current timing
information.

Figure 19. RDY Signal Timing for STRB0 and STRB1 Cycles

39

Example 13. RDY Signal Generation

The example in Figure 20 involves three memory banks controlled by a single strobe (STRB0). The first
bank is composed of four 8-bit-wide SRAMs requiring zero wait states to operate at 60 MHz (15-ns
devices). Bank 2 is composed of two 1-wait-state SRAMs, and bank 3 contains one 3-wait-state EPROM
(which is eight bits wide). The RDY pin is normally high, indicating a not-ready state. It goes low if either
RDY_BANK1 or RDY_BANK23 goes low.

The RDY_BANK1 signal is asserted only if two conditions are satisfied. First, at least one of the four
STRB0 signal lines must be active. Second, the three address decode bits must match the bank 1 space.
Since no wait states are involved, the RDY_BANK1 signal does not have to be synchronized with the
H1/H3 clocks, and, therefore, it can directly drive the RDY pin after being gated with its bank 2/bank 3
counterpart.

The STRB0_BANK23 signal becomes active (high) if the three address decode bits match bank 2 or
bank 3 address spaces while STRB0_B0 and/or STRB0_B1 are active (low). The STRB0_BANK23
signal, when high, sets a high data state in a synchronous progression through a chain of four registers.
Depending on which point in the chain is tapped, a RDY signal delay ranging from zero to three wait states
can be achieved. In this case, both 1-wait-state and 3-wait-state taps assert the RDY_B23YES signal to
reflect bank 2 or bank 3 access. Finally, a two-register circuit shaves the trailing edge of the RDY_B23YES
signal by ORing it with RDY_23NOT (see Figure 21). The resulting RDY_BANK23 is ANDed with its
bank 1 counterpart to drive the RDY pin.

Figure 21 contains timing waveforms for the RDY generation example. It illustrates how the RDY signal
is generated for a series of external back-to-back memory read cycles in which the first one accesses bank
1 (zero wait states), the second accesses bank 2 (one wait state), the third accesses bank 3 (three wait states),
and the fourth and fifth access bank 1 (zero wait states). For each read cycle, the RDY waveform is marked
with a resulting setup time. For the 60-MHz device, the RDY signal should become valid at least 17 ns
before every falling edge of the H1 clock.

In the 0-wait-state cycle, the address and strobe signals become valid 8 ns from the falling edge of H1 (see
Figure 21). An additional 5 ns are needed for a single pass through a fast combinational logic device for
a total setup time of the resulting RDY signal equal to 20 ns, leaving 3 ns for board delays and a modest
safety factor.

For the 1- and 3-wait-state cycles, the bank decode and strobe signals do not directly drive the RDY signal.
They are instead combined into the STRB0_BANK23 signal that, when active, releases the clear condition
on the 3-register delay chain driven by the H3 clock. The register chain is then free to propagate a high
state at the rate of one register per clock cycle. The two taps in the register chain (at the first and third
registers, representing one wait and three wait states, respectively) are ORed with their corresponding bank
select signals to result in the RDY_B23YES signal synchronous to H1/H3 clocks. The RDY_B23YES
leading-edge 10-ns delay is caused by two passes through a fast PAL device (such as a popular 22V10).
The trailing edge of this signal is caused by bank 2 or bank 3 decode circuits going inactive after the RDY
signal is recognized by the processor. The address decode (8 ns) plus two passes through the PAL (5 + 5
ns) combine for a total delay of 18 ns that, if not modified, would cut into the next cycle’s RDY setup
requirement (33 – 18 = 15 ns). To deactivate the RDY signal sooner, a single-register circuit has been added
to generate the RDY_B23NOT, which, when ORed with the RDY_B23YES, yields the RDY_BANK23
signal that satisfies the RDY setup time for the next cycle. Finally, RDY_BANK1 and RDY_BANK23 are
ANDed together to produce the final RDY signal that is wired to the processor’s RDY pin.

PAL is a registered trademark of Advanced Micro Devices, Inc.

40

BANK 3 (32Kx8 EPROM)BANK 2 (32Kx8x2 SRAM)BANK 1 (32Kx8x4 SRAM)

A0–14
D0–15

A–2

D0–7

DECODE
BANK 3

A23

A17
A18

BANK 2
DECODE

A17
A18
A23

A17
A18
A23 DECODE

BANK 1

STATES
0 WAIT VCC

delay
5 ns

STRB0_BANK23

STRB0_BANK3

STRB0_BANK2

VCC

3 WAIT
STATES

STATE
1 WAIT

RDY_B23YES

RDY_B23NOT

HOLDA

R/W

HOLD

PRGW

VCC
A0–A23

STRB0_B0

STRB0_B3/A–1

STRB0_B2/A–2

STRB0_B1

IOSTRB

CLKIN

H3
H1

RDY_BANK1

RDY_BANK23

RDY

TMS320C32

D0–D31

STRB1_B3/A–1
STRB1_B2/A–2
STRB1_B1
STRB1_B0

CLR
Q

Q
PR

D

CEA–1

A0–12

OE

A–1

A0–13
D0–31

OE

CS
WE

SHZ
RESET

INT0

INT1

MCBL / MP

INT2

INT3

IACK

XF0

XF1

EMU2

EMU3

EMU0

EMU1

TCLK0

TCLK1

DR0

FSR0

CLKR0

FSX0

DX0

CLKX0

OE

CS
WE

OE

CS
WE

OE

CS
WE

OE

CS

WE

OE

CS

WE

CLR
Q

Q
PR

D
CLR

Q

Q
PR

D
CLR

Q

Q
PR

D

OSC
60 MHz

Figure 20. RDY Signal Generation for STRB0 Cycles

41

17 ns
RDY SETUP
REQUIRED

33 ns

(60 MHz)
CYCLE TIME

TIME
RDY SETUP

ACTUAL

33 ns

55

10

55

10

10

5

10
1010

5 5

5

88888

8

H1

RDY

RDY_BANK23

RDY_B23NOT

RDY_B23YES

RDY_BANK1

STRB0_BANK23

A0–A23

STRB0_BX

H3

0 WAIT
(BANK 1)

0 WAIT
(BANK 1)

3 WAIT STATES
(BANK 3)

1 WAIT STATE
(BANK 2)(BANK 1)

0 WAIT

33 ns33 ns 20 ns23 ns23 ns20 ns20 ns 23 ns

Figure 21. RDY Signal Generation Timing Waveforms

42

Address Decode for Multiple Banks

Figure 22 illustrates the logical-to-physical address translation for the three memory banks used in the
RDY generation example. Each memory bank is of a different physical width, as shown by the external
address column on the right side of the figure. The left side of the same figure represents the internal address
ranges for each of the three memory banks. Logical-to-physical address translation is controlled by strobe
control registers and their data size and memory width fields. The middle column of Figure 22 contains
the logical address field (top row) superimposed on the physical address (bottom row) for each address
translation case. The active address fields are shaded gray, and the inactive address bits (don’t cares) are
white. The black fields are special address bits that can selectively control multiple strobe lines or choose
between individual portions of a data word that is larger than the physical memory it is accessing.

For example, in bank 2, the right side of the picture indicates that the physical memory width for this bank
is 16 bits. The left side indicates that, regardless of the physical memory width, 32-, 16-, and 8-bit data can
be moved by programming the STRB0 control register. The low-order (shaded) bits of logical/physical
address rows show how many bits are actually used for addresses so that the correct high-order address bits
can be assigned to bank decode. Physical address bits A17 and A18 were chosen for bank decode because
they lie outside the used address bits. A17 and A18 decode between banks 1, 2, and 3, with A18–A17 =
(0,1) assigned to bank 1, (1,0) assigned to bank 2, and (1,1) assigned to bank 3. Finally, address bit A23
is set to 0 to isolate the STRB0 address space from the STRB1 and IOSTRB memory maps.

From the dotted lines bounding the bank decode bits, it is apparent that the external address bits A18–A17
line up perfectly but their logical address counterparts do not. The amount of reverse shift between the
logical and physical addresses depends on the size of the data being accessed and the width of the physical
memory. Each of the three address translation cases for each of the three banks translates physical address
bits A18–A17 into two contiguous logical address bits that can lie anywhere between A20 and A17. Once
the logical images of the external bank decode bits have been identified along with low-order address bits
and the A23 strobe decode bit, they will together define the final logical memory map for the three STRB0
banks.

Once again, each memory bank actually has not one, but three logical memory maps, depending on the size
of the data being accessed and the setting of the corresponding bits in the STRB0 control register.

The address ranges in these logical memory maps are all different, yet all three maps translate perfectly
into a single physical address map that identifies the bank. In using the three logical memory maps, the
programmer must exercise caution to prevent overwriting 8-bit data with 16-bit data (or 16-bit data with
32-bit data) that may have a different logical address but still occupy the same place in physical memory.
To be certain that the logical address maps associated with 8-, 16-, and 32-bit data sizes do not overlap
within a single physical memory bank, the three logical maps should be further divided into mutually
exclusive areas before they are used by the programmer. Furthermore, when a program jumps from one
physical memory bank to another of a different width, the memory width configuration bits in the
appropriate strobe register must be changed.

43

MEMORY BANK 3

7FFFh

0h

7FFFh

0h

7FFFh

0h

7FFFh

0h

7FFFh

0h

7FFFh

0h

0h

7FFFh

7FFFh

0h

0h

7FFFh

32 bits

16 bits

8 bits

A18
A17 A–2

0

0

0

A–1

11
1 1

0
0

110

A23

1100

1 1
11

0
00

61FFFh

60000h

C0000h

C3FFFh

187FFFh

180000h

32 bits

MEMORY BANK 2

01
1 0

0
0

010
0100

1 0
01

0
00

43FFFh

40000h

80000h

87FFFh

10FFFFh

100000h

32 bits

32 bits

MEMORY BANK 1
PHYSICAL ADDRESSLOGICAL ADDRESS

27FFFh

20000h

40000h

4FFFFh

9FFFFh

80000h

1
10

00
0

0 0 1
10

0
0

A0A23

1
10

00
0

0

Figure 22. Address Decode for Multiple Memory Banks

