
### Test Report: PMP21251 Less than 90mW Ultra-low standby power Auxless AC-DC Power Supply Reference Design

## Texas Instruments

#### Description

The PMP21251 reference design uses UCC28056 CRM/DCM PFC controller and UCC256304 enhanced LLC controller with integrated driver to provide 12V/10.8A output (continuous, 14.4A peak) from universal AC input. This design achieves 92.4% peak efficiency at 115VAC input and 94.0% peak efficiency at 230VAC input. The efficiency and power factor numbers also meet both 115V and 230V internal 80 PLUS gold specifications and DoE level VI requirement. In addition, the design is able to achieve as low as 89mW power consumption at 230VAC input and no load without turning off PFC.



An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other important disclaimers and information.

January 2018 170W Auxless AC/DC Power Supply Reference Design with 80 PLUS Gold Compatible Performance



#### **1** System Specification

#### 1.1 Board Dimension:

Board dimension should be within 55mm x 145mm x 35mm.

#### **1.2** Input Characteristics

#### **1.2.1 AC Input Voltage and Frequency Limitations:**

| Minimum | Nominal | Maximum |     |
|---------|---------|---------|-----|
| 90      | 100~240 | 265     | VAC |
| 47      | 50~60   | 63      | Hz  |

#### 1.2.2 AC Input Current:

- 1.7A Max. at 100VAC.
- 0.9A Max. at 200VAC.
- Current total harmonic distortion should be less than 20% from 50% to 100% load. 10.8A load current is defined as 100% load.

#### **1.2.3 Power Factor:**

Power factor should be greater than 0.9 at 100% load with either 115VAC/60Hz or 230VAC/50Hz input.

#### 1.2.4 Inrush Current:

- Cold start: <50A at both 100VAC and 230VAC input and 25degC ambient temperature.
- Hot start: no component damage.

#### 1.2.5 Efficiency:

All measurements should be made with a voltage total harmonic distortion <5% AC source at an ambient temperature 25degC.

|               | Minimum Efficiency (%) |          |          |           |  |
|---------------|------------------------|----------|----------|-----------|--|
| Input Voltage | 10% Load               | 20% Load | 50% Load | 100% Load |  |
| 100V          | 80                     | 87       | 90       | 87        |  |
| 115V          | 84                     | 87       | 90       | 87        |  |
| 230V          | 84                     | 87       | 90       | 87        |  |



#### **1.2.6 Standby Input Power:**

All measurements should be made with a voltage total harmonic distortion <5% AC source at an ambient temperature 25degC.

|                    |                            | 100VAC/60Hz |
|--------------------|----------------------------|-------------|
| <b>Ouput Power</b> | True RMS AC Input Power at | 115VAC/60Hz |
|                    |                            | 230VAC/50Hz |
| 22mW               | <0.5W                      |             |
| 352mW              | <1W                        |             |
| 1.1W               | <2W                        |             |
| 2.53W              | <4W                        |             |

#### 1.2.7 Hold Up Time:

Output should maintain in regulation for at least 10mS after AC voltage drop off.

#### 1.3 Output Characteristics

The power supply unit should be able to supply 130W output power continuously and 170W peak power for 20second with 10% duty cycle.

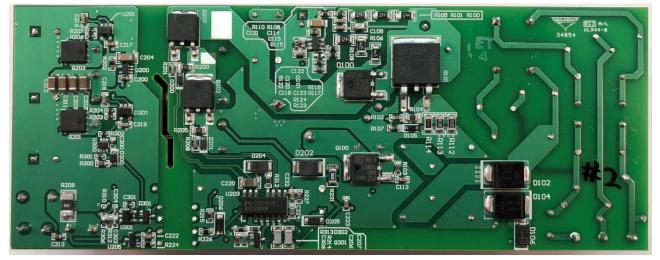
| Nominal Output Voltage | 12V        |
|------------------------|------------|
| Regulation Tolerance   | +/- 5%     |
| Ripple and Noise       | 120mV      |
| Low Frequency Ripple   | 200mV      |
| Minimum Current        | 0A         |
| Continuous Current     | 10.8A      |
| Peak Current           | 14.4A      |
| Maximum Step Load      | 7A@0.5A/µS |

#### 1.4 Protections

| Over Voltage Protection     | <15.6V                | Non-latched |
|-----------------------------|-----------------------|-------------|
| Over Current Protection     | <20A                  | Latched     |
| Short Circuit Protection    | <30mΩ Load Resistance | Latched     |
| Over Temperature Protection | No smoke or fire      | Latched     |



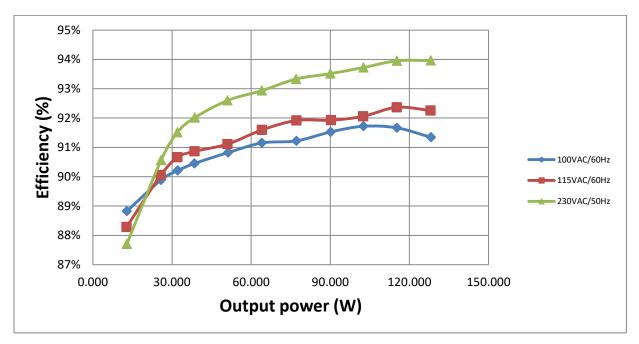
#### 2 Testing and Results


#### 2.1 Board Photos

The photographs below show the top and bottom view of the PMP21251Rev B board. The PMP21251 board is built on PMP21251Rev B PCB.

#### 2.1.1 Top Side




#### 2.1.2 Bottom Side





#### 2.2 Efficiency Data

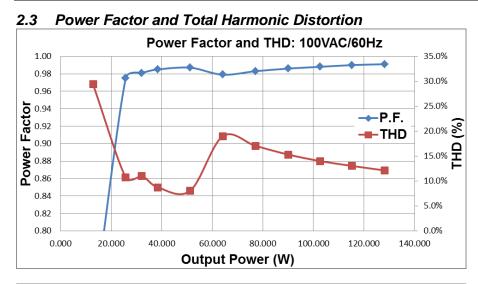
4-point average efficiency: 91.6% @ 115VAC/60Hz and 93% @ 230VAC/50Hz

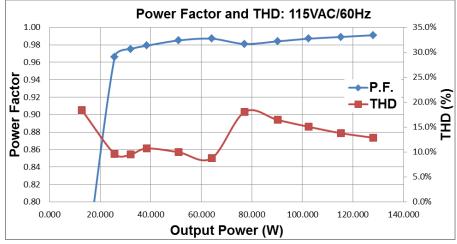


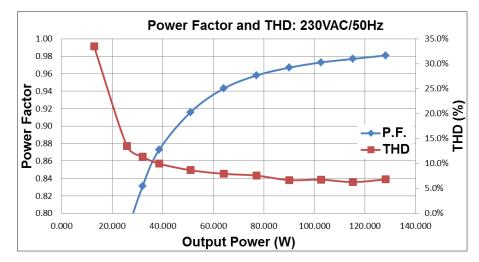
#### 2.2.1 100VAC/60Hz Efficiency Measurement

| Vin,rms(V) | lin,rms(A) | Pin(W) | P.F.  | ATHD(%) | Vout(V) | lout(A) | Pout(W) | Losses(W) | Eff. (%) |
|------------|------------|--------|-------|---------|---------|---------|---------|-----------|----------|
| 100.1      | 1.415      | 140.37 | 0.991 | 12.1%   | 11.85   | 10.820  | 128.217 | 12.1530   | 91.34%   |
| 100.1      | 1.269      | 125.76 | 0.990 | 13.0%   | 11.86   | 9.720   | 115.279 | 10.4808   | 91.67%   |
| 100.0      | 1.131      | 111.85 | 0.988 | 14.0%   | 11.86   | 8.650   | 102.589 | 9.2610    | 91.72%   |
| 100.0      | 0.999      | 98.48  | 0.986 | 15.3%   | 11.86   | 7.600   | 90.136  | 8.3440    | 91.53%   |
| 100.1      | 0.860      | 84.58  | 0.983 | 17.0%   | 11.87   | 6.500   | 77.155  | 7.4250    | 91.22%   |
| 100.1      | 0.718      | 70.32  | 0.979 | 19.0%   | 11.87   | 5.400   | 64.098  | 6.2220    | 91.15%   |
| 100.0      | 0.572      | 56.46  | 0.987 | 8.1%    | 11.87   | 4.320   | 51.278  | 5.1816    | 90.82%   |
| 100.0      | 0.433      | 42.62  | 0.985 | 8.7%    | 11.88   | 3.245   | 38.551  | 4.0694    | 90.45%   |
| 100.1      | 0.364      | 35.65  | 0.981 | 11.0%   | 11.88   | 2.707   | 32.159  | 3.4908    | 90.21%   |
| 100.0      | 0.294      | 28.68  | 0.975 | 10.7%   | 11.88   | 2.170   | 25.780  | 2.9004    | 89.89%   |
| 100.0      | 0.205      | 14.49  | 0.705 | 29.4%   | 11.88   | 1.083   | 12.866  | 1.6190    | 88.82%   |

#### 2.2.2 115VAC/60Hz Efficiency Measurement


| Vin,rms(V) | lin,rms(A) | Pin(W) | P.F.  | ATHD(%) | Vout(V) | lout(A) | Pout(W) | Losses(W) | Eff. (%) |
|------------|------------|--------|-------|---------|---------|---------|---------|-----------|----------|
| 115.03     | 1.217      | 138.72 | 0.991 | 12.9%   | 11.85   | 10.800  | 127.980 | 10.7400   | 92.26%   |
| 115.03     | 1.096      | 124.70 | 0.989 | 13.8%   | 11.85   | 9.720   | 115.182 | 9.5180    | 92.37%   |
| 115.05     | 0.980      | 111.31 | 0.987 | 15.1%   | 11.86   | 8.640   | 102.470 | 8.8396    | 92.06%   |
| 115.01     | 0.867      | 98.18  | 0.984 | 16.4%   | 11.86   | 7.610   | 90.255  | 7.9254    | 91.93%   |
| 115.04     | 0.744      | 83.94  | 0.981 | 18.0%   | 11.87   | 6.500   | 77.155  | 6.7850    | 91.92%   |
| 115.07     | 0.616      | 69.98  | 0.987 | 8.8%    | 11.87   | 5.400   | 64.098  | 5.8820    | 91.59%   |
| 114.99     | 0.495      | 56.02  | 0.985 | 10.0%   | 11.87   | 4.300   | 51.041  | 4.9790    | 91.11%   |
| 115.03     | 0.377      | 42.43  | 0.979 | 10.7%   | 11.87   | 3.248   | 38.554  | 3.8762    | 90.86%   |
| 114.99     | 0.316      | 35.38  | 0.975 | 9.5%    | 11.88   | 2.700   | 32.076  | 3.3040    | 90.66%   |
| 115.07     | 0.257      | 28.60  | 0.966 | 9.6%    | 11.88   | 2.168   | 25.756  | 2.8442    | 90.06%   |
| 115.02     | 0.181      | 14.48  | 0.692 | 18.4%   | 11.88   | 1.076   | 12.783  | 1.6961    | 88.29%   |





#### Vin,rms(V) lin,rms(A) Pin(W) P.F. ATHD(%) Vout(V) lout(A) Pout(W) Losses(W) Eff. (%) 0.605 230 136.33 0.981 6.8% 11.85 10.810 128.099 8.2315 93.96% 0.546 122.70 0.977 6.3% 93.95% 230 11.86 9.720 115.279 7.4208 0.489 109.46 93.72% 230 0.973 6.8% 11.86 8.650 102.589 6.8710 230 0.433 96.26 0.967 6.7% 11.86 7.590 90.017 6.2426 93.51% 230 0.375 82.54 0.958 7.6% 11.87 6.490 77.036 5.5037 93.33% 7.9% 230 0.318 68.97 0.943 11.87 5.400 64.098 4.8720 92.94% 230 0.262 55.12 0.916 8.7% 11.87 4.300 51.041 4.0790 92.60% 230 0.209 42.00 0.873 10.0% 11.88 3.253 38.646 3.3544 92.01% 230 0.184 35.05 0.831 11.4% 11.88 2.700 32.076 2.9740 91.51% 28.57 0.769 13.5% 11.88 2.178 2.6954 230 0.162 25.875 90.57% 230 0.128 14.67 0.498 33.5% 11.88 1.083 12.866 1.8040 87.70%

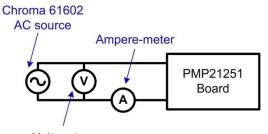
#### 2.2.3 230VAC/50Hz Efficiency Measurement












#### 2.4 Standby Input Power

Standby input power was measured with 5 minute averaging under below two conditions with two different setups:

# 2.4.1 <u>Setup #1</u>: Remove Q102, R202, R302, R304, U201, U202, U301, and change R227 to 162kohm, R210 to 110kohm, R211 to 25.5kohm.

The following measurement was done with Yokogawa WT310 power meter and Chroma 61602 AC source. On the WT310 power meter, voltage range was set to <u>150V for low line input</u> and <u>300V for high line input</u>; current range was set to <u>200mA with crest factor 3 for low line input</u> and <u>500mA with crest factor 3 for high line input</u>. Also, the voltage measurement and current measurement was configured as below:



Volt-meter

#### 2.4.1.1 No load power consumption @ 230VAC/50Hz input: 89mW.

| PCMS                                                                                                 |                                                                     |                                                                                                                                                                                                                                                                                                                               |  |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| C PCMS                                                                                               | Condition and Measurement Control START C 2. Log Control Clear Copy | General Condition         State         Crest Factor         Value       1.428         Value       0.216 %         Range       1.34 - 1.49         Upper Limit       2.000 %         Frequency       49.974 Hz         Measure Data       Average Power         Max Power       1.135 W         Average Power       30.431 VA |  |
| Version 4.2.3<br>Save/Load Parameters<br>Both<br>Connection<br>Preparing of Measurement<br>Save Load |                                                                     | Power Variation 98.066 % Accumulated Energy Real Power Factor<br>0.007 Wh 0.037<br>Information<br>Elapsed Time 00:05:00 / 00:05:00<br>Test State Log<br>[Starting]<br>Initializing WT<br>00:00:00 Starting Measurement<br>00:00:00 (Power Variation) Over Limit<br>00:05:00 Finishing Measurement (Measure Period)            |  |



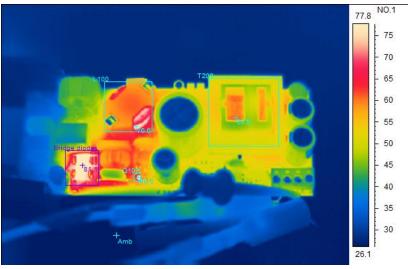
| PCMS                                                                                                    |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step Menu                                                                                               | Condition and Measurement Condition and Measurement  1. Measurement Control  START  2. Log Control  Clear Copy | General Condition         State         Crest Factor         Value       1.418         Range       1.34 - 1.49         Upper Limit       2.000 %         Frequency       59.973 Hz         Measure Data       0.010 W         Average Power       Apparent Power         Max Power       1.100 W         Power Variation       99.455 %         Accumulated Energy       Real Power Factor         0.006 Wh       0.001 |
| Version 4.2.3<br>Save/Load Parameters<br>Both<br>Connection<br>Preparing of Measurement<br>Save<br>Load |                                                                                                                | Test State Log [Starting] Initializing WT 00:00:00 Starting Measurement 00:00:00 (Power Variation) Over Limit 00:00:00 Finishing Measurement (Measure Period)                                                                                                                                                                                                                                                           |

2.4.1.2 No load power consumption @ 120VAC/60Hz input: 70mW.



#### 2.4.2 <u>Setup #2</u>: Without any modifications.

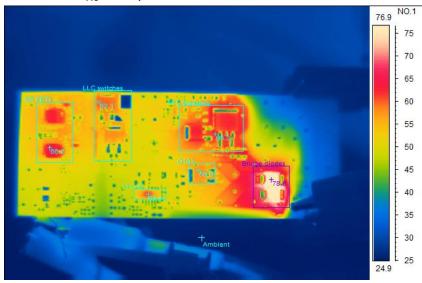
The following measurement was done with Voltech PM1000+ power meter and California Instruments 1251P AC source. A Schneider Electric 2KVA isolated transformer is placed in between the AC source and PMP21251 board. External shunt was using for current meter with scaling factor 0.0125.


| Vout(V) | lout(mA) | Pout(W)   | Vin(V) | lin(mA) | Fin(Hz) | Pin(mW) |
|---------|----------|-----------|--------|---------|---------|---------|
| 11.88   | 0        | 0         | 230.1  | 59.6    | 50      | 226.4   |
| 11.88   | 2.25     | 0.02673   | 230.1  | 59.95   | 50      | 239     |
| 11.88   | 31.09    | 0.3693492 | 230    | 63.03   | 50      | 742.7   |
| 11.88   | 93.2     | 1.107216  | 230    | 68.61   | 50      | 1633    |
| 11.88   | 212.3    | 2.522124  | 230.1  | 78.32   | 50      | 3334    |
| 11.88   | 0        | 0         | 114.98 | 40.96   | 60      | 225.6   |
| 11.88   | 2.24     | 0.0266112 | 114.98 | 39.64   | 60      | 229.7   |
| 11.88   | 31.08    | 0.3692304 | 115.08 | 50.34   | 60      | 707.7   |
| 11.88   | 90.9     | 1.079892  | 115.08 | 65.8    | 60      | 1586    |
| 11.88   | 211.3    | 2.510244  | 114.93 | 89.44   | 60      | 3315    |



#### 2.5 Thermal Images

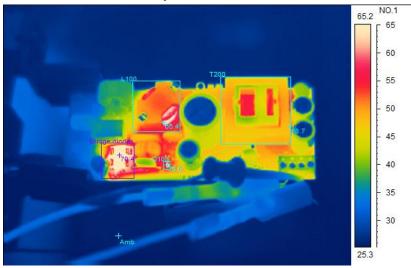
The thermal images below show a top view and bottom view of the board. The board is placed vertically during the test. The ambient temperature was 25°C with no air flow. The output was loaded with 12V/10.8A.


#### $2.5.1 \quad 100V_{AC}/60Hz, Top Side$



| Value  |                                               |
|--------|-----------------------------------------------|
| 26.3°C |                                               |
| Value  |                                               |
| 81.1°C |                                               |
| 86.2°C |                                               |
| 76.6°C |                                               |
| 62.9°C |                                               |
|        | 26.3°C<br>Value<br>81.1°C<br>86.2°C<br>76.6°C |

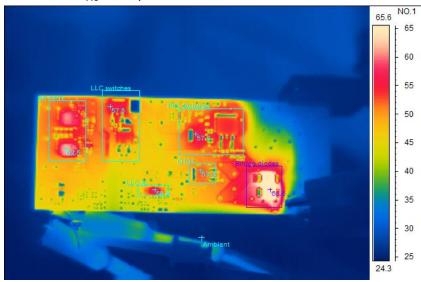



#### $2.5.2\quad 100V_{AC}/60Hz, \,Bottom\,\,Side$



| Spot analysis       | Value  |
|---------------------|--------|
| Ambient Temperature | 25.6°C |
| Area analysis       | Value  |
| Bridge diodesMax    | 78.6°C |
| PFC SwitchesMax     | 65.3°C |
| Q101Max             | 59.9°C |
| LLC switchesMax     | 62.1°C |
| SR FETsMax          | 66.2°C |
| LLC ICMax           | 62.4°C |

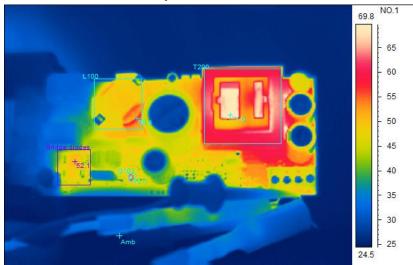



### $2.5.3 \quad 115V_{AC}/60Hz, \, Top \, Side$



| Spot analysis    | Value  |
|------------------|--------|
| Amb Temperature  | 25.9°C |
| Area analysis    | Value  |
| Bridge diodesMax | 70.4°C |
| Q103Max          | 78.0°C |
| L100Max          | 65.4°C |
| T200 Max         | 58.7°C |

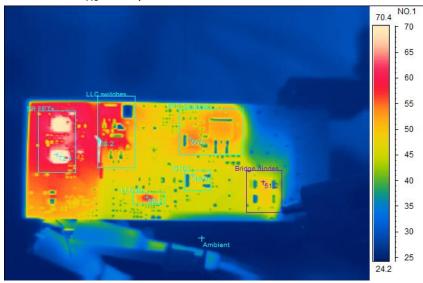



#### 2.5.4 $115V_{AC}/60Hz$ , Bottom Side



| Spot analysis       | Value  |  |
|---------------------|--------|--|
| Ambient Temperature | 25.6°C |  |
| Area analysis       | Value  |  |
| Bridge diodesMax    | 68.5°C |  |
| PFC SwitchesMax     | 57.8°C |  |
| Q101Max             | 53.3°C |  |
| LLC switchesMax     | 57.8°C |  |
| SR FETsMax          | 62.5°C |  |
| LLC ICMax           | 58.4°C |  |



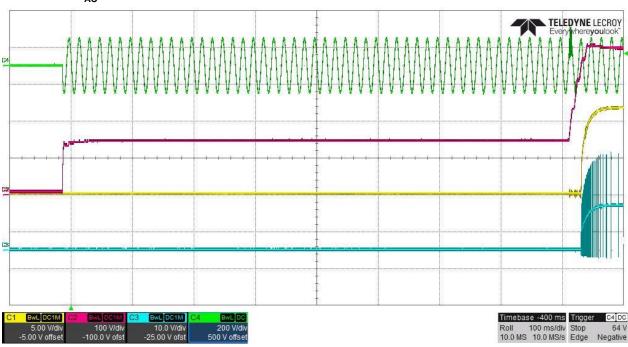

### $2.5.5 \quad 230V_{AC}/50Hz, \, Top \, Side$



| Spot analysis    | Value  |
|------------------|--------|
| Amb Temperature  | 25.1°C |
| Area analysis    | Value  |
| Bridge diodesMax | 52.1°C |
| Q103Max          | 72.1°C |
| L100Max          | 58.4°C |
| T200 Max         | 71.0°C |

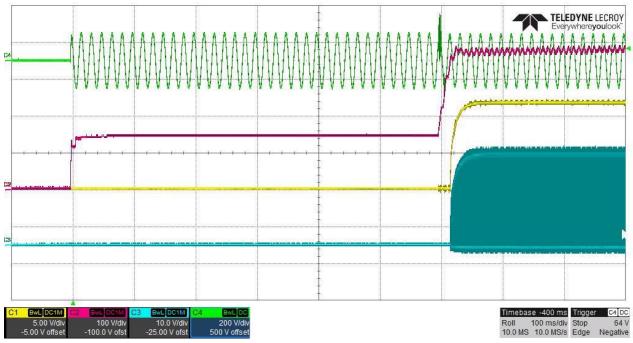


#### $2.5.6 \quad 230V_{AC}/50Hz, \, Bottom \, Side$

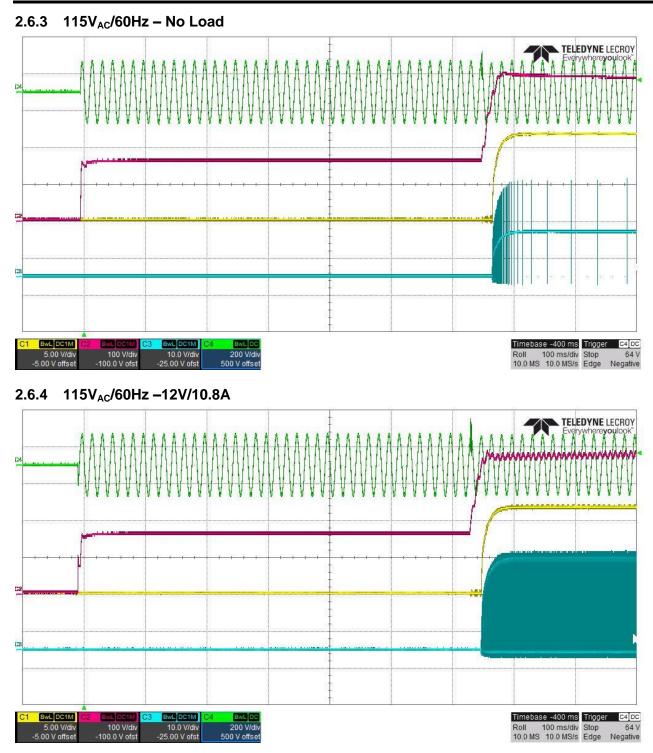



| Spot analysis       | Value  |  |
|---------------------|--------|--|
| Ambient Temperature | 24.7°C |  |
| Area analysis       | Value  |  |
| Bridge diodesMax    | 51.2°C |  |
| PFC SwitchesMax     | 56.0°C |  |
| Q101Max             | 49.9°C |  |
| LLC switchesMax     | 68.2°C |  |
| SR FETsMax          | 72.4°C |  |
| LLC ICMax           | 59.2°C |  |



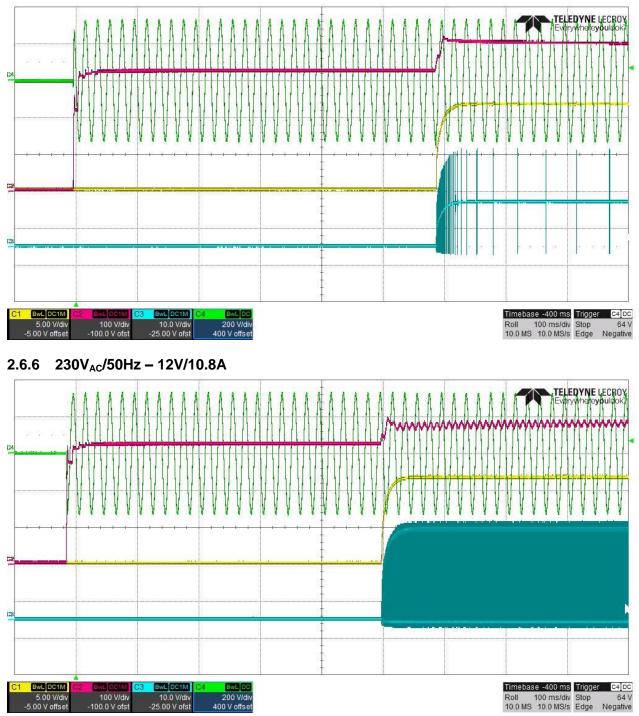

#### 2.6 Startup

The voltages at startup are shown in the images below, where <u>Channel 1 is the input voltage</u>, <u>Channel 2 is the</u>  $V_{DS}$  voltage of Q101, <u>Channel 3 is HV to GND</u>, and <u>Channel 4 is output voltage</u>.




#### 2.6.1 100V<sub>AC</sub>/60Hz – No Load

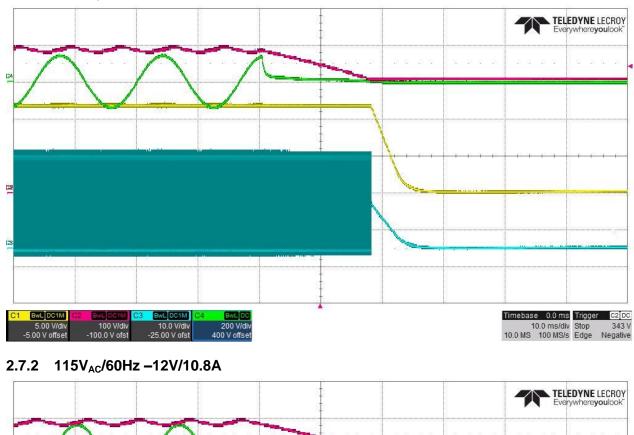
#### 2.6.2 100V<sub>AC</sub>/60Hz -12V/10.8A



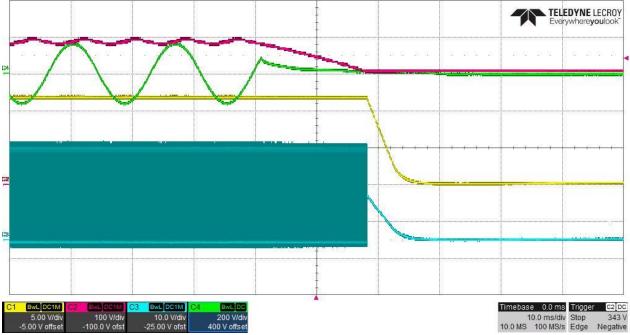






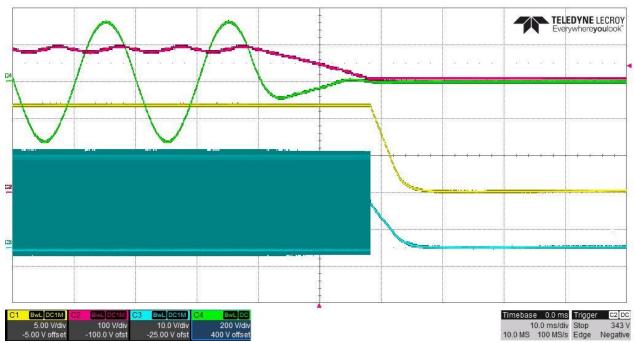


#### 2.6.5 230V<sub>AC</sub>/50Hz – No Load






#### 2.7 Turn-off

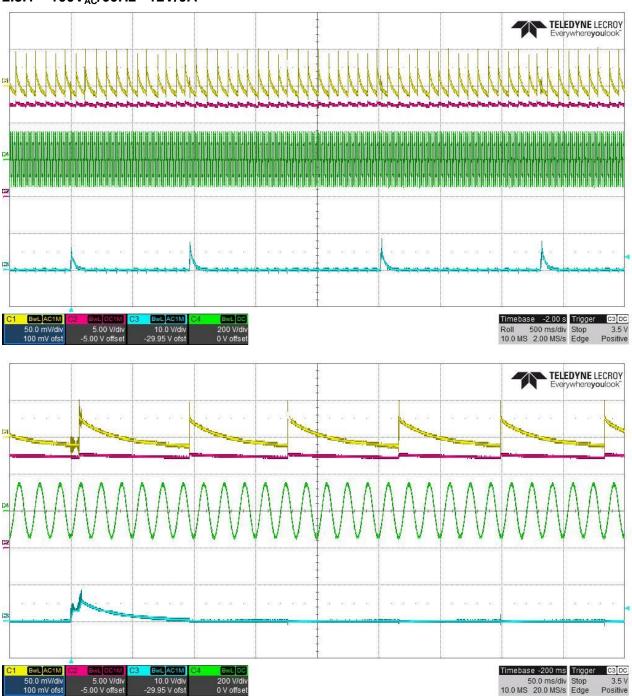
The voltages at turn-off are shown in the images below, where <u>Channel 1 is the output voltage</u>, <u>Channel 2 is HV</u> to GND, <u>Channel 3 is Q203 V<sub>DS</sub></u>, and <u>Channel 4 is the input voltage</u>.




#### 2.7.1 100V<sub>AC</sub>/60Hz –12V/10.8A



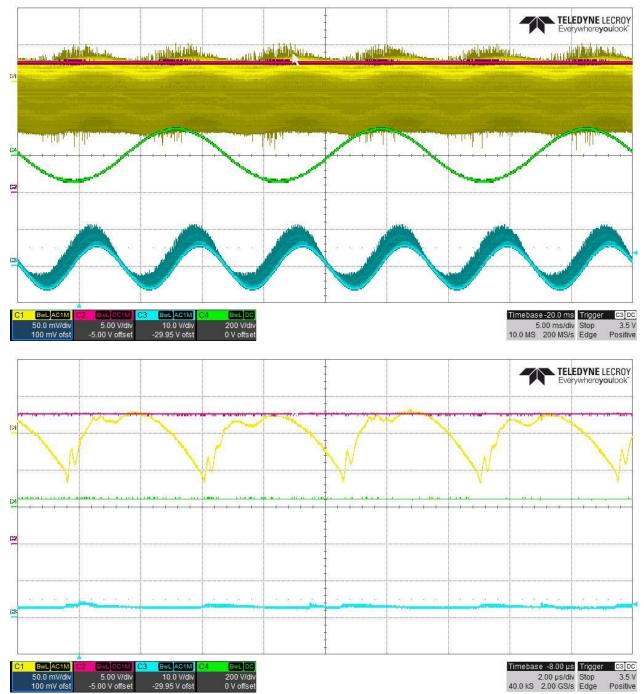



#### $2.7.3 \quad 230V_{AC}/50Hz - 12V/10.8A$

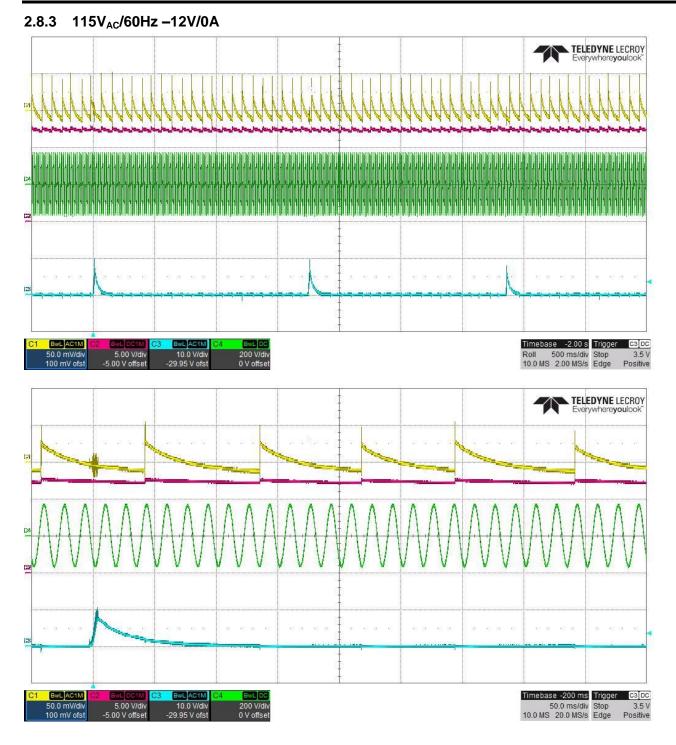




#### 2.8 Ripple Voltages

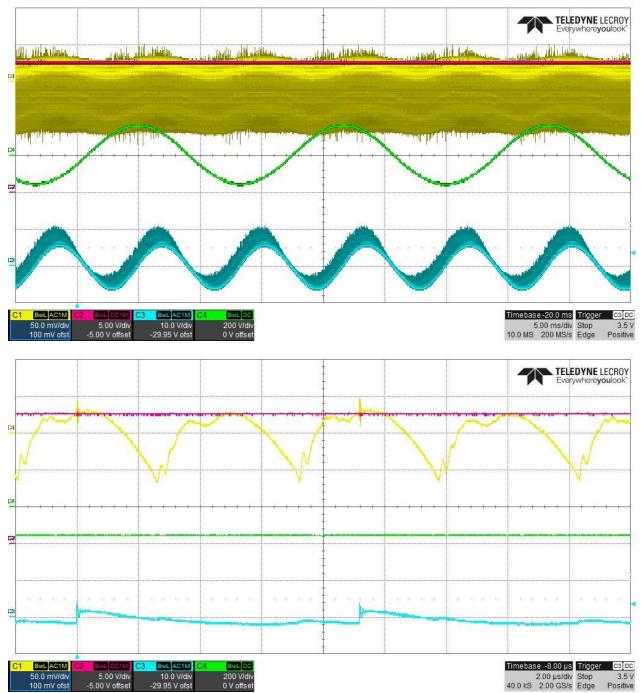

Ripple voltages are shown in the images below, where <u>Channel 1 is the output voltage in AC level</u>, <u>Channel 2 is</u> <u>net VCC\_IC voltage</u>, <u>Channel 3 is HV to GND voltage in AC level</u>, and <u>Channel 4 is the input voltage</u>.



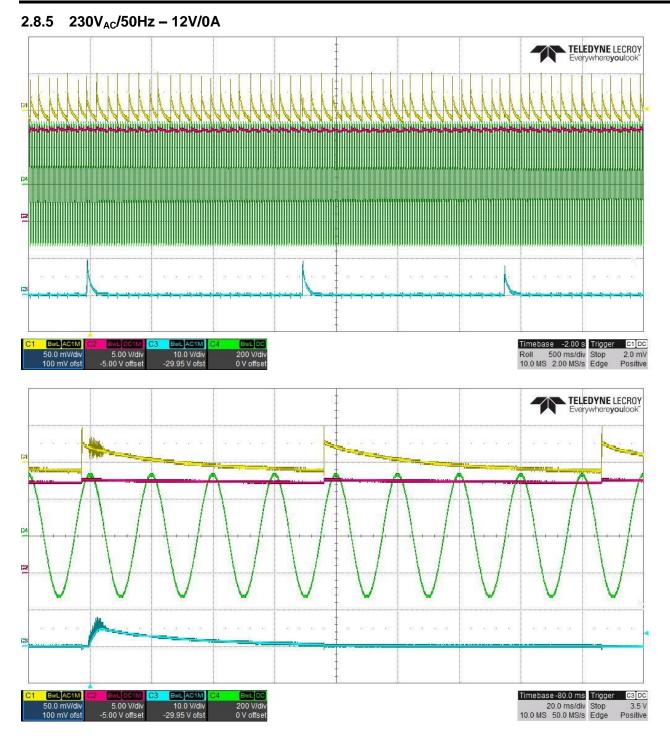

#### 2.8.1 100V<sub>AC</sub>/60Hz –12V/0A



#### $2.8.2 \quad 100V_{AC}/60Hz - 12V/10.8A$

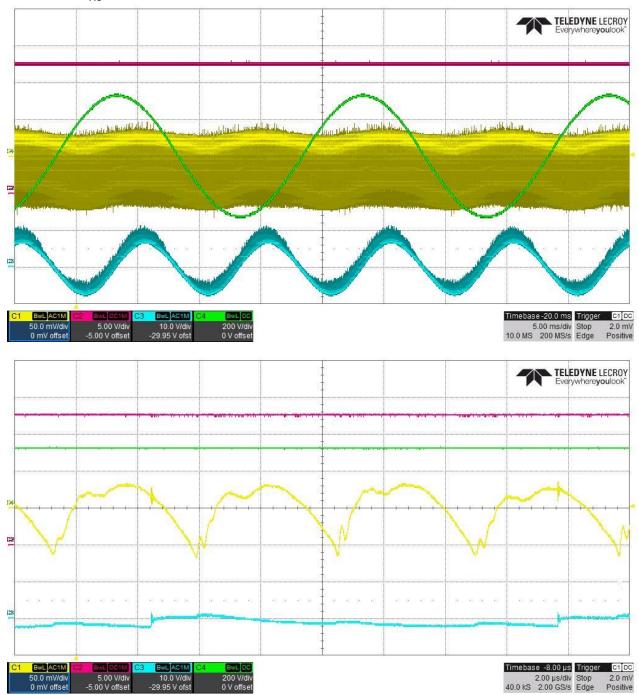







#### 2.8.4 115V<sub>AC</sub>/60Hz -12V/10.8A

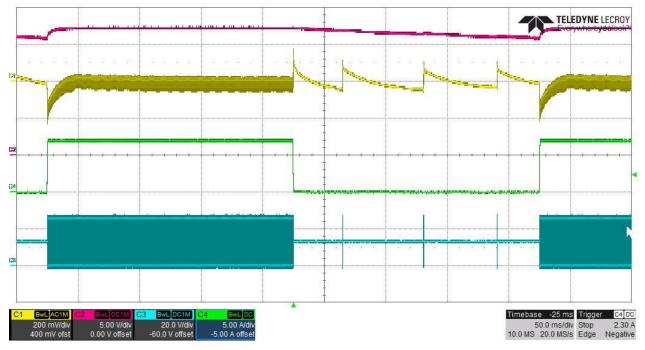




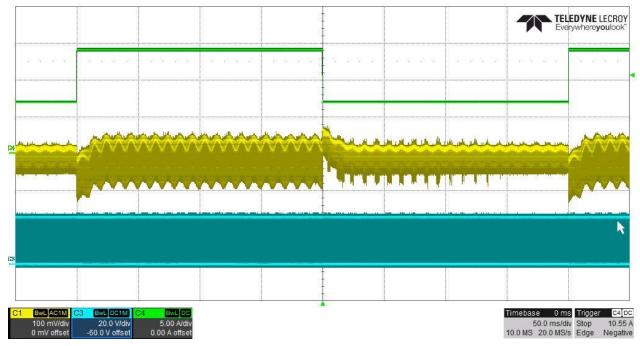





2.8.6 230V<sub>AC</sub>/50Hz - 12V/10.8A



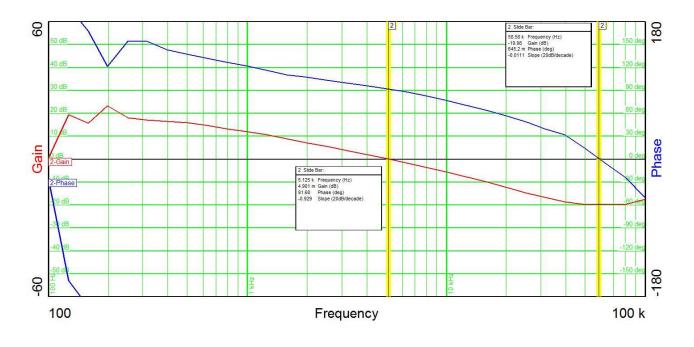




#### 2.9 Load Response

Load response is tested at  $230V_{AC}/50Hz$  input, where <u>Channel 1 is the output voltage in AC level</u>, <u>Channel 3 is</u> <u>Q203 V<sub>DS</sub></u>, and <u>Channel 4 is output voltage in AC level</u>.

#### 2.9.1 Load step from 0A to 7A:

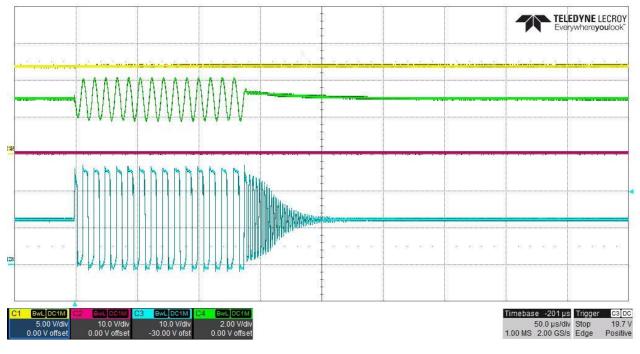



#### 2.9.2 Load step from 7A to 14.4A:

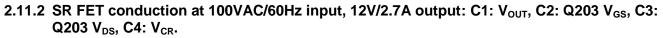


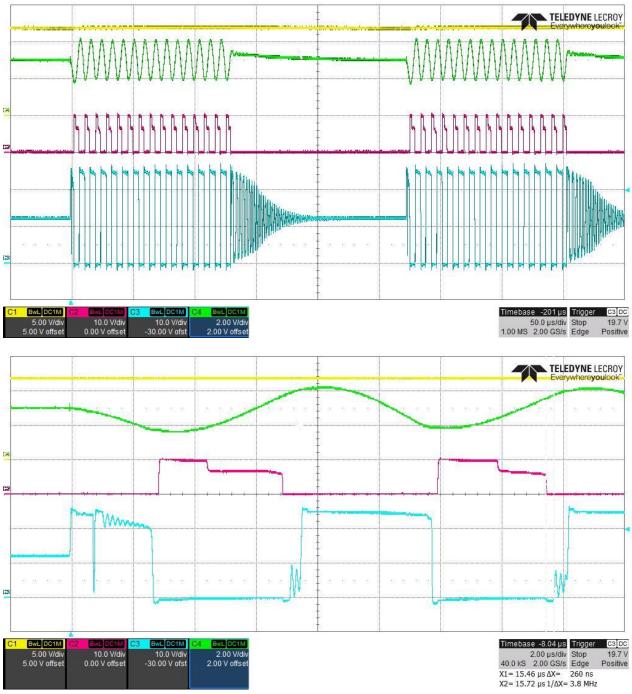


#### 2.10 Frequency Response

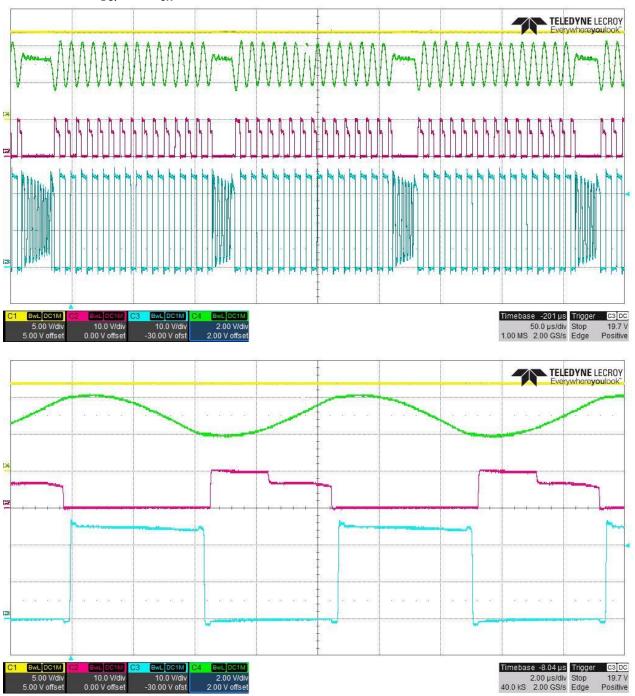

Frequency response of the LLC-SRC stage is tested with  $230V_{AC}/50Hz$  input and 12V/10.8A output. A 20ohm resistor is inserted in between node  $V_{out}$  and the load for signal injection.







#### 2.11 Key Waveforms

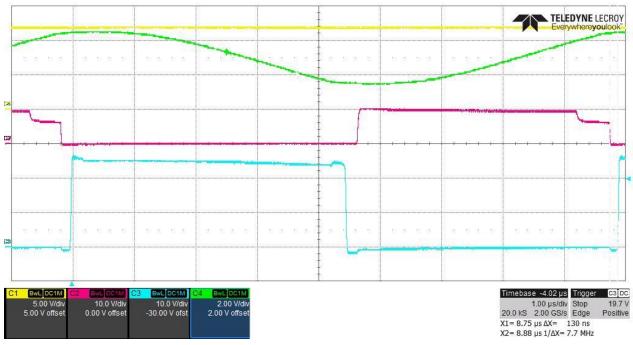
2.11.1 SR FET conduction at 100VAC/60Hz input, 12V/0A output: C1:  $V_{OUT}$ , C2: Q203  $V_{GS}$ , C3: Q203  $V_{DS}$ , C4:  $V_{CR}$ .












2.11.3 SR FET conduction at 100VAC/60Hz input, 12V/5.4A output: C1: V<sub>OUT</sub>, C2: Q203 V<sub>GS</sub>, C3: Q203 V<sub>DS</sub>, C4: V<sub>CR</sub>.



# 2.11.4 SR FET conduction at 100VAC/60Hz input, 12V/10.8A output: C1: $V_{OUT}$ , C2: Q203 $V_{GS}$ , C3: Q203 $V_{DS}$ , C4: $V_{CR}$ .



#### IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated