

Module 10
Lab 10 : Debugging Real-Time Systems

 Lab: Debugging Real Time Systems

 2 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP177

10.0 Objectives

The purpose of this lab is to interface bump sensors that the robot will use to
explore its world, see Figure 1. The line sensor will also be used.

1. You will use arrays to implement minimally intrusive debugging.
2. You will interface bump sensors to the microcontroller.
3. You will learn how to implement SysTick periodic interrupts.
4. You will use interrupts to implement multi-threading.
5. You will implement a black-box recorder by storing data into the flash

ROM of the microcontroller.

Good to Know: Interrupts are extremely important for embedded systems,

providing a mechanism to implement real-time behavior and multi-threading.

10.1 Getting Started
10.1.1 Software Starter Projects

Look at these three projects:
PeriodicSysTickInt (toggles LEDs using interrupts),
Flash (stores data onto flash ROM),
Lab_Debug (starter project for this lab)

10.1.2 Student Resources

Meet the MSP432 LaunchPad (SLAU596)
MSP432 LaunchPad User’s Guide (SLAU597)

QTR-8x.pdf, line sensor datasheet
Polulu_BumpSwitch_1404.png, mechanical drawing of switch

10.1.3 Reading Materials

Volume 1 Sections 2.7, 6.2, 6.9, 9.1, 9.2, 9.4, and 9.6
Embedded Systems: Introduction to the MSP432 Microcontroller",
or
Volume 2 Sections 2.4, 3.9, 5.1, 5.4, and 5.7
Embedded Systems: Real-Time Interfacing to the MSP432 Microcontroller"

Note: We chose the sampling rate of the sensors to be 100 Hz, because 10 ms

is about 10 times shorter than the time constant of the motors used in this robot
(100 ms).

Figure 1. Bump sensors positioned at the front of the robot.

10.1.4 Components needed for this lab

Quantity Description Manufacturer Mfg P/N

1
MSP-EXP432P401R
LaunchPad

TI MSP-EXP432P401R

6 Bump switches Pololu #1404

1
QTR-8RC
Reflectance Sensor
Array

Pololu #961

12 0.5in 2-56 screw Pololu 2715

12 2-56 nut MULTICOMP SPC21805

Table 1. Parts needed for this lab

10.1.5 Lab equipment needed

Oscilloscope (one or two channels at least 10 kHz sampling)
Logic Analyzer (4 channels at least 10 kHz sampling.

 Lab: Debugging Real Time Systems

 3 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP177

.

10.2 System Design Requirements

The first goal of this lab is to implement the line sensor measurement using
SysTick interrupts; refer back to Module 6. Similar to Lab 6, you should sample
the 8-bit sensor 100 times a second. However, you must perform all input/output
with the sensor within executions of the SysTick interrupt service routine (ISR).

In particular, you must implement the 1-ms delay needed to perform the
measurement using subsequent SysTick interrupts. The priority of this interrupt

doesn’t matter in this lab, because it is the only interrupt. However, once we
integrate other labs together, this will be a high priority task because
measurements need to be real time.

The second goal is to place one to six bump sensors on the robot and interface
them to the microcontroller. The bump sensors allow the software to know if and
where the robot has collided with an obstacle. Figure 1 shows one possible
configuration, and Figure 2 shows a close up of one bump sensor.

Figure 2. Momentary contact switches allow for collision detection.

The third goal is to develop a minimally intrusive debugging instrument called a
dump. A dump is a software technique that records strategic information into

global arrays. It is classified as minimally intrusive because the time to store data
in the arrays (~1µs) is short compared to the time between dumps (100ms).
During robot operation, software writes into the arrays, and when the experiment
is complete, you use the debugger to observe values.

You will write two debugging functions to implement the dump.

a) Debug_Init initializes the array(s).
b) The function Debug_Dump takes two parameters and saves the data

into RAM. There are two 8-bit parameters to record (8-bit bump sensor
data and 8-bit line sensor data). Your system should allow a least 256
measurements (512 bytes).
Your SysTick ISR will call Debug_Dump 100 times per second,

whenever a new measurement is complete. Since the arrays have 256
entries, this RAM-based recording allows up to 2.56 seconds of
debugging. Once the arrays are full, the dump pointers (or indices) will
wrap back to the beginning and overwrite the oldest data. In this way, at
any given time, the last 2.56 seconds of sensor data are available in the
arrays.

The fourth goal is to extend the dump operation to continuously store sensor data
onto the flash ROM of the microcontroller, implementing the black box recorder.

The flash ROM is larger than the RAM, but it too is finite. Therefore eventually,
the ROM space will fill. More specifically you will use 128 kibibytes of flash ROM
(addresses 0x00020000 to 0x0003FFFF). These addresses are in Flash Bank1.
Your program will reside in Flash Bank 0 (addresses 0x00000000 to
0x0001FFFF), allowing you to execute code at the same time as you write to
ROM. If you record 200 bytes/sec, you can save data for 655 seconds, or almost
11 minutes.

You will implement two more debugging functions

a) Debug_FlashInit() which will erase the 128 kibibytes of flash ROM,

addresses 0x00020000 to 0x0003FFFF. Erasing ROM sets the data to
0xFF. You may pick any block size from 32 bytes to 512 bytes. Let 2

n
 be

your block size. There are 2
17

/2
n
 blocks in this 128k space. If the data of

a block are 0xFF, then the block is considered empty.
b) The function Debug_FlashRecord() will record 2

n
 bytes into the next

free block on the flash ROM. You will be able to observe the recorded
data later using the debugger.

 Lab: Debugging Real Time Systems

 4 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP177

Note: The line sensor measurements and RAM recording will occur in the
SysTick ISR, but all flash operations must occur from the main program. The line
sensor generates an 8-bit number and the bump sensors generate an 8-bit
number. At a sampling rate of 100 Hz, the system generates 200 bytes/sec.
Therefore, every 0.05*2

n
 seconds you will write 2

n
 bytes to flash ROM. When the

ROM is full after 655 seconds, you should stop the ROM recording.

10.3 Experiment set-up

You learned how to interface the QTR-8RC line sensor back in Lab of Module 6.
You also learned how to interface switches in Lab 8. In this lab you will attach
bump switches to the front of the robot and interface them to the LaunchPad.
You can use 2-56 screws and nuts to position the bump sensors on the edge of
the front of the robot. Figure 3 shows one possible placement for six sensors.

Warning: TI MSP432 pins are not 5V tolerant; you must power the line sensor

and bump sensors with +3.3V.

Figure 3. Bump sensors attached to the front of the robot (bottom view).

10.4 System Development Plan

10.4.1 Using SysTick interrupts to read the line sensor

You will perform the line sensor input in the background using SysTick interrupts.
If the SysTick interrupts are occurring at 1000 Hz (every 1ms), then in one
execution of the ISR you

1. Set P5.3 high (turn on 8 IR LED)
2. Make the P7.7-P7.0 outputs, and set them all high
3. Wait 10 µs
4. Make the P7.7-P7.0 inputs

You will define the above four steps as the function Reflectance_Start(), and call

this function every tenth time in the SysTick ISR. The second part of the
measurement occurs in the subsequent ISR, where you

5. Read the 8-bit sensor result
6. Turn off the 8 IR LEDs (P5.3) low
7. Store the data into a shared global variable

You will define steps 5 and 6 as the function uint8_t Reflectance_End(). Step 8

will occur in the SysTick ISR itself. If you are sampling the line sensor at 100 Hz,
there will be eight SysTick interrupts during which the software performs no
operation, one interrupt that calls Reflectance_Start(), and one interrupt that
calls Reflectance_End().

It is good debugging style to toggle a port pin during each ISR execution. Place
the sensor data in a memory watch window and use the debugger, and
oscilloscope to verify the sensor behaves in a similar manner to Lab 6.

Bump5 Bump4 Bump3 Bump2 Bump1 Bump0

 Lab: Debugging Real Time Systems

 5 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP177

10.4.2 Interfacing the bump sensors

You can implement positive logic or negative logic. You can implement internal
resistors or external resistors.

Note: If you are going to do the Wifi lab, we recommend using pins P8.7-P8.3,
P8.0 for the six bump sensors, because these pins do not conflict with the Wifi
lab. If you are going to do the edge-triggered interrupt lab, we recommend using
pins P4.7-P4.2 for the six bump sensors, because these pins can cause edge-
triggered interrupts.

You will write one function to initialize the bump sensors, Bump_Init(). This

function simply sets the appropriate port pins and enables internal resistors as
needed. A second function, uint8_t Bump_Read(), reads the switches and

returns one 8-bit result. Every time the SysTick ISR performs a call to
Reflectance_End(), you should also call Bump_Read(), and you should place

the result in a shared global variable and set a semaphore.

Note: In subsequent labs when the robot is moving, you will handle collisions
within this SysTick ISR after calling Bump_Read(). The worst case latency of a

collision event will therefore be 10 ms.

10.4.3 Debugging dump

There are a number of design choices for implementing the debugging dump.
You could create two 8-bit arrays, one for the line sensor and one for the bump
sensor. Alternatively, you could create one 16-bit array and pack the two sensor
readings into one 16-bit data value. The specifications call for at least 256
recordings, but you could increase this value if you wish. The MSP432
microcontroller has 64 kibibytes of RAM, and this debugging feature should only
use a small fraction of available RAM. Another choice is whether to use a pointer
or an index to access the array. This typically involves a tradeoff between
execution speed and software style. You could implement both and observe the
assembly code generated by each version. To reduce intrusiveness, we suggest
you choose the method that executes the fastest (i.e., the fewest assembly
instructions.)

One way to quantitatively measure the intrusiveness of the debugging instrument
is to count the number of assembly instruction it takes to implement
Debug_Dump(). A better method is to use an oscilloscope and an unused port
pin, as illustrated in Program10_1.

int Program10_1(void){ uint8_t data=0;

 Clock_Init48MHz();

 Debug_Init();

 LaunchPad_Init();

 while(1){

 P1->OUT |= 0x01;

 Debug_Dump(data,data+1);// linear sequence

 P1->OUT &= ~0x01;

 data=data+2;

 }

}

10.4.4 Black box recorder

When debugging the black box recorder, we recommend you begin by using
simple main programs, like Program10_2 and Program 10_3. This way you can
test your two functions separately. Use the debugger to verify ROM is correctly
programmed.

// Driver test

#define SIZE 256 // feel free to adjust the size

uint16_t Buffer[SIZE];

int Program10_2(void){ uint16_t i;

 Clock_Init48MHz();

 LaunchPad_Init(); // built-in switches and LEDs

 for(i=0;i<SIZE;i++){

 Buffer[i] = (i<<8)+(255-i); // test data

 }

 i = 0;

 while(1){

 P1->OUT |= 0x01;

 Debug_FlashInit();

 P1->OUT &= ~0x01;

 P2->OUT |= 0x01;

 Debug_FlashRecord(Buffer);

 P2->OUT &= ~0x01;

 i++;

 }

}

 Lab: Debugging Real Time Systems

 6 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP177

int Program10_3(void){ uint16_t i;

 Clock_Init48MHz();

 LaunchPad_Init(); // built-in switches and LEDs

 for(i=0;i<SIZE;i++){

 Buffer[i] = (i<<8)+(255-i); // test data

 }

 P1->OUT |= 0x01;

 Debug_FlashInit();

 P1->OUT &= ~0x01;

 i = 0;

 while(1){

 P2->OUT |= 0x01;

 Debug_FlashRecord(Buffer);

 P2->OUT &= ~0x01;

 i++;

 }

}

Use an oscilloscope or logic analyzer to measure the execution time of the
functions. Calculate the maximum data rate achieved by the ROM programming
(number of bytes in the block divided by the time to write the block). This data
rate will be much faster than the 200 byte/sec data production rate. However,
depending on the size of the buffer, it may or may not take more than 10 ms to
program one buffer.

When integrating the black box recorder with the sensor measurements, use a
shared global flag (Semaphore) that is set in the SysTick ISR when the buffer is

full. You will read the flag in the main program to know when to make the next
call to Debug_FlashRecord(). One way to make sure the system is properly

recording all the data in the correct order is to measure actual line and bump
sensor input, but record test data as generated in Program10_2. Using test data
allows you to see if any points are lost or duplicated. Your final main program
will have this sort of behavior.

 while(1){

 if(Semaphore==1){ // wait for flag to be set

 P2->OUT |= 0x01;

 Debug_FlashRecord(Buffer);

 P2->OUT &= ~0x01;

 Semaphore = 0; // clear flag

 }

 }

10.5 Troubleshooting

Bump sensors don’t work:

• Check the wiring as described in Module 8
• Look at signals with a voltmeter, scope or logic analyzer
• Look at the port registers in the debugger

Flash storage doesn’t work:

• Run the Flash project code to test the hardware
• Observe the Flash project to see how to call the low-level driver

10.6 Things to think about

In this section, we list thought questions to consider after completing this lab.
These questions are meant to test your understanding of the concepts in this lab.

• In this lab we just stored data, but not the time at which the data was
sampled. In this application why did we not save time as well?

• What does it mean when we classify the line sensor and bump sensor
interfaces as real time? Why is it important for these inputs to be real
time?

• Why should we use internal resistors instead of external resistors for the
bump interfaces?

• We specified the latency to be a maximum of 10 ms. What is the
average latency? How could we have redesigned this to reduce
latency?

• Why is it good design to have the IR LED off for 90% and on for only
10% of the time?

• What happens when we erase ROM? What happens if a ROM bit is
already 0, and we try to program it to 1?

• Assume we call Debug_FlashInit() once when the robot is

manufactured, but subsequent runs of the main program do not erase
the ROM. What will be recorded in ROM? I.e., what happens to this
data if we remove and later restore power?

 Lab: Debugging Real Time Systems

 7 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP177

10.7 Additional challenges

In this section, we list additional activities you could do to further explore the
concepts of this module. You could extend the system or propose something
completely different. For example,

• One of the techniques to increase the recording time is to only store
data when it changes. However, in this scheme you do need to record
data and the time the data changes. A global variable incremented in
the SysTick ISR could hold the system time in ms.

• A critical section is software behavior that varies depending on relative

execution of two seemingly unrelated pieces of code. For example
executing P2->OUT^=0x01 in the ISR and then executing P2->OUT
^=0x02 in the main program will create a bug due to the critical section.
Sharing a common port in two different threads generates a critical
section. You could rewrite the LaunchPad driver code (LaunchPad.c) to
use bit-banding, which will remove some critical sections.

• You could include UART0.c in the project and create an additional

debugging function that dumps the data that was recorded in flash ROM
out to the serial port. You can then run a program like PuTTY or
TExasDisplay to see the data. This feature will allow you to capture data
on the PC for report writing and documentation.

10.8 Which modules are next?

This was our first of many uses of interrupts in this course. The following
modules will build on this module:

Module 12) Connect the motors to the robot.
Module 13) Use timers to create PWM signals, and use interrupts to manage
multiple software tasks.
Module 14) Use edge-triggered interrupts to a software task immediately upon a
switch contact.

10.9 Things you should have learned

In this section, we review the important concepts you should have learned in this
module how to:

• Use interrupts to implement multithreading
• Use global variables to communicate between threads
• Optimize execution speed when accessing arrays
• Create minimally intrusive debugging tools
• Perform execution profiling using port pins and a scope
• Erase and program flash ROM for logging debugging data

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

