

Module 17
Lab 17: Control Systems

 Lab: Control Systems

 2 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP212

17.0 Objectives

The purpose of this lab is to develop a control system. In this module,

1. You will combine input capture measurements from Timer A3 and PWM
outputs with Timer A0.

2. You will develop a system to control the speed of the two motors.
3. You will evaluate the performance of the control system.

Good to Know: Control systems are a rich and complex field within engineering

spanning: electrical engineering, aerospace engineering, mechanical
engineering, and computer engineering. This module provides a brief
introduction.

17.1 Getting Started

17.1.1 Software Starter Projects

In addition to your solutions to Labs 13 and 15, look at this project:
Lab17_Control (starter project for this lab)

Note: Similar to Lab 14, you will find noise is a major problem for control

systems. Continue to monitor the stability and accuracy of the tachometer
measurements during this lab. Jittery measurements will cause even the most
robust control system to fail.
The second issue with control systems is delay. Consider the closed loop
between motor power -> motor speed -> tachometer measurement -> controller
execution -> new duty cycle output. Delays within this loop (e.g., low pass
filtering, slow controller execution rate) can cause the system to be unstable.
Unstable systems produce oscillations.

17.1.2 Student Resources (in datasheets directory-Links)

 MSP432P4xx Technical Reference Manual, Timer_A (SLAU356)
 MSP432P401R Datasheet, msp432p401m.pdf (SLAS826)
 MotorDriverPowerDistribution.pdf Data sheet for power board
 Pololu Romi Chassis User’s Guide.pdf How to build the robot

17.1.3 Reading Materials

Volume 1 Sections 4.1, 9.4, and 9.7
“Embedded Systems: Introduction to the MSP432 Microcontroller",
or
Volume 2 Chapter 6
“Embedded Systems: Real-Time Interfacing to the MSP432 Microcontroller"

17.1.4 Components needed for this lab

Quantity Description Manufacturer Mfg P/N

1
MSP-EXP432P401R
LaunchPad

TI MSP-EXP432P401R

1

Romi Chassis Kit -
Red

Pololu 3502

1

Motor Driver and
Power Distribution
Board for Romi

Pololu 3543

1

Romi Encoder Pair
Kit, 12 CPR

Pololu 3542

2

Rechargeable
Battery, Pack of 4,
Metal Hydride 1300
mAh, 1.2V, AA

Energizer 626831

4

1.375in 4-40 Nylon
standoff

Keystone 4809

2

0.187in 4-40 metal
nut

Keystone 4694

6

0.5in 4-40 Nylon
machine screw

Pololu 1962

 Lab: Control Systems

 3 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP212

17.1.5 Lab equipment needed

Oscilloscope (one or two channels at least 10 kHz sampling)
Logic Analyzer (4 channels at least 10 kHz sampling

Warning: Disconnect the VREG↔+5V wire when the LaunchPad USB cable is

connected to the PC. Connect the VREG↔+5V wire when the robot is running on
battery power. This way the motors always get power from the batteries, and not
from the USB.

17.2 System Design Requirements

The goal of this lab is implement a control system to independently set the speed
of the two motors. Let X* be the desired speed (the units of X* should match the
units of the speed measurements obtained in Lab 16). Let X’(t) be the estimated
speed as implemented in Lab 16. We define the controller error, e(t), to be the

difference between the desired and estimated speed:

 e(t) = X*- X’(t)

The minimum desired speed should be larger than minimum speed measurable
with your input capture system. The maximum desired speed should be the
speed on the ground when the robot is moving with a duty cycle of 90%. The
controller should be stable, meaning the robot moves with approximately
constant speed. An unstable controller exhibits widely varying speeds oscillating

between fast and slow.

The accuracy of the controller will be limited by the accuracy of the tachometer

measurements. You will be required to measure accuracy, which we define as
the average steady state error, but there is no requirement for this lab that the
accuracy be less than a specific value.

The stability of the controller will be determined by the stability of the tachometer

measurements and by the parameters of the controller. You will be required to
measure stability, which we define as the standard deviation of the error, but
there is no requirement for this lab that the stability be less than a specific value.

The time constant of the controller is defined as the time it takes to reach (1-e
-1

)

= 0.63 of the final speed given a change in desired speed. For example, if the
current and desired speeds are 100 RPM and the desired speed is changed to
200 RPM, then the time constant is the time it takes to reach 163 RPM. You are
required to measure time constant, but there is no requirement for this lab that
the time constant be less than a specific value.

The ultimate goal of this lab is to be able to run the robot in a straight line at a
desired and constant speed.

17.3 Experiment set-up
The construction of the robot has been performed in labs 5, 10, 12, 13, and 16.
Refer back to these modules for more information on robot construction.

 https://www.pololu.com/docs/0J68/all

The following table lists suggested pin connections for the tachometer and motor
drivers.

LaunchPad (Ports) MDPDB Encoder Description

P8.2/TA3CCP2 ELA OUT A Left Encoder A

P9.2/GPIO ELB OUT B Left Encoder B

P10.4/TA3CCP0 ERA OUT A Right Encoder A

P10.5/GPIO ERB OUT B Right Encoder B

P1.6 DIRR PH Right Motor Direction

P3.6 nSLPR nSLEEP Right Motor Sleep

P2.6 PWMR EN Right Motor PWM

P1.7 DIRL PH Left Motor Direction

P3.7 nSLPL nSLEEP Left Motor Sleep

P2.7 PWML EN Left Motor PWM

https://www.pololu.com/docs/0J68/all

 Lab: Control Systems

 4 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP212

17.4 System Development Plan

17.4.1 Selection of the controller period

You will run the controller at a fixed rate using a periodic interrupt. Similar to
sampling, running the controller at a regular rate allows you to implement digital
signal processing. Let Δt be the period of the interrupt. For example, the integral
equation

 𝑢(𝑇) = ∫ 𝑎 ∗ 𝑒(𝑡)𝑑𝑡
𝑇

0

can be approximated as

 𝑢(𝑇) = ∑ 𝑎 ∗ 𝑒(𝑛∆𝑡)∆𝑡
𝑇/∆𝑡
𝑛=1

and implemented more simply as

 𝑢 = 𝑢 + 𝑎 ∗ 𝑒 ∗ ∆𝑡

There are multiple factors to consider when choosing a controller rate:

 The rate does not need be faster than the rate at which new speed data
are obtained.

 Running the controller faster than the input rate is a waste of processor
time because the controller equations will be executed multiple times
with the same input data.

 The controller rate must be faster than the response rate of the motors.
One rule of thumb is to choose the time interval for running the digital
controller about 10 times slower than the time constant of the motor.

 Running the controller slower than the response time of the motor leads
to instability.

 Running the controller faster will consume more processor time; running
the controller slower allows for low pass filtering of the input data.

 Note: Write your control software so it is easy to adjust the controller rate. This

way you can experimentally test which rates work well for your robot.

17.4.2 Integral Controller

Write the two integral controllers that will run periodically within an Interrupt
Service Routine (ISR). Use global variables to pass data into the controller. The
two inputs to the left motor controller are XstarL (the desired speed) and
XprimeL (the estimated speed). The output of the controller is the PWM duty
cycle UL (e.g., 2 to 14998). For the left motor perform steps 1 – 5:

1. Read desired left motor speed: XstarL
2. Collect estimated left motor speed: XprimeL
3. Calculate error: ErrorL = XstarL- XprimeL

4. Calculate integral: UL = UL + (A*ErrorL)/1024
5. Antireset windup: make sure 2 ≤ UL ≤ 14998

where A is a constant that defines the behavior of the integral controller. Perform

similar steps for the right motor. Use signed 32-bit integer math.

After running the controller for each motor send outputs to the motor driver

 Motor_Forward(UL,UR);

Compare the theoretical integral to the software implementation. The theoretical
to software

𝑢 = 𝑢 + 𝑎 ∗ 𝑒 ∗ ∆𝑡 ↔ UL = UL + (A*ErrorL)/1024

From this comparison you can see the software constant A is equivalent to
a*Δt/1024.

 Note: Consider the complete loop (motor power -> motor speed -> tachometer

measurement -> controller execution -> new duty cycle output). Some delays are
unavoidable, like the response time of the motor.

 Lab: Control Systems

 5 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP212

17.4.3 Tune the controller

Perform your initial tuning with the robot on blocks so the wheels do not touch the
ground. For the initial value of A, take a large error value of 100 RPM and match
it to a large change in duty cycle 10% (1500/15000). For example

 A = 1024*1500/100 = 15,360

Start with a desired speed that you estimate to require a duty cycle of 50%. The
first tuning will be for stability. Run the controller, and if the speed eventually
stabilizes to more or less a constant then define it as stable. We define stability
as the standard deviation of the error once it has reached steady state. It is
unstable if

 The motor stops (0% duty cycle)

 The motor runs full speed (100% duty cycle)

 The motor oscillates fast and slow.

Saturated responses (stopped or full) are probably a result of a software bug or
the sign that A is incorrect. Oscillations are probably a result of the A being two
large. When initially searching for the best value of A, double or half the values of
A, so you can quickly cover a wide range of values.

Once you have found a range of values that are stable, next you will tune for
accuracy (average steady state error) and time constant (how quickly it
stabilizes). Again, run this motor test on blocks so the wheels do not touch the

ground. We define the time constant, τ, of the motor as the time it takes to

achieve (1-e
-1

) = 0.63 of the final speed, given a step change in desired speed to
the motor. Read a switch on the LaunchPad and use this operator input to
change the desired speed from typical (requiring about 50% duty cycle) to fast
(requiring about 75% duty cycle). Use the debugger to observe error while
running. If you performed Lab 11, you could plot speed versus time on the LCD.

Experiment to find the minimum and maximum speeds at which the controller is
still stable and accurate. For this test run the robot on the ground. The goal is to
run as straight as possible at more or less a constant speed.

17.4.4 Performance Evaluation

Write a test program that periodically collects motor speeds each time the
controllers are run. Include the bumper driver from Lab 10 or Lab 14 so the robot

stops on a collision. Dump desired speed, power (duty cycle) and speed data into
buffers similar to Lab 10. For very long tests, you can dump into flash ROM. For
shorter tests, you can dump into RAM. In the main program, perform these steps
running the robot for 10 seconds.

1. Run forward at medium speed for 3 seconds
2. Run forward at fast speed for 4 seconds
3. Run forward at medium speed for 3 seconds
4. Stop the motors and stop the recording

Run this motor test on blocks and on a flat surface. We define the time

constant, τ, of the motor as the time it takes to achieve (1-e
-1

) = 0.63 of the final

speed, given a step change in desired speed. Fit the speed versus time data to
an exponential to estimate the time-constant of your controller.

y(t) = S0+ΔS e
-t/τ

where S0, ΔS, and τ are least squares fit of the y(t) speed data verses time. Initial
time is defined at the point the desired speed was changed.

17.5 Troubleshooting

Controller will not stabilize:

• Check the sign of A (too slow means increase duty cycle)

• Check the stability of the speed measurements given a constant duty
cycle. If the inputs are noisy, the controller cannot function.

• Try an incremental controller. Let K=10 be a constant. Add K if too slow,
subtract K if too fast.

• Check for overflow at multiply (A*ErrorL). If this exceeds ±2
31

, then

reduce A and 1024.
• Check for underflow at divide by 1024. You will get zero if

A*ErrorL<1024. To solve, increase A.

Motors are very different:

• A little difference (±25%) is normal. A big difference may be friction or a
bad motor.

 Lab: Control Systems

 6 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP212

17.6 Things to think about

In this section, we list thought questions to consider after completing this lab.
These questions are meant to test your understanding of the concepts in this lab.
The goal of this module is for you to understand Timer_A and its use for
measuring period.

• In this lab we tuned the controller empirically. Why did we not use a
mathematical model for the motor, and solve the optimal control
parameters theoretically?

• There are three performance measures (accuracy, stability, and time
constant) and only two adjustable tuning parameters (controller rate and
A). From an engineering perspective what are the consequences of
having so few parameters? Think about advantages and disadvantages
of having only two parameters.

• What happens to your controller if the motor spins too slowly, e.g., less
than 30 RPM?

• What happens to your controller if the motor stops, e.g., does not spin at
all?

• How do we debug this system if the robot is moving along the ground?
• Why do performance measures (accuracy, stability, and time constant)

differ if the robot is on blocks versus on the ground?

17.7 Additional challenges

In this section, we list additional activities you could do to further explore the
concepts of this module. For example,

• If you completed Lab 11, add LCD outputs for each of the test functions.
Remember to perform LCD output only in the main program and not
during an ISR.

• If your robot does not have a tachometer to measure speed you could
still perform this lab. For example if you have the IR distance sensors,
then you could specify the desire to roll down the middle of the road.
Assume the left and right IR sensors are measuring distance to the left
and right walls, see Figure 1. For this controller we define error as the
difference between distance to left and right. Error = Dl-Dr. Set the duty

cycle of one wheel to a constant, and have the output of the controller
determine the duty cycle of the other wheel.

• If your robot does not have a tachometer to measure speed you could
still perform this lab. For example if you have the line sensor, then you
could specify the desire to follow the line. Recall the output parameter

for the reflectance.c driver in labs 6 and 10 was a number, where 0

meant on the line, positive numbers mean off center in one direction
and negative numbers mean off center in the other direction. For this
controller we define error simply as this reflectance measurement. Set
the duty cycle of one wheel to a constant, and have the output of the
controller determine the duty cycle of the other wheel.

• To improve time constant without affecting accuracy or stability, you
could add a proportional term, implementing a PI controller.

1. Read desired left motor speed: XstarL
2. Collect estimated left motor speed: XprimeL
3. Calculate error: ErrorL = XstarL- XprimeL

4. Calculate integral: UIL = UIL + (A*ErrorL)/1024
5. Antireset windup: make sure 2 ≤ UIL ≤ 14998
6. Calculate proportional: UPL = (B*ErrorL)/1024
7. Combine: UL = UIL+UPL
8. Constrain: make sure 2 ≤ UL ≤ 14998

Figure 1. Define distance measured from a central point on the robot.

Dr

Dc

Dl

 Lab: Control Systems

 7 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP212

17.8 Which modules are next?

After this module, you are ready to solve any of the robot design challenges. If
you wish to extend your robot to include wireless communication you have two
options:
Modules 18 and 19) Add Bluetooth functionality.
Modules 18 and 20) Add Wifi functionality.

17.9 Things you should have learned

In this section, we review the important concepts you should have learned in this
module:

• Understand how the controller allows you to manage the uncertainties
of friction.

• Know how to tune a digital controller empirically.
• Know how to use interrupts to build complex real-time systems. From a

systems standpoint, your robot now has many components: bumper
switches, line sensor, LCD, IR distance sensor, tachometer, and digital
controller (PWM). You used a single main program for the non-real-time
tasks like the LCD and operator buttons, but used interrupts for the real-
time tasks.

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

