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17.0 Objectives 
 
The purpose of this lab is to develop a control system. In this module, 

1. You will combine input capture measurements from Timer A3 and PWM 
outputs with Timer A0. 

2. You will develop a system to control the speed of the two motors. 
3. You will evaluate the performance of the control system. 

 

Good to Know: Control systems are a rich and complex field within engineering 

spanning: electrical engineering, aerospace engineering, mechanical 
engineering, and computer engineering. This module provides a brief 
introduction. 

 
17.1 Getting Started  
 

17.1.1 Software Starter Projects  

In addition to your solutions to Labs 13 and 15, look at this project:  
Lab17_Control (starter project for this lab) 

 

Note: Similar to Lab 14, you will find noise is a major problem for control 

systems. Continue to monitor the stability and accuracy of the tachometer 
measurements during this lab. Jittery measurements will cause even the most 
robust control system to fail.  
The second issue with control systems is delay. Consider the closed loop 
between motor power -> motor speed -> tachometer measurement -> controller 
execution -> new duty cycle output. Delays within this loop (e.g., low pass 
filtering, slow controller execution rate) can cause the system to be unstable. 
Unstable systems produce oscillations.  

 
17.1.2 Student Resources (in datasheets directory-Links)   

   

   MSP432P4xx Technical Reference Manual, Timer_A (SLAU356) 
   MSP432P401R Datasheet, msp432p401m.pdf (SLAS826)  
   MotorDriverPowerDistribution.pdf  Data sheet for power board 
   Pololu Romi Chassis User’s Guide.pdf  How to build the robot 
 

17.1.3 Reading Materials  

Volume 1 Sections 4.1, 9.4, and 9.7 
“Embedded Systems: Introduction to the MSP432 Microcontroller", 
or 
Volume 2 Chapter 6 
“Embedded Systems: Real-Time Interfacing to the MSP432 Microcontroller" 

17.1.4 Components needed for this lab 

 

Quantity Description Manufacturer Mfg P/N 

1 
MSP-EXP432P401R 
LaunchPad 

TI MSP-EXP432P401R 

1 

Romi Chassis Kit - 
Red 

Pololu 3502 

1 

Motor Driver and 
Power Distribution 
Board for Romi  

Pololu 3543 

1 

Romi Encoder Pair 
Kit, 12 CPR 

Pololu 3542 

2 

Rechargeable 
Battery, Pack of 4, 
Metal Hydride 1300 
mAh, 1.2V, AA 

Energizer 626831 

4 

1.375in 4-40 Nylon 
standoff  

Keystone 4809 

2 

0.187in 4-40 metal 
nut  

Keystone 4694 

6 

0.5in 4-40 Nylon 
machine screw  

Pololu 1962 
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17.1.5   Lab equipment needed  

Oscilloscope (one or two channels at least 10 kHz sampling) 
Logic Analyzer (4 channels at least 10 kHz sampling 
 

Warning: Disconnect the VREG↔+5V wire when the LaunchPad USB cable is 

connected to the PC. Connect the VREG↔+5V wire when the robot is running on 
battery power. This way the motors always get power from the batteries, and not  
from the USB. 

 
 

17.2 System Design Requirements 
 
The goal of this lab is implement a control system to independently set the speed 
of the two motors. Let X* be the desired speed (the units of X* should match the 
units of the speed measurements obtained in Lab 16). Let X’(t) be the estimated 
speed as implemented in Lab 16. We define the controller error, e(t), to be the 

difference between the desired and estimated speed: 
 
  e(t) = X*- X’(t) 
 
The minimum desired speed should be larger than minimum speed measurable 
with your input capture system. The maximum desired speed should be the 
speed on the ground when the robot is moving with a duty cycle of 90%. The 
controller should be stable, meaning the robot moves with approximately 
constant speed. An unstable controller exhibits widely varying speeds oscillating 

between fast and slow.  

The accuracy of the controller will be limited by the accuracy of the tachometer 

measurements. You will be required to measure accuracy, which we define as 
the average steady state error, but there is no requirement for this lab that the 
accuracy be less than a specific value. 

The stability of the controller will be determined by the stability of the tachometer 

measurements and by the parameters of the controller. You will be required to 
measure stability, which we define as the standard deviation of the error, but 
there is no requirement for this lab that the stability be less than a specific value. 

The time constant of the controller is defined as the time it takes to reach (1-e
-1

) 

= 0.63 of the final speed given a change in desired speed. For example, if the 
current and desired speeds are 100 RPM and the desired speed is changed to 
200 RPM, then the time constant is the time it takes to reach 163 RPM. You are 
required to measure time constant, but there is no requirement for this lab that 
the time constant be less than a specific value. 

The ultimate goal of this lab is to be able to run the robot in a straight line at a 
desired and constant speed. 
 

17.3 Experiment set-up  
The construction of the robot has been performed in labs 5, 10, 12, 13, and 16. 
Refer back to these modules for more information on robot construction. 
 

 https://www.pololu.com/docs/0J68/all 
 

The following table lists suggested pin connections for the tachometer and motor 
drivers. 
 

LaunchPad (Ports) MDPDB   Encoder  Description 

P8.2/TA3CCP2 ELA   OUT A Left Encoder A 

P9.2/GPIO ELB  OUT B Left Encoder B 

P10.4/TA3CCP0 ERA   OUT A Right Encoder A 

P10.5/GPIO ERB   OUT B Right Encoder B 

P1.6 DIRR   PH Right Motor Direction 

P3.6 nSLPR   nSLEEP Right Motor Sleep 

P2.6 PWMR   EN Right Motor PWM 

P1.7 DIRL   PH Left Motor Direction 

P3.7 nSLPL   nSLEEP Left Motor Sleep 

P2.7 PWML   EN Left Motor PWM 

 

 

  

https://www.pololu.com/docs/0J68/all
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17.4 System Development Plan 
 

17.4.1 Selection of the controller period 

 
You will run the controller at a fixed rate using a periodic interrupt. Similar to 
sampling, running the controller at a regular rate allows you to implement digital 
signal processing. Let Δt be the period of the interrupt. For example, the integral 
equation 
 

 𝑢(𝑇) = ∫ 𝑎 ∗ 𝑒(𝑡)𝑑𝑡
𝑇

0
 

 
can be approximated as 
 

 𝑢(𝑇) =  ∑ 𝑎 ∗ 𝑒(𝑛∆𝑡)∆𝑡
𝑇/∆𝑡
𝑛=1  

 
and implemented more simply as 
 
 𝑢 = 𝑢 + 𝑎 ∗ 𝑒 ∗ ∆𝑡 

 
There are multiple factors to consider when choosing a controller rate: 
 

 The rate does not need be faster than the rate at which new speed data 
are obtained.  

 Running the controller faster than the input rate is a waste of processor 
time because the controller equations will be executed multiple times 
with the same input data. 

 The controller rate must be faster than the response rate of the motors. 
One rule of thumb is to choose the time interval for running the digital 
controller about 10 times slower than the time constant of the motor.  

 Running the controller slower than the response time of the motor leads 
to instability.  

 Running the controller faster will consume more processor time; running 
the controller slower allows for low pass filtering of the input data. 

 

 Note: Write your control software so it is easy to adjust the controller rate. This 

way you can experimentally test which rates work well for your robot. 

 

17.4.2 Integral Controller  

 
Write the two integral controllers that will run periodically within an Interrupt 
Service Routine (ISR). Use global variables to pass data into the controller. The 
two inputs to the left motor controller are XstarL (the desired speed) and 
XprimeL (the estimated speed). The output of the controller is the PWM duty 
cycle UL (e.g., 2 to 14998). For the left motor perform steps 1 – 5: 

 
1. Read desired left motor speed: XstarL 
2. Collect estimated left motor speed: XprimeL 
3. Calculate error: ErrorL = XstarL- XprimeL 

4. Calculate integral: UL = UL + (A*ErrorL)/1024 
5. Antireset windup: make sure 2 ≤ UL ≤ 14998 

 
where A is a constant that defines the behavior of the integral controller. Perform 

similar steps for the right motor. Use signed 32-bit integer math. 
 
After running the controller for each motor send outputs to the motor driver 
 
 Motor_Forward(UL,UR); 

 
Compare the theoretical integral to the software implementation. The theoretical 
to software  
 

𝑢 = 𝑢 + 𝑎 ∗ 𝑒 ∗ ∆𝑡 ↔ UL = UL + (A*ErrorL)/1024 

 
From this comparison you can see the software constant A is equivalent to 
a*Δt/1024. 
 

 Note: Consider the complete loop (motor power -> motor speed -> tachometer 

measurement -> controller execution -> new duty cycle output). Some delays are 
unavoidable, like the response time of the motor.   
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17.4.3 Tune the controller  

Perform your initial tuning with the robot on blocks so the wheels do not touch the 
ground. For the initial value of A, take a large error value of 100 RPM and match 
it to a large change in duty cycle 10% (1500/15000). For example 

 A = 1024*1500/100 = 15,360 

Start with a desired speed that you estimate to require a duty cycle of 50%. The 
first tuning will be for stability. Run the controller, and if the speed eventually 
stabilizes to more or less a constant then define it as stable. We define stability 
as the standard deviation of the error once it has reached steady state. It is 
unstable if 

 The motor stops (0% duty cycle) 

 The motor runs full speed (100% duty cycle) 

 The motor oscillates fast and slow. 

Saturated responses (stopped or full) are probably a result of a software bug or 
the sign that A is incorrect. Oscillations are probably a result of the A being two 
large. When initially searching for the best value of A, double or half the values of 
A, so you can quickly cover a wide range of values.  

Once you have found a range of values that are stable, next you will tune for 
accuracy (average steady state error) and time constant (how quickly it 
stabilizes). Again, run this motor test on blocks so the wheels do not touch the 

ground. We define the time constant, τ, of the motor as the time it takes to 

achieve (1-e
-1

) = 0.63 of the final speed, given a step change in desired speed to 
the motor. Read a switch on the LaunchPad and use this operator input to 
change the desired speed from typical (requiring about 50% duty cycle) to fast 
(requiring about 75% duty cycle). Use the debugger to observe error while 
running. If you performed Lab 11, you could plot speed versus time on the LCD. 

Experiment to find the minimum and maximum speeds at which the controller is 
still stable and accurate. For this test run the robot on the ground. The goal is to 
run as straight as possible at more or less a constant speed. 

17.4.4 Performance Evaluation  

Write a test program that periodically collects motor speeds each time the 
controllers are run. Include the bumper driver from Lab 10 or Lab 14 so the robot 

stops on a collision. Dump desired speed, power (duty cycle) and speed data into 
buffers similar to Lab 10. For very long tests, you can dump into flash ROM. For 
shorter tests, you can dump into RAM. In the main program, perform these steps 
running the robot for 10 seconds. 

1. Run forward at medium speed for 3 seconds 
2. Run forward at fast speed for 4 seconds 
3. Run forward at medium speed for 3 seconds 
4. Stop the motors and stop the recording 

Run this motor test on blocks and on a flat surface. We define the time 

constant, τ, of the motor as the time it takes to achieve (1-e
-1

) = 0.63 of the final 

speed, given a step change in desired speed. Fit the speed versus time data to 
an exponential to estimate the time-constant of your controller.  

y(t) = S0+ΔS e
-t/τ 

where S0, ΔS, and τ are least squares fit of the y(t) speed data verses time. Initial 
time is defined at the point the desired speed was changed.  

17.5 Troubleshooting  

Controller will not stabilize:  

• Check the sign of A (too slow means increase duty cycle) 

• Check the stability of the speed measurements given a constant duty 
cycle. If the inputs are noisy, the controller cannot function. 

• Try an incremental controller. Let K=10 be a constant. Add K if too slow, 
subtract K if too fast. 

• Check for overflow at multiply (A*ErrorL). If this exceeds ±2
31

, then 

reduce A and 1024. 
• Check for underflow at divide by 1024. You will get zero if 

A*ErrorL<1024. To solve, increase A. 

Motors are very different:  

• A little difference (±25%) is normal. A big difference may be friction or a 
bad motor. 
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17.6 Things to think about    

In this section, we list thought questions to consider after completing this lab. 
These questions are meant to test your understanding of the concepts in this lab. 
The goal of this module is for you to understand Timer_A and its use for 
measuring period.  

• In this lab we tuned the controller empirically. Why did we not use a 
mathematical model for the motor, and solve the optimal control 
parameters theoretically?  

• There are three performance measures (accuracy, stability, and time 
constant) and only two adjustable tuning parameters (controller rate and 
A). From an engineering perspective what are the consequences of 
having so few parameters? Think about advantages and disadvantages 
of having only two parameters. 

• What happens to your controller if the motor spins too slowly, e.g., less 
than 30 RPM? 

• What happens to your controller if the motor stops, e.g., does not spin at 
all?  

• How do we debug this system if the robot is moving along the ground? 
• Why do performance measures (accuracy, stability, and time constant) 

differ if the robot is on blocks versus on the ground? 

17.7 Additional challenges  

In this section, we list additional activities you could do to further explore the 
concepts of this module. For example, 

• If you completed Lab 11, add LCD outputs for each of the test functions. 
Remember to perform LCD output only in the main program and not 
during an ISR. 

• If your robot does not have a tachometer to measure speed you could 
still perform this lab. For example if you have the IR distance sensors, 
then you could specify the desire to roll down the middle of the road. 
Assume the left and right IR sensors are measuring distance to the left 
and right walls, see Figure 1. For this controller we define error as the 
difference between distance to left and right. Error = Dl-Dr. Set the duty 

cycle of one wheel to a constant, and have the output of the controller 
determine the duty cycle of the other wheel. 

• If your robot does not have a tachometer to measure speed you could 
still perform this lab. For example if you have the line sensor, then you 
could specify the desire to follow the line. Recall the output parameter 

for the reflectance.c driver in labs 6 and 10 was a number, where 0 

meant on the line, positive numbers mean off center in one direction 
and negative numbers mean off center in the other direction. For this 
controller we define error simply as this reflectance measurement. Set 
the duty cycle of one wheel to a constant, and have the output of the 
controller determine the duty cycle of the other wheel. 

• To improve time constant without affecting accuracy or stability, you 
could add a proportional term, implementing a PI controller. 

1. Read desired left motor speed: XstarL 
2. Collect estimated left motor speed: XprimeL 
3. Calculate error: ErrorL = XstarL- XprimeL 

4. Calculate integral: UIL = UIL + (A*ErrorL)/1024 
5. Antireset windup: make sure 2 ≤ UIL ≤ 14998 
6. Calculate proportional: UPL = (B*ErrorL)/1024 
7. Combine: UL = UIL+UPL 
8. Constrain: make sure 2 ≤ UL ≤ 14998 

 
 
 
 

 
 
 
Figure 1.  Define distance measured from a central point on the robot. 

 

  

Dr 

Dc 

Dl 
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17.8 Which modules are next? 
 
After this module, you are ready to solve any of the robot design challenges. If 
you wish to extend your robot to include wireless communication you have two 
options: 
Modules 18 and 19) Add Bluetooth functionality. 
Modules 18 and 20) Add Wifi functionality. 
 
 

17.9 Things you should have learned 

In this section, we review the important concepts you should have learned in this 
module: 

• Understand how the controller allows you to manage the uncertainties 
of friction. 

• Know how to tune a digital controller empirically. 
• Know how to use interrupts to build complex real-time systems. From a 

systems standpoint, your robot now has many components: bumper 
switches, line sensor, LCD, IR distance sensor, tachometer, and digital 
controller (PWM). You used a single main program for the non-real-time 
tasks like the LCD and operator buttons, but used interrupts for the real-
time tasks. 
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