
Application Report
SLAA538–May 2012

Energy Meter Code Library for 1-Phase to 3-Phase Using
MSP430 Family

Mekre Mesganaw .. Metering Applications

ABSTRACT

This application report describes how to execute the Texas Instruments MSP430 Energy Library, which
uses a common set of source files to support meters based on the MSP430FE427A, MSP430F47197,
MSP430F4794, MSP430F6736, and MSP430AFE253 devices. This application report includes the
necessary information about the APIs of the energy library.

The MSP430 Energy Library is available here: http://www.ti.com/tool/msp430-energy-library.

WARNING
Failure to adhere to these steps and/or not heed the safety
requirements at each step may lead to shock, injury, and damage
to the hardware. Texas Instruments is not responsible or liable in
any way for shock, injury, or damage caused due to negligence or
failure to heed advice.

Contents
1 Introduction .. 2
2 Function Description .. 2
3 Loading the Example Code .. 48

List of Figures

1 Loading the Example Code .. 48

2 Toolkit Compilation in IAR.. 48

3 Metrology Compilation in IAR .. 49

4 Application Compilation in IAR .. 49

1SLAA538–May 2012 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com/tool/msp430-energy-library
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

Introduction www.ti.com

1 Introduction

The MSP430 Energy Library is the latest metering software package, which has support for the
MSP430FE427A, MSP430F47197, MSP430F4794, MSP430F6736, and MSP430AFE253 metering
devices. For each EVM, the energy metrology software is comprised of three projects. The first project is
the toolkit library which contains mostly mathematics routines. The second project is the metrology library
which calculates the metering parameters. The metrology library consists of a background process that
collects voltage and current samples, calculates working parameters needed to calculate the final
metering parameters (for example, RMS voltage, current, and frequency), and outputs energy-proportional
pulses. When approximately one second worth of samples have been obtained, the background process
asserts a flag to indicate that a new set of metering parameters are ready to be calculated. The third
project of the metrology software is the application project, which is the code that actually runs on the
EVM. When the background process of the metering library asserts the flag to indicate that a new set of
metering parameters are ready to be calculated, the application project calls the function that calculates
the metering parameters using the working parameters calculated by the metering library's background
process. The application project also deals with UART communication, LCD (if available) support, multi-
tariff support, and RTC support.

With the exclusion of three files, the same source files are shared among all the meters. Two of the
excluded three files, metrology-parms.h and emeter-template.h, are used to configure meter features (for
example, VRMS_SUPPORT, TEMPERATURE_SUPPORT, RTC_SUPPORT). The third excluded file is
used to configure the LCD.

2 Function Description

2.1 Toolkit Project

void accum48(register int16_t x[3], register int32_t y)

Parameters x - 48-bit number where accumulation takes place. It is represented as a 3-element 16-bit array.
y - 32-bit number to be added to x.

Returns –

Description Replaces a 48-bit number (x) with the sum of its current value and a 32-bit number (y); that is, x = y + x.

File accum48.s43

Comments –

void bin2bcd16(register uint8_t bcd[3], register uint16_t bin)

Parameters bcd - Result array that stores the BCD representation of the binary number. Each element in the array stores the
BCD representation of two digits of the binary number.
bin - 16-bit binary number to be converted to bcd format.

Returns --

Description Converts a 16-bit binary number into a binary coded decimal. The most significant digit is stored in the lower
nibble of bcd[0] and the least significant digit is stored in the lower nibble of bcd[2].

File bin2bcd16.s43

Comments The upper nibble of bcd[0] is not needed because it would represent the sixth digit of a 16-bit number. Because
only 5 digits are needed to represent the maximum value of a 16-bit value (65535), it is unnecessary.

void bin2bcd32(uint8_t bcd[5], uint32_t bin)

Parameters bcd - Result array that stores the BCD representation of the binary number. Each element in the array stores the
BCD representation of two digits of the binary number.
bin - 32-bit binary number to be converted to bcd format.

Returns --

Description Converts a 32-bit binary number into a binary coded decimal. The most significant digit is stored in the upper
nibble of bcd[0] and the least significant digit is stored in the lower nibble of bcd[4].

File bin2bcd32.s43

Comments --

2 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family SLAA538–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

www.ti.com Function Description

void bin2bcd64(uint8_t bcd[10], uint64_t bin)

Parameters bcd - Result array that stores the BCD representation of the binary number. Each element in the array stores the
BCD representation of two digits of the binary number.
bin - 64-bit binary number to be converted to bcd format.

Returns --

Description Converts a 64-bit binary number into a binary coded decimal. The most significant digit is stored in the upper
nibble of bcd[0] and the least significant digit is stored in the lower nibble of bcd[9].

File bin2bcd64.s43

Comments --

int16_t dc_filter16(int32_t *p, int16_t x)

Parameters p - Pointer to 32-bit DC estimate of the waveform signal.
x - 16-bit sample-reading of AC mains waveform signal before the DC component is removed.

Returns 16-bit sample reading of AC mains waveform signal with the DC component removed.

Description Filters away the DC content from an AC mains waveform signal by using a heavily damped integrator to
estimate the DC level. The current DC level is then subtracted from the signal.

File dc_filter16.s43

Comments This is not a generic DC filter. This function should be used on a channel that is running in 16-bit mode.

void dc_filter16_init(int32_t *p, int16_t x)

Parameters p - Pointer to DC estimate.
x - Initial DC estimate used to prime a Mains signal's DC estimate. This value is set during the calibration
process, based on the DC estimate measured at that time.

Returns --

Description Initializes a Mains signal's DC estimate, to ensure quick settling when the meter is powered up.

File dc_filter16.s43

Comments --

int32_t dc_filter24(int16_t p[3], int32_t x)

Parameters p - Pointer to DC estimate of the waveform signal.
x - 24-bit sample-reading of AC mains waveform signal before the DC component is removed.

Returns 24-bit sample reading of AC mains waveform signal with the DC component removed. The 24-bit value is stored
in a 32-bit int.

Description Filter away the DC content from an AC mains waveform signal by using a heavily damped integrator to estimate
the DC level. The current DC level is then subtracted from the signal.

File dc_filter24.s43

Comments This is not a generic DC filter. This function should be used on a channel that is running in 24-bit mode.

void dc_filter24_init(int32_t *p, int16_t x)

Parameters p - Pointer to DC estimate.
x - Initial DC estimate used to prime a mains signal's DC estimate. This value is set during the calibration
process, based on the DC estimate measured at that time.

Returns --

Description Initializes a Mains signal's DC estimate, to ensure quick settling when the meter is powered up.

File dc_filter24.s43

Comments --

3SLAA538–May 2012 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

Function Description www.ti.com

int16_t dds_lookup(uint32_t phase)

Parameters phase - The 32-bit number corresponding to the phase to be looked up where the 32-bit integer-range maps to
the 0-360° range. As an example, a value of 0x40000000 corresponds to a phase of 90°.

Returns The amplitude of the sine wave at the specified phase.

Description Look up the amplitude of a sine wave at a specified phase.

File dds.c

Comments --

int16_t dds_interpolated_lookup(uint32_t phase)

Parameters phase - The 32-bit number corresponding to the phase to be looked up where the 32-bit integer-range maps to
the 0-360° range. As an example, a value of 0x40000000 corresponds to a phase of 90°.

Returns The amplitude of the sine wave at the specified phase.

Description Look up the amplitude of a sine wave at a specified phase using interpolation.

File dds.c

Comments --

int16_t dds(uint32_t *phase_acc, int32_t phase_rate)

Parameters phase - The 32-bit number corresponding to the phase to be looked up where the 32-bit integer-range maps to
the 0-360° range. As an example, a value of 0x40000000 corresponds to a phase of 90°.
phase_rate - The per sample phase increment.

Returns The amplitude of the sine wave, as a 16-bit signed number.

Description Performs direct digital sine wave synthesis.

File dds.c

Comments --

int32_t div48(int16_t x[3], int16_t y)

Parameters x - The 48-bit number to be divided.
y - The 16-bit integer that divides the 48-bit number.

Returns The 32-bit result of this divide operation.

Description Divide a 16-bit integer into a 48-bit integer. Expect the answer to be no greater than 32-bits, so return the
answer as a 32-bit integer.

File div48.c

Comments --

int32_t div_sh48(int16_t x[3], int sh, int16_t y)

Parameters x - The 48-bit number to be shifted and then divided. The number is represented as a 3-element 16-bit array.
y - The 16-bit integer that divides the 48-bit number.

Returns The 32-bit result of this shift-then-divide operation.

Description Preshift a 48-bit integer upwards by a specified amount. Then divide a 16-bit integer into the shifted 48-bit one.
Expect the answer to be no greater than 32-bits, so return the answer as a 32-bit integer.

File div_sh48.c

Comments This is a somewhat domain specific divide operation, but pretty useful when handling dot products.

4 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family SLAA538–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

www.ti.com Function Description

int32_t imul16(int16_t x, int16_t y)

Parameters x - Multiplicand
y - Multiplier

Returns 32-bit result

Description Implements a 16x16->32 2s-complement multiplier. If a hardware multiplier is available it is used. If no hardware
multiplier is available, Booth's algorithm is used to directly implement signed multiply in software.

File imul16.s43

Comments --

uint16_t isqrt16(uint16_t h)

Parameters h - 16-bit number to find the square root of.

Returns 16-bit result with the last 8-bits being fractional.

Description Calculates the square root of a 16-bit number.

File isqrt16.s43

Comments --

uint32_t isqrt32(uint32_t h)

Parameters h - 32-bit number to find the square root of.

Returns 32-bit result with the last 16-bits being fractional.

Description Calculates the square root of a 32-bit number.

File isqrt32.s43

Comments This should not be called with h being a negative number.

uint16_t isqrt32i(uint32_t h)

Parameters h - 32-bit number to find the square root of.

Returns Returns the integer portion of the square root of a 32-bit number. This number is rounded to the nearest integer.

Description Calculates the integer portion (rounded to the nearest integer) of the square root of a 32-bit number.

File isqrt32i.c

Comments This should not be called with h being a negative number.

uint64_t isqrt64(uint64_t h)

Parameters h - 64-bit number to find the square root of.

Returns 64-bit result with the last 32-bits being fractional.

Description Calculates the square root of a 64-bit number.

File isqrt64.s43

Comments This should not be called with h being a negative number.

uint32_t isqrt64i(uint64_t h)

Parameters h - Number to find the square root of.

Returns Returns the integer portion of the square root of a 64-bit number. This number is rounded to the nearest integer.

Description Calculates the integer portion (rounded to the nearest integer) of the square root of a 64-bit number.

File isqrt64i.c

Comments This should not be called with h being a negative number.

5SLAA538–May 2012 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

Function Description www.ti.com

void mac48_16(int16_t z[3], int16_t x, int16_t y)

Parameters z - 48-bit number where accumulation takes place. It is represented as a 3-element 16-bit array.
y - 16-bit multiplicand.
x - 16-bit multiplier.

Returns --

Description Replaces a 48-bit number (z) with the sum of its current value and the product of two 16-bit numbers (x and y);
that is, z = z + (x * y).

File mac48.s43

Comments This is not protected against interrupts, so only use it in an interrupt routine.

void mac64_16_24(int64_t *z, int16_t x, int32_t y)

Parameters z - Pointer to the 64-bit number where accumulation takes place.
y - 16-bit multiplicand.
x - 32-bit multiplier.

Returns --

Description Replaces a 64-bit number (z) with the sum of its current value and the product of a 16-bit number (x) and 32-bit
number (y); that is, z = z + (x * y) .

File mac64_16_24.s43

Comments This is not protected against interrupts, so only use it in an interrupt routine. This version of the function is used
for meters with either 16-bit hardware multipliers or no hardware multipliers at all.

static __inline__ void mac64_16_24(int64_t *z, int16_t x, int32_t y)

Parameters z - Pointer to the 64-bit number where accumulation takes place.
y - 16-bit multiplicand.
x - 32-bit multiplier.

Returns --

Description Replaces a 64-bit number (z) with the sum of its current value and the product of a 16-bit number (x) and 32-bit
number (y); that is, z = z + (x * y).

File emeter-toolkit.h

Comments This is not protected against interrupts, so only use it in an interrupt routine. This version of the function is used
for meters with a 32-bit hardware multiplier.

int32_t mul48_32_16(int32_t x, int16_t y)

Parameters x - Signed 32-bit multiplicand.
y - Signed 16-bit multiplier.

Returns Top 32-bits of 48-bit signed result

Description Multiply a 32-bit signed number (x) by a 16-bit signed number and return the top 32-bits of the 48-bit signed
result.

File mul48_32_16.s43

Comments This version of the function is used for meters with either 16-bit hardware multipliers or no hardware multipliers
at all.

static __inline__ int32_t mul48_32_16(int32_t x, int16_t y)

Parameters x - Signed 32-bit multiplicand.
y - Signed 16-bit multiplier.

Returns Top 32-bits of 48-bit signed result.

Description Multiply a 32-bit signed number (x) by a 16-bit signed number and return the top 32-bits of the 48-bit signed
result.

File emeter-toolkit.h

Comments This version of the function is used for meters with a 32-bit hardware multiplier.

6 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family SLAA538–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

www.ti.com Function Description

uint32_t mul48u_32_16(uint32_t x, uint16_t y);

Parameters x - 32-bit unsigned multiplicand.
y - 16-bit unsigned multiplier.

Returns Top 32-bits of 48-bit unsigned result.

Description Multiply a 32-bit unsigned number (x) by a 16-bit unsigned number and return the top 32-bits of the 48-bit
unsigned result.

File mul48u_32_16.s43

Comments This version of the function is used for meters with either 16-bit hardware multipliers or no hardware multipliers
at all.

static __inline__ uint32_t mul48u_32_16(uint32_t x, uint16_t y)

Parameters x - 32-bit unsigned multiplicand.
y - 16-bit unsigned multiplier.

Returns Top 32-bits of 48-bit unsigned result.

Description Multiply a 32-bit unsigned number (x) by a 16-bit unsigned number and return the top 32-bits of the 48-bit
unsigned result.

File emeter-toolkit.h

Comments This version of the function is used for meters with a 32-bit hardware multiplier.

int16_t q1_15_mul(int16_t x, int16_t y)

Parameters x - Multiplicand.
y - Multiplier.

Returns Result in Q1.15 format.

Description 16-bit result in Q1.15 style 16x16=>16 multiply.

File q1_15_mul.s43

Comments This version of the function is used for meters with either 16-bit hardware multipliers or no hardware multipliers
at all.

static __inline__ int16_t q1_15_mul(int16_t x, int16_t y)

Parameters x - Multiplicand.
y - Multiplier.

Returns Result in Q1.15 format.

Description 16-bit result in Q1.15 style 16x16=>16 multiply.

File emeter-toolkit.h

Comments This version of the function is used for meters with a 32-bit hardware multiplier.

int16_t q1_15_mulr(int16_t x, int16_t y)

Parameters x - Multiplicand.
y - Multiplier.

Returns Result in Q1.15 format with half bit rounding of the result.

Description 16-bit rounded result in Q1.15 style 16x16=>16 multiply.

File q1_15_mulr.s43

Comments This version of the function is used for meters with either 16-bit hardware multipliers or no hardware multipliers
at all.

7SLAA538–May 2012 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

Function Description www.ti.com

static __inline__ int16_t q1_15_mulr(int16_t x, int16_t y)

Parameters x - Multiplicand.
y - Multiplier.

Returns Result in Q1.15 format with half bit rounding of the result.

Description 16-bit rounded result in Q1.15 style 16x16=>16 multiply.

File emeter-toolkit.h

Comments This version of the function is used for meters with a 32-bit hardware multiplier.

void shift48(register int16_t x[3], int how_far)

Parameters x - 48-bit number to be shifted. The 48-bit number is represented by a 3-element array of 16-bits.
how_far - The shift amount. A positive value would shift to the left and a negative value would shift to the right.

Returns --

Description Shifts a 48-bit number; that is, (x << how_far).

File shift48.s43

Comments --

void sqac48_16(register int16_t z[3], register int16_t x)

Parameters z - 48-bit number where accumulation takes place. It is represented as a 3-element 16-bit array.
x - 16-bit number to be squared and added to z.

Returns --

Description Replaces a 48-bit number (z) with the sum of its current value with the square of a 16-bit numbers (x); that is,
z = z + (x * x).

File sqac48_16.s43

Comments This is not protected against interrupts, so only use it in an interrupt routine.

void sqac64_24(int64_t *z, int32_t x)

Parameters z - Pointer to a 64-bit number where accumulation takes place.
x - 32-bit number to be squared and added to z.

Returns --

Description Replaces a 64-bit number (z) with the sum of its current value with the square of a 32-bit numbers (x); that is, z=
z + (x * x).

File sqac64_24.s43

Comments This is not protected against interrupts, so only use it in an interrupt routine. This version of the function is used
for meters with either 16-bit hardware multipliers or no hardware multipliers at all.

static __inline__ void sqac64_24(int64_t *z, int32_t x)

Parameters z - Pointer to a 64-bit number where accumulation takes place.
x - 32-bit number to be squared and added to z.

Returns --

Description Replaces a 64-bit number (z) with the sum of its current value with the square of a 32-bit numbers (x); that is, z=
z + (x * x).

File emeter-toolkit.h

Comments This is not protected against interrupts, so only use it in an interrupt routine. This version of the function is used
for meters with a 32-bit hardware multiplier.

8 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family SLAA538–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

www.ti.com Function Description

2.2 Metrology Project

int trng(uint16_t *val)

Parameters val - Pointer to variable where the random number is to be stored.

Returns 1 if a new random number is not available.
0 if a new random number is available.

Description Get a random number, if available, from the true random number generator that is based on Gaussian noise in
the LSB of the thermal diode. The random value is stored in val.

File emeter-background.c

Comments This function only available if the temperature is being measured, which is disabled for the AFE253 code to
lower amount of RAM used.

uint16_t trng_wait(void)

Parameters --

Returns A random number

Description Get a random number from the true random number generator, based on Gaussian noise in the LSB of the
thermal diode. If a random number is not available, the function waits until it is available.

File emeter-background.c

Comments This function is available only if the temperature is being measured, which is disabled for the AFE253 code to
reduce the amount of RAM that is used.

static void __inline__ log_parameters(void)

Parameters --

Returns --

Description Takes a snapshot of various values for logging purposes, clears the working values so data can be captured for
the next analysis period, and then tells the main function to deal with the snapshot values by asserting the
NEW_LOG flag.

File emeter-background.c

Comments This function is for single-phase meters only. The values to be logged are stored in the phase structure.
Multiphase meters have a version of this function that takes a pointer to a structure that has the working data of
the phase to be logged.

static void __inline__ log_parameters(struct phase_parms_s *phase)

Parameters phase - Pointer to a struct that contains the working parameters of the current phase.

Returns --

Description Takes a snapshot of various values for logging purposes, clears the working values so data can be captured for
the next analysis period, and then tells the main function to deal with the snapshot values by asserting the
NEW_LOG flag.

File emeter-background.c

Comments This function is for multi-phase meters. The single phase version of this function that has no input parameters
since it assumes the values to be logged are in the phase structure.

static void __inline__ log_neutral_parameters(void)

Parameters --

Returns --

Description Logs neutral lead information for multi-phase meters.

File emeter-background.c

Comments This function is not available for the MSP430AFE, because it available for single-phase meters or meters without
neutral monitoring support.

9SLAA538–May 2012 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

Function Description www.ti.com

void adc_interrupt(void)

Parameters --

Returns --

Description Interrupt routine where the main signal processing is done. In this routine, current and voltage samples are
obtained. Each of these samples are then squared and accumulated. Also, voltage and current samples are
multiplied together to calculate instantaneous active power. The instantaneous power is accumulated until it
reaches a user-specified threshold, at which time, a pulse is outputted. In this routine, the necessary data is
obtained so that frequency, thd parameters, reactive power, apparent power, random numbers, and other
parameters can be calculated later.

File emeter-background.c

Comments When about 1 second of samples has been obtained and processed, the log_parameters, (and if applicable)
log_neutral_parameters functions are called.

void limp_trigger_interrupt(void)

Parameters --

Returns --

Description Interrupt routine to trigger the Sigma Delta ADCs when running in limp mode.

File emeter-background.c

Comments This is available only for single-phase meters that support limp mode and have a Sigma Delta converter.

void adc10_interrupt (void)

Parameters --

Returns --

Description Interrupt routine to handle the ADC10A in the 6xx family devices

File emeter-background.c

Comments --

void set_phase_correction(struct phase_correction_s *s, int correction)

Parameters s - The phase correction structure to be updated to help to produce the proper delay.
correction - The correction amount where the lower 8-bits are used as indices into arrays to calculate the fir gain
and beta. The other bits are used to correspond to number of sample delays.

Returns --

Description Finds the proper delay. This is used in particular to calculate the 90° shifted voltage samples.

File emeter-foreground.c

Comments --

static void set_phase_gain_correction(struct phase_correction_s *s, int correction, int gain)

Parameters s - The phase correction structure to be updated.
correction - The correction amount where the lower 8-bits are used as indices into arrays to calculate the fir gain
and beta. The other bits are used to correspond to number of sample delays.
gain - Constant used to q1.15 multiply the fir gain value obtained from using correction to index into the fir gain
table.

Returns --

Description This function is used in dynamic phased correction.

File emeter-foreground.c

Comments --

10 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family SLAA538–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

www.ti.com Function Description

void set_sd_phase_correction(struct phase_correction_sd16_s *s, int ph, int correction)

Parameters s - The phase correction structure to be updated.
ph- Which phase is to be corrected.
correction - The correction amount where the lower 8-bits correspond to delay that would be applied to the
preload register. The other bits are used to correspond to number of sample delays.

Returns --

Description Performs phase correction for Sigma Delta ADCs.

File emeter-foreground.c

Comments This function is not available for the MSP430AFE, because it available if
DYNAMIC_PHASE_CORRECTION_SUPPORT is not defined.

static int32_t test_phase_balance(int32_t live_signal, int32_t neutral_signal, int threshold)

Parameters Live_signal - The value of the live signal. This could either correspond to current or power.
Neutral_signal - The value of the neutral signal. This could either correspond to current or power.
Threshold - Value at which if both the live and neutral signals are below, a relaxed balanced fraction would be
used for determining phase unbalance.

Returns Returns the signal with the highest value between live_signal and neutral_signal.

Description Tests between two currents, or between two powers. In normal mode it is testing between two power readings.
In limp mode it is testing between two current readings. The function sees which signal (live or neutral) is bigger,
with some tolerance built in. If the signal measured from the neutral is more than 6.25% or 12.5% (options)
different from the signal measured from the live there is something wrong (maybe fraudulent tampering, or just
something faulty). In this case, the current measured from the channel with the higher signal is used. When the
channel is reasonably balanced, use the signal from the live lead. If neither signal is above the threshold, use a
more relaxed measure of imbalance (say 25% or even 50%), to allow for the lower accuracy of these small.
Assessments are persistence checked to avoid transient conditions causing a false change of imbalance status.

File emeter-foreground.c

Comments This function is available only if NEUTRAL_MONITOR_SUPPORT and
POWER_BALANCE_DETECTION_SUPPORT are both defined.

int16_t frequency(void)

Parameters --

Returns The measured frequency in 0.01 Hz resolution.

Description Uses the parameters calculated from the background process, to calculate the frequency.

File emeter-foreground.c

Comments This function is for single-phase meters. This function is available only if MAINS_FREQUENCY_SUPPORT is
defined.

int16_t frequency(struct phase_parms_s *phase, struct phase_nv_parms_s const *phase_nv)

Parameters phase - Pointer to the structure that has the parameters for the desired phase that was calculated by the
background process.
phase_nv - Pointer to the structure that has the calibration values for the desired phase.

Returns The measured frequency for the desired phase in .01 Hz resolution.

Description Uses the parameters calculated from the background process to calculate the frequency.

File emeter-foreground.c

Comments This function is for multi-phase meters. This function is available only if MAINS_FREQUENCY_SUPPORT is
defined.

rms_voltage_t voltage(void)

Parameters --

Returns The measured RMS voltage in 1 mV resolution.

Description Uses the parameters calculated from the background process to calculate the RMS voltage.

File emeter-foreground.c

Comments This function is for single-phase meters. This function is available only if VRMS_SUPPORT is defined.

11SLAA538–May 2012 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

Function Description www.ti.com

rms_voltage_t voltage(struct phase_parms_s *phase, struct phase_nv_parms_s const *phase_nv)

Parameters phase - Pointer to the structure that has the parameters for the desired phase that was calculated by the
background process.
phase_nv - Pointer to the structure that has the calibration values for the desired phase.

Returns The measured RMS voltage for the desired phase in 1 mV resolution.

Description Uses the parameters calculated from the background process to calculate the RMS voltage.

File emeter-foreground.c

Comments This function is for multi-phase meters. This function is available only if VRMS_SUPPORT is defined.

rms_voltage_t fundamental_voltage(void)

Parameters --

Returns The measured fundamental voltage in 1 mV resolution.

Description Uses the parameters calculated from the background process to calculate the fundamental voltage.

File emeter-foreground.c

Comments This function is for single-phase meters. This function is available only if FUNDAMENTAL_VRMS_SUPPORT is
defined.

rms_voltage_t fundamental_voltage(struct phase_parms_s *phase, struct phase_nv_parms_s const *phase_nv)

Parameters phase - Pointer to the structure that has the parameters for the desired phase that was calculated by the
background process.
phase_nv - Pointer to the structure that has the calibration values for the desired phase.

Returns The measured fundamental voltage for the desired phase in 1 mV resolution.

Description Uses the parameters calculated from the background process to calculate the fundamental voltage.

File emeter-foreground.c

Comments This function is for multi-phase meters. This function is available only if FUNDAMENTAL_VRMS_SUPPORT is
defined.

int16_t voltage_thd(void)

Parameters --

Returns The THD of the voltage waveform.

Description Uses the parameters calculated from the background process to calculate the thd percentage of the voltage
waveform.

File emeter-foreground.c

Comments This function is for single-phase meters. This function is available only if VOLTAGE_THD_SUPPORT is defined.

int16_t voltage_thd(struct phase_parms_s *phase, struct phase_nv_parms_s const *phase_nv)

Parameters phase - Pointer to the structure that has the parameters for the desired phase that was calculated by the
background process.
phase_nv - Pointer to the structure that has the calibration values for the desired phase.

Returns The THD percentage of the voltage waveform.

Description Uses the parameters calculated from the background process to calculate the thd of the voltage waveform.

File emeter-foreground.c

Comments This function is for multi-phase meters. This function is available only if VOLTAGE_THD_SUPPORT is defined.

12 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family SLAA538–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

www.ti.com Function Description

void dynamic_phase_correction(struct phase_parms_s *phase, struct phase_nv_parms_s const *phase_nv, int ph)

Parameters phase - Pointer to the structure that has the parameters that was calculated by the background process.
phase_nv - Pointer to the structure that has the calibration values.ph - The phase number.

Returns --

Description Performs dynamic phase correction.

File emeter-foreground.c

Comments This function is available only if DYNAMIC_PHASE_CORRECTION_SUPPORT is defined.

void dynamic_phase_correction_neutral(struct phase_parms_s *phase, struct phase_nv_parms_s const *phase_nv, int ph)

Parameters phase - Pointer to the structure that has the parameters that was calculated by the background process.
phase_nv - Pointer to the structure that has the calibration values.ph - The phase number.

Returns --

Description Performs dynamic phase correction for the neutral channel.

File emeter-foreground.c

Comments This function is available only for single-phase meters. This function is also available only if
NEUTRAL_MONITOR_SUPPORT and DYNAMIC_PHASE_CORRECTION_SUPPORT are defined.

rms_current_t current(void)

Parameters --

Returns The measured RMS current in 1 µA resolution.

Description Uses the parameters calculated from the background processW to calculate the RMS current.

File emeter-foreground.c

Comments This function is for single-phase meters. This function is available only if IRMS_SUPPORT is defined.

rms_current_t current(struct phase_parms_s *phase, struct phase_nv_parms_s const *phase_nv, int ph)

Parameters phase - Pointer to the structure that has the parameters for the desired phase that was calculated by the
background process.
phase_nv - Pointer to the structure that has the calibration values for the desired phase.
ph - The phase number.

Returns The measured RMS current for the desired phase in 1 µA resolution.

Description Uses the parameters calculated from the background processW to calculate the RMS current.

File emeter-foreground.c

Comments This function is for multi-phase meters. This function is available only if IRMS_SUPPORT is defined.

rms_current_t fundamental_current(void)

Parameters --

Returns The measured fundamental current in .1 mA resolution.

Description Uses the parameters calculated from the background process to calculate the fundamental current.

File emeter-foreground.c

Comments This function is for single-phase meters. This function is available only if FUNDAMENTAL_IRMS_SUPPORT is
defined.

rms_current_t fundamental_current(struct phase_parms_s *phase, struct phase_nv_parms_s const *phase_nv)

Parameters phase - Pointer to the structure that has the parameters for the desired phase that was calculated by the
background process.
phase_nv - Pointer to the structure that has the calibration values for the desired phase.

Returns The measured fundamental current for the desired phase in .1 mA resolution.

Description Uses the parameters calculated from the background process, to calculate the fundamental current.

File emeter-foreground.c

Comments This function is for multi-phase meters. This function is available only if FUNDAMENTAL_IRMS_SUPPORT is
defined.

13SLAA538–May 2012 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

Function Description www.ti.com

int16_t current_thd(void)

Parameters --

Returns The THD percentage of the current waveform.

Description Uses the parameters calculated from the background process to calculate the thd of the current waveform.

File emeter-foreground.c

Comments This function is for single-phase meters. This function is available only if CURRENT_THD_SUPPORT is defined.

int16_t current_thd(struct phase_parms_s *phase, struct phase_nv_parms_s const *phase_nv)

Parameters phase - Pointer to the structure that has the parameters for the desired phase that was calculated by the
background process.
phase_nv - Pointer to the structure that has the calibration values for the desired phase.

Returns The THD percentage of the current waveform.

Description Uses the parameters calculated from the background process to calculate the thd of the current waveform.

File emeter-foreground.c

Comments This function is for multi-phase meters. This function is available only if CURRENT_THD_SUPPORT is defined.

rms_current_t neutral_current(void)

Parameters --

Returns The neutral channel's measured RMS current.

Description Uses the parameters calculated from the background process,to calculate the neutral channel's RMS current.

File emeter-foreground.c

Comments This function is for multi-phase meters. This function is available only if both IRMS_SUPPORT and
NEUTRAL_MONITOR_SUPPORT are defined.

rms_current_t residual_current(void)

Parameters --

Returns The residual current.

Description Uses the parameters calculated from the background process to calculate the residual current.

File emeter-foreground.c

Comments This function is for multi-phase meters. This function is available only if both RESIDUAL_IRMS_SUPPORT and
NEUTRAL_MONITOR_SUPPORT are defined.

power_t active_power(void)

Parameters --

Returns The measured active power in 10 mW resolution.

Description Uses the parameters calculated from the background process to calculate the active power.

File emeter-foreground.c

Comments This function is for single-phase meters.

power_t active_power(struct phase_parms_s *phase, struct phase_nv_parms_s const *phase_nv)

Parameters phase - Pointer to the structure that has the parameters for the desired phase that was calculated by the
background process.
phase_nv - Pointer to the structure that has the calibration values for the desired phase.

Returns The measured active power for the desired phase in 10 mW resolution.

Description Uses the parameters calculated from the background process to calculate the active power.

File emeter-foreground.c

Comments This function is for multi-phase meters.

14 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family SLAA538–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

www.ti.com Function Description

power_t reactive_power(void)

Parameters --

Returns The measured reactive power in 10 mW resolution.

Description Uses the parameters calculated from the background process to calculate the reactive power.

File emeter-foreground.c

Comments This function is for single-phase meters. For this function to be available, REACTIVE_POWER_SUPPORT and
REACTIVE_POWER_BY_QUADRATURE_SUPPORT must be defined.

power_t reactive_power(struct phase_parms_s *phase, struct phase_nv_parms_s const *phase_nv)

Parameters phase - Pointer to the structure that has the parameters for the desired phase that was calculated by the
background process.
phase_nv - Pointer to the structure that has the calibration values for the desired phase.

Returns The measured reactive power for the desired phase in 10 mW resolution.

Description Uses the parameters calculated from the background process to calculate the reactive power.

File emeter-foreground.c

Comments This function is for multi-phase meters. For this function to be available, REACTIVE_POWER_SUPPORT and
REACTIVE_POWER_BY_QUADRATURE_SUPPORT must be defined.

int32_t apparent_power(void)

Parameters --

Returns The measured apparent power in 10 mW resolution.

Description Uses the parameters calculated from the background process, to calculate the apparent power.

File emeter-foreground.c

Comments This function is for single-phase meters. For this function to be available, APPARENT_POWER_SUPPORT must
be defined.

int32_t apparent_power(struct phase_parms_s *phase, struct phase_nv_parms_s const *phase_nv)

Parameters phase - Pointer to the structure that has the parameters for the desired phase that was calculated by the
background process.
phase_nv - Pointer to the structure that has the calibration values for the desired phase.

Returns The measured apparent power for the desired phase in 10 mW resolution.

Description Uses the parameters calculated from the background process, to calculate the apparent power.

File emeter-foreground.c

Comments This function is for multi-phase meters. For this function to be available, APPARENT_POWER_SUPPORT must
be defined.

power_t fundamental_active_power(void)

Parameters --

Returns The measured fundamental active power in 10 mW resolution.

Description Uses the parameters calculated from the background process to calculate the fundamental active power.

File emeter-foreground.c

Comments This function is for single-phase meters. For this function to be available,
FUNDAMENTAL_ACTIVE_POWER_SUPPORT must be defined.

15SLAA538–May 2012 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

Function Description www.ti.com

power_t fundamental_active_power(struct phase_parms_s *phase, struct sphase_nv_parms_s const *phase_nv)

Parameters phase - Pointer to the structure that has the parameters for the desired phase that was calculated by the
background process.
phase_nv - Pointer to the structure that has the calibration values for the desired phase.

Returns The measured fundamental active power for the desired phase in 10 mW resolution.

Description Uses the parameters calculated from the background process to calculate the fundamental active power.

File emeter-foreground.c

Comments This function is for multi-phase meters. For this function to be available,
FUNDAMENTAL_ACTIVE_POWER_SUPPORT must be defined.

power_t fundamental_reactive_power(void)

Parameters --

Returns The measured fundamental reactive power in 10 mW resolution.

Description Uses the parameters calculated from the background process to calculate the fundamental reactive power.

File emeter-foreground.c

Comments This function is for single-phase meters. For this function to be available,
FUNDAMENTAL_REACTIVE_POWER_SUPPORT must be defined.

power_t fundamental_reactive_power(struct phase_parms_s *phase, struct phase_nv_parms_s const *phase_nv)

Parameters phase - Pointer to the structure that has the parameters for the desired phase that was calculated by the
background process.
phase_nv - Pointer to the structure that has the calibration values for the desired phase.

Returns The measured fundamental reactive power for the desired phase in 10 mW resolution.

Description Uses the parameters calculated from the background process to calculate the fundamental reactive power.

File emeter-foreground.c

Comments This function is for multi-phase meters. For this function to be available,
FUNDAMENTAL_REACTIVE_POWER_SUPPORT must be defined.

int16_t power_factor(void)

Parameters --

Returns The measured power factor.

Description Uses the parameters calculated from the background process to calculate the power factor.

File emeter-foreground.c

Comments This function is for single-phase meters. For this function to be available, POWER_FACTOR_SUPPORT must
be defined.

int16_t power_factor(struct phase_parms_s *phase, struct phase_nv_parms_s const *phase_nv)

Parameters phase - Pointer to the structure that has the parameters for the desired phase that was calculated by the
background process.
phase_nv - Pointer to the structure that has the calibration values for the desired phase.

Returns The measured power factor.

Description Uses the parameters calculated from the background process to calculate the power factor for the desired
phase.

File emeter-foreground.c

Comments This function is for multi-phase meters. For this function to be available, POWER_FACTOR_SUPPORT must be
defined.

16 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family SLAA538–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

www.ti.com Function Description

void temperature(void)

Parameters --

Returns --

Description Find the temperature in Celsius and update the temperature_in_celsius global variable to that temperature.

File emeter-foreground.c

Comments For this function to be available, TEMPERATURE_SUPPORT must be defined.

power_t calculate_readings(void)

Parameters --

Returns The active power.

Description Calculate the metering parameters by calling the individual functions that calculate these parameters. The
individual functions make the parameter calculations using the data from the background process.

File emeter-foreground.c

Comments This function is for single-phase meters.

power_t calculate_readings(struct phase_parms_s *phase, struct phase_nv_parms_s const *phase_nv, int ch)

Parameters phase - Pointer to the structure that has the parameters for the desired phase that was calculated by the
background process.
phase_nv - Pointer to the structure that has the calibration values for the desired phase.
ch - Channel number.

Returns The measured active power of the desired phase.

Description Calculate the metering parameters of the desired phase by calling the individual functions that calculate these
parameters. The individual functions make the parameter calculations using the data from the background
process.

File emeter-foreground.c

Comments This function is for multi-phase meters.

power_t calculate_limp_readings(void)

Parameters --

Returns The limp-mode active power value that was calculated using the nominal voltage.

Description Calculate the limp-mode metering parameters by calling the individual functions that calculate these parameters.
The individual functions make the parameter calculations using the data from the background process.

File emeter-foreground.c

Comments This function is for single-phase meters.

power_t calculate_limp_readings(struct phase_parms_s *phase, struct phase_nv_parms_s const *phase_nv)

Parameters phase - Pointer to the structure that has the parameters for the desired phase that was calculated by the
background process.
phase_nv - Pointer to the structure that has the calibration values for the desired phase.

Returns The limp-mode active power for the desired phase.

Description Calculate the limp-mode metering parameters of the desired phase by calling the individual functions that
calculate these parameters. The individual functions make the parameter calculations using the data from the
background process.

File emeter-foreground.c

Comments This function is for multi-phase meters.

17SLAA538–May 2012 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

Function Description www.ti.com

void calculate_neutral_readings(void)

Parameters --

Returns --

Description Calculate the neutral metering parameters by calling the individual functions that calculate these parameters.
The individual functions make the parameter calculations using the data from the background process.

File emeter-foreground.c

Comments This function is for multi-phase meters.

void metrology_limp_normal_detection(void)

Parameters --

Returns --

Description Detect when the meter should enter limp mode from normal mode and when to go back to normal mode from
limp mode. Calls the necessary functions to switch modes.

File emeter-foreground.c

Comments For this function to be available, LIMP_MODE_SUPPORT must be defined.

void metrology_init_analog_front_end_normal_mode(void)

Parameters --

Returns --

Description Configures the sigma-delta ADC module as an analog front-end for a meter that is running in normal mode.

File emeter-metrology-setup.c

Comments --

void metrology_init_analog_front_end_limp_mode(void)

Parameters --

Returns --

Description Configures the sigma-delta ADC module as an analog front-end for a meter that is running in limp mode.

File emeter-metrology-setup.c

Comments This function is available only if limp mode is supported by the meter.

void metrology_switch_to_powerfail_mode(void)

Parameters --

Returns --

Description Configures the meter to run in powerfail mode when a power failure has occurred. When power is restored,
return the meter back to limp mode (if supported) or normal mode.

File emeter-metrology-setup.c

Comments This function is available only if POWER_DOWN_SUPPORT is supported by the meter.

static __inline__ int64_t int48_to_64(int16_t x[3])

Parameters x - 48-bit number to be converted to 64-bit. The 48-bit number is represented as a 3-element array of 16 bits.

Returns 64-bit integer representation of the input 48-bit number.

Description Converts a 48-bit int into a 64-bit int.

File emeter-toolkit.h

Comments --

18 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family SLAA538–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

www.ti.com Function Description

static __inline__ void int64_to_48(int16_t y[3], int64_t x)

Parameters x - 64-bit number to be converted to 48-bit. The 48-bit number is represented as a 3-element array of 16-bits.

Returns 48-bit integer representation of the input 64-bit number. The top 2 bytes of the 64-bit number are disregarded.

Description Converts a 64-bit int into a 48-bit int.

File emeter-toolkit.h

Comments --

static __inline__ void transfer48(int16_t y[3], int16_t x[3])

Parameters x - Source represented as a 48-bit, 3-element 16-bit array.
y - Destination represented as a 48-bit, 3-element 16 array.

Returns --

Description Transfers a 48-bit variable to another 48-bit variable. The source variable is then set to zero.

File emeter-toolkit.h

Comments --

static __inline__ void assign48(int16_t y[3], const int16_t x[3])

Parameters x - Source represented as a 48-bit, 3-element 16-bit array.
y - Destination represented as a 48-bit, 3-element 16 array.

Returns --

Description Transfers a 48-bit variable to another 48-bit variable.

File emeter-toolkit.h

Comments --

static __inline__ int16_t ADC16_0(void)

Parameters --

Returns Conversion value of channel 0 of the ADC when it is running in 16-bit mode.

Description Gets the conversion result of channel 0 of the ADC when running in 16-bit mode.

File sigma_delta_16bit_access.h

Comments In the emeter library, voltages are set to run in 16-bit mode by default.

static __inline__ int16_t ADC16_0(void)

Parameters --

Returns Returns the SD16CCTL0 flag. If the flag is zero, then a conversion has not occurred for channel 0 since the last
time this flag was cleared. If the value is nonzero, then a new conversion has completed.

Description Determines if a new conversion for channel 0 has completed.

File sigma_delta_16bit_access.h

Comments In the emeter library, voltages are set to run in 16-bit mode by default.

static __inline__ void ADC16_0_CLEAR

Parameters --

Returns --

Description Clears the SD16CCTL0 flag. This is used to distinguish new conversion results from old conversion results and
to prevent the ADC interrupt from being retriggered after a conversion result has been processed.

File sigma_delta_16bit_access.h

Comments In the emeter library, voltages are set to run in 16-bit mode by default.

19SLAA538–May 2012 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

Function Description www.ti.com

static __inline__ int16_t ADC16_1(void)

Parameters --

Returns Conversion value of channel 1 of the ADC when it is running in 16-bit mode.

Description Gets the conversion result of channel 1 of the ADC when running in 16-bit mode.

File sigma_delta_16bit_access.h

Comments In the emeter library, voltages are set to run in 16-bit mode by default.

static __inline__ int16_t ADC16_1(void)

Parameters --

Returns Returns the SD16CCTL1 flag. If the flag is zero, then a conversion has not occurred for channel 1 since the last
time this flag was cleared. If the value is nonzero, then a new conversion has completed.

Description Determines if a new conversion for channel 1 has completed.

File sigma_delta_16bit_access.h

Comments In the emeter library, voltages are set to run in 16-bit mode by default.

static __inline__ void ADC16_1_CLEAR

Parameters --

Returns --

Description Clears the SD16CCTL1 flag. This is used to distinguish new conversion results from old conversion results and
to prevent the ADC interrupt from being retriggered after a conversion result has been processed.

File sigma_delta_16bit_access.h

Comments In the emeter library, voltages are set to run in 16-bit mode by default.

static __inline__ int16_t ADC16_2(void)

Parameters --

Returns Conversion value of channel 2 of the ADC when it is running in 16-bit mode.

Description Gets the conversion result of channel 2 of the ADC when running in 16-bit mode.

File sigma_delta_16bit_access.h

Comments In the emeter library, voltages are set to run in 16-bit mode by default. This function is available only if the meter
has three or more sigma delta converters.

static __inline__ int16_t ADC16_2(void)

Parameters --

Returns Returns the SD16CCTL2 flag. If the flag is zero, then a conversion has not occurred for channel 2 since the last
time this flag was cleared. If the value is nonzero, then a new conversion has completed.

Description Determines if a new conversion for channel 2 has completed.

File sigma_delta_16bit_access.h

Comments In the emeter library, voltages are set to run in 16-bit mode by default. This function is available only if the meter
has three or more sigma delta converters.

20 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family SLAA538–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

www.ti.com Function Description

static __inline__ void ADC16_2_CLEAR

Parameters --

Returns --

Description Clears the SD16CCTL2 flag. This is used to distinguish new conversion results from old conversion results and
to prevent the ADC interrupt from being retriggered after a conversion result has been processed.

File sigma_delta_16bit_access.h

Comments In the emeter library, voltages are set to run in 16-bit mode by default. This function is available only if the meter
has three or more sigma delta converters.

static __inline__ int16_t ADC16_3(void)

Parameters --

Returns Conversion value of channel 3 of the ADC when it is running in 16-bit mode.

Description Gets the conversion result of channel 1 of the ADC when running in 16-bit mode.

File sigma_delta_16bit_access.h

Comments In the emeter library, voltages are set to run in 16-bit mode by default. This function is available only if the meter
has four or more sigma delta converters.

static __inline__ int16_t ADC16_3(void)

Parameters --

Returns Returns the SD16CCTL3 flag. If the flag is zero, then a conversion has not occurred for channel 3 since the last
time this flag was cleared. If the value is nonzero, then a new conversion has completed.

Description Determines if a new conversion for channel 3 has completed.

File sigma_delta_16bit_access.h

Comments In the emeter library, voltages are set to run in 16-bit mode by default. This function is available only if the meter
has four or more sigma delta converters.

static __inline__ void ADC16_3_CLEAR

Parameters --

Returns --

Description Clears the SD16CCTL3 flag. This is used to distinguish new conversion results from old conversion results and
to prevent the ADC interrupt from being retriggered after a conversion result has been processed.

File sigma_delta_16bit_access.h

Comments In the emeter library, voltages are set to run in 16-bit mode by default. This function is available only if the meter
has four or more sigma delta converters.

static __inline__ int16_t ADC16_4(void)

Parameters --

Returns Conversion value of channel 4 of the ADC when it is running in 16-bit mode.

Description Gets the conversion result of channel 4 of the ADC when running in 16-bit mode.

File sigma_delta_16bit_access.h

Comments In the emeter library, voltages are set to run in 16-bit mode by default. This function is available only if the meter
has five or more sigma delta converters.

static __inline__ int16_t ADC16_4(void)

Parameters --

Returns Returns the SD16CCTL4 flag. If the flag is zero, then a conversion has not occurred for channel 4 since the last
time this flag was cleared. If the value is nonzero, then a new conversion has completed.

Description Determines if a new conversion for channel 4 has completed.

File sigma_delta_16bit_access.h

Comments In the emeter library, voltages are set to run in 16-bit mode by default. This function is available only if the meter
has five or more sigma delta converters.

21SLAA538–May 2012 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

Function Description www.ti.com

static __inline__ void ADC16_4_CLEAR

Parameters --

Returns --

Description Clears the SD16CCTL4 flag. This is used to distinguish new conversion results from old conversion results and
to prevent the ADC interrupt from being retriggered after a conversion result has been processed.

File sigma_delta_16bit_access.h

Comments In the emeter library, voltages are set to run in 16-bit mode by default. This function is available only if the meter
has five or more sigma delta converters.

static __inline__ int16_t ADC16_5(void)

Parameters --

Returns Conversion value of channel 5 of the ADC when it is running in 16-bit mode.

Description Gets the conversion result of channel 5 of the ADC when running in 16-bit mode.

File sigma_delta_16bit_access.h

Comments In the emeter library, voltages are set to run in 16-bit mode by default. This function is available only if the meter
has six or more sigma delta converters.

static __inline__ int16_t ADC16_5(void)

Parameters --

Returns Returns the SD16CCTL5 flag. If the flag is zero, then a conversion has not occurred for channel 5 since the last
time this flag was cleared. If the value is nonzero, then a new conversion has completed.

Description Determines if a new conversion for channel 5 has completed.

File sigma_delta_16bit_access.h

Comments In the emeter library, voltages are set to run in 16-bit mode by default. This function is available only if the meter
has six or more sigma delta converters.

static __inline__ void ADC16_5_CLEAR

Parameters --

Returns --

Description Clears the SD16CCTL5 flag. This is used to distinguish new conversion results from old conversion results and
to prevent the ADC interrupt from being retriggered after a conversion result has been processed.

File sigma_delta_16bit_access.h

Comments In the emeter library, voltages are set to run in 16-bit mode by default. This function is available only if the meter
has six or more sigma delta converters.

static __inline__ int16_t ADC16_6(void)

Parameters --

Returns Conversion value of channel 6 of the ADC when it is running in 16-bit mode.

Description Gets the conversion result of channel 6 of the ADC when running in 16-bit mode.

File sigma_delta_16bit_access.h

Comments In the emeter library, voltages are set to run in 16-bit mode by default. This function is available only if the meter
has seven or more sigma delta converters.

static __inline__ int16_t ADC16_6(void)

Parameters --

Returns Returns the SD16CCTL6 flag. If the flag is zero, then a conversion has not occurred for channel 6 since the last
time this flag was cleared. If the value is nonzero, then a new conversion has completed.

Description Determines if a new conversion for channel 6 has completed.

File sigma_delta_16bit_access.h

Comments In the emeter library, voltages are set to run in 16-bit mode by default. This function is available only if the meter
has seven or more sigma delta converters.

22 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family SLAA538–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

www.ti.com Function Description

static __inline__ void ADC16_6_CLEAR

Parameters --

Returns --

Description Clears the SD16CCTL6 flag. This is used to distinguish new conversion results from old conversion results and
to prevent the ADC interrupt from being retriggered after a conversion result has been processed.

File sigma_delta_16bit_access.h

Comments In the emeter library, voltages are set to run in 16-bit mode by default. This function is available only if the meter
has seven or more sigma delta converters.

static __inline__ int32_t ADC32_0(void)

Parameters --

Returns Conversion value of channel 0 of the ADC when it is running in 24-bit mode.

Description Gets the conversion result of channel 0 of the ADC when running in 24-bit mode.

File sigma_delta_24bit_access.h

Comments In the emeter library, currents are set to run in 24-bit mode by default.

static __inline__ int32_t ADC32_0(void)

Parameters --

Returns Returns the SD16CCTL0 flag. If the flag is zero, then a conversion has not occurred for channel 0 since the last
time this flag was cleared. If the value is nonzero, then a new conversion has completed.

Description Determines if a new conversion for channel 0 has completed.

File sigma_delta_24bit_access.h

Comments In the emeter library, currents are set to run in 24-bit mode by default.

static __inline__ void ADC32_0_CLEAR

Parameters --

Returns --

Description Clears the SD16CCTL0 flag. This is used to distinguish new conversion results from old conversion results and
to prevent the ADC interrupt from being retriggered after a conversion result has been processed.

File sigma_delta_24bit_access.h

Comments In the emeter library, currents are set to run in 24-bit mode by default.

static __inline__ int32_t ADC32_1(void)

Parameters --

Returns Conversion value of channel 1 of the ADC when it is running in 24-bit mode.

Description Gets the conversion result of channel 1 of the ADC when running in 24-bit mode.

File sigma_delta_24bit_access.h

Comments In the emeter library, currents are set to run in 24-bit mode by default.

static __inline__ int32_t ADC32_1(void)

Parameters --

Returns Returns the SD16CCTL1 flag. If the flag is zero, then a conversion has not occurred for channel 1 since the last
time this flag was cleared. If the value is nonzero, then a new conversion has completed.

Description Determines if a new conversion for channel 1 has completed.

File sigma_delta_24bit_access.h

Comments In the emeter library, currents are set to run in 24-bit mode by default.

23SLAA538–May 2012 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

Function Description www.ti.com

static __inline__ void ADC32_1_CLEAR

Parameters --

Returns --

Description Clears the SD16CCTL1 flag. This is used to distinguish new conversion results from old conversion results and
to prevent the ADC interrupt from being retriggered after a conversion result has been processed.

File sigma_delta_24bit_access.h

Comments In the emeter library, currents are set to run in 24-bit mode by default.

static __inline__ int32_t ADC32_2(void)

Parameters --

Returns Conversion value of channel 2 of the ADC when it is running in 24-bit mode.

Description Gets the conversion result of channel 2 of the ADC when running in 24-bit mode.

File sigma_delta_24bit_access.h

Comments In the emeter library, currents are set to run in 24-bit mode by default. This function is available only if the meter
has three or more sigma delta converters.

static __inline__ int32_t ADC32_2(void)

Parameters --

Returns Returns the SD16CCTL2 flag. If the flag is zero, then a conversion has not occurred for channel 2 since the last
time this flag was cleared. If the value is nonzero, then a new conversion has completed.

Description Determines if a new conversion for channel 2 has completed.

File sigma_delta_24bit_access.h

Comments In the emeter library, currents are set to run in 24-bit mode by default. This function is available only if the meter
has three or more sigma delta converters.

static __inline__ void ADC32_2_CLEAR

Parameters --

Returns --

Description Clears the SD16CCTL2 flag. This is used to distinguish new conversion results from old conversion results and
to prevent the ADC interrupt from being retriggered after a conversion result has been processed.

File sigma_delta_24bit_access.h

Comments In the emeter library, currents are set to run in 24-bit mode by default. This function is available only if the meter
has three or more sigma delta converters.

static __inline__ int32_t ADC32_3(void)

Parameters --

Returns Conversion value of channel 3 of the ADC when it is running in 24-bit mode.

Description Gets the conversion result of channel 3 of the ADC when running in 24-bit mode.

File sigma_delta_24bit_access.h

Comments In the emeter library, currents are set to run in 24-bit mode by default. This function is available only if the meter
has four or more sigma delta converters.

static __inline__ int32_t ADC32_3(void)

Parameters --

Returns Returns the SD16CCTL3 flag. If the flag is zero, then a conversion has not occurred for channel 3 since the last
time this flag was cleared. If the value is nonzero, then a new conversion has completed.

Description Determines if a new conversion for channel 3 has completed.

File sigma_delta_24bit_access.h

Comments In the emeter library, currents are set to run in 24-bit mode by default. This function is available only if the meter
has four or more sigma delta converters.

24 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family SLAA538–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

www.ti.com Function Description

static __inline__ void ADC32_3_CLEAR

Parameters --

Returns --

Description Clears the SD16CCTL3 flag. This is used to distinguish new conversion results from old conversion results and
to prevent the ADC interrupt from being retriggered after a conversion result has been processed.

File sigma_delta_24bit_access.h

Comments In the emeter library, currents are set to run in 24-bit mode by default. This function is available only if the meter
has four or more sigma delta converters.

static __inline__ int32_t ADC32_4(void)

Parameters --

Returns Conversion value of channel 4 of the ADC when it is running in 24-bit mode.

Description Gets the conversion result of channel 4 of the ADC when running in 24-bit mode.

File sigma_delta_24bit_access.h

Comments In the emeter library, currents are set to run in 24-bit mode by default. This function is available only if the meter
has five or more sigma delta converters.

static __inline__ int32_t ADC32_4(void)

Parameters --

Returns Returns the SD16CCTL4 flag. If the flag is zero, then a conversion has not occurred for channel 4 since the last
time this flag was cleared. If the value is nonzero, then a new conversion has completed.

Description Determines if a new conversion for channel 4 has completed.

File sigma_delta_24bit_access.h

Comments In the emeter library, currents are set to run in 24-bit mode by default. This function is available only if the meter
has five or more sigma delta converters.

static __inline__ void ADC32_4_CLEAR

Parameters --

Returns --

Description Clears the SD16CCTL4 flag. This is used to distinguish new conversion results from old conversion results and
to prevent the ADC interrupt from being retriggered after a conversion result has been processed.

File sigma_delta_24bit_access.h

Comments In the emeter library, currents are set to run in 24-bit mode by default. This function is available only if the meter
has five or more sigma delta converters.

static __inline__ int32_t ADC32_5(void)

Parameters --

Returns Conversion value of channel 5 of the ADC when it is running in 24-bit mode.

Description Gets the conversion result of channel 5 of the ADC when running in 24-bit mode.

File sigma_delta_24bit_access.h

Comments In the emeter library, currents are set to run in 24-bit mode by default. This function is available only if the meter
has six or more sigma delta converters.

static __inline__ int32_t ADC32_5(void)

Parameters --

Returns Returns the SD16CCTL5 flag. If the flag is zero, then a conversion has not occurred for channel 5 since the last
time this flag was cleared. If the value is nonzero, then a new conversion has completed.

Description Determines if a new conversion for channel 5 has completed.

File sigma_delta_24bit_access.h

Comments In the emeter library, currents are set to run in 24-bit mode by default. This function is available only if the meter
has six or more sigma delta converters.

25SLAA538–May 2012 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

Function Description www.ti.com

static __inline__ void ADC32_5_CLEAR

Parameters --

Returns --

Description Clears the SD16CCTL5 flag. This is used to distinguish new conversion results from old conversion results and
to prevent the ADC interrupt from being retriggered after a conversion result has been processed.

File sigma_delta_24bit_access.h

Comments In the emeter library, currents are set to run in 24-bit mode by default. This function is available only if the meter
has six or more sigma delta converters.

static __inline__ int32_t ADC32_6(void)

Parameters --

Returns Conversion value of channel 6 of the ADC when it is running in 24-bit mode.

Description Gets the conversion result of channel 6 of the ADC when running in 24-bit mode.

File sigma_delta_24bit_access.h

Comments In the emeter library, currents are set to run in 24-bit mode by default. This function is available only if the meter
has seven or more sigma delta converters.

static __inline__ int32_t ADC32_6(void)

Parameters --

Returns Returns the SD16CCTL6 flag. If the flag is zero, then a conversion has not occurred for channel 6 since the last
time this flag was cleared. If the value is nonzero, then a new conversion has completed.

Description Determines if a new conversion for channel 6 has completed.

File sigma_delta_24bit_access.h

Comments In the emeter library, currents are set to run in 24-bit mode by default. This function is available only if the meter
has seven or more sigma delta converters.

static __inline__ void ADC32_6_CLEAR

Parameters --

Returns --

Description Clears the SD16CCTL6 flag. This is used to distinguish new conversion results from old conversion results and
to prevent the ADC interrupt from being retriggered after a conversion result has been processed.

File sigma_delta_24bit_access.h

Comments In the emeter library, currents are set to run in 24-bit mode by default. This function is available only if the meter
has seven or more sigma delta converters.

26 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family SLAA538–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

www.ti.com Function Description

2.3 Application Project

void lcd_text(char *s, int pos)

Parameters s - Null terminated Ascii string.
pos - LCD position where text should start to be displayed, where 1 is the most left-most character.

Returns --

Description Displays an ascii string on a LCD.

File emeter-basic-display.c

Comments This function is only used for LCDs that support displaying ascii characters. This function is not available for the
MSP430AFE, because it does not have a LCD driver.

void LCDcharsx(const lcd_cell_t *s, int pos, int len)

Parameters s - An array of character code values needed to produce the desired string on the LCD. For example, the first
element in this array corresponds to the character code for the first character to be displayed on the LCD.
pos - LCD position where text should start to be displayed, where 1 is the most left-most character.
len-Number of characters of the string to display on the LCD.

Returns --

Description Displays characters on a LCD.

File emeter-basic-display.c

Comments This function has different versions depending on whether a starburst display is used. This function is not
available for the MSP430AFE, because it does not have a LCD driver.

void display_power_fail_message(void)

Parameters --

Returns --

Description Displays "bl out" on the LCD.

File emeter-basic-display.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

void display_startup_message(void)

Parameters --

Returns --

Description Displays "START" on the LCD.

File emeter-basic-display.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

void display_power_4v2_message(void)

Parameters --

Returns --

Description Displays "4V2" or "4U2" on the LCD, depending on the actual LCD display type.

File emeter-basic-display.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

void display_power_normal_message(void)

Parameters --

Returns --

Description Displays "8V4" or "8U4" on the LCD, depending on the actual LCD display type.

File emeter-basic-display.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

27SLAA538–May 2012 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

Function Description www.ti.com

static void LCDicon(int pos, int on)

Parameters pos - An integer that determines the proper LCD memory register and bit for each symbol. This value can be
calculated by using the icon_loc(cell,bit) macro.
on - Turns a character on if this parameter is 1. Turns a character off if this parameter is 0.

Returns --

Description Turn a LCD icon on or off.

File emeter-basic-display.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

void display_clear_periphery(void)

Parameters --

Returns --

Description Clear all the symbols around the display, which are not being used.

File emeter-basic-display.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

void display_clear_line_1(void)

Parameters --

Returns --

Description Clear the first line of the LCD.

File emeter-basic-display.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

void display_clear_line_2(void)

Parameters --

Returns --

Description Clear the second line of the LCD.

File emeter-basic-display.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver. This function is also
available only for LCDs with two lines. Calling this function for LCDs that only have one line would clean line 1.

void display_phase_icon(int ph)

Parameters ph - The phase whose symbol is to be displayed. A value of 0 corresponds to phase a, 1 to phase b, and 2 for
phase c.

Returns --

Description Displays the icon that signifies the current phase whose parameters are being displayed on the LCD.

File emeter-basic-display.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver. This function is also
available only for multiphase meters that have symbols to signify which phase the currently displayed
parameters belong to.

static void LCDoverrange1(void)

Parameters --

Returns --

Description Displays "High" on the LCD's first line.

File emeter-basic-display.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

28 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family SLAA538–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

www.ti.com Function Description

static void LCDoverrange2(void)

Parameters --

Returns --

Description Displays "High" on the LCD's second line. If the LCD does not have a second line, it displays it on the first line.

File emeter-basic-display.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

static __inline__ void display_mains_frequency(int ph)

Parameters ph - Phase number to display the frequency of.

Returns --

Description Displays frequency of the selected phase on the LCD.

File emeter-basic-display.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

static void display_vrms(int ph)

Parameters ph - Phase number.

Returns --

Description Displays root mean square voltage of the selected phase on the LCD .

File emeter-basic-display.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

static __inline__ void display_irms(int ph)

Parameters ph - Phase number.

Returns --

Description Displays root mean square current of the selected phase on the LCD.

File emeter-basic-display.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

static __inline__ void display_consumed_active_energy(int ph)

Parameters ph - Phase number.

Returns --

Description Displays consumed active energy of the selected phase on the LCD.

File emeter-basic-display.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

static __inline__ void display_consumed_reactive_energy(int ph)

Parameters ph - Phase number.

Returns --

Description Displays consumed reactive energy of the selected phase on the LCD.

File emeter-basic-display.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

static __inline__ void display_active_power(int ph)

Parameters ph - Phase number.

Returns --

Description Displays active power of the selected phase on the LCD

File emeter-basic-display.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

29SLAA538–May 2012 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

Function Description www.ti.com

static __inline__ void display_reactive_power(int ph)

Parameters ph - Phase number.

Returns --

Description Displays reactive power of the selected phase on the LCD.

File emeter-basic-display.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

static __inline__ void display_apparent_power(int ph)

Parameters ph - Phase number.

Returns --

Description Displays apparent power of the selected phase on the LCD.

File emeter-basic-display.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

static __inline__ void display_power_factor(int ph)

Parameters ph - Phase number.

Returns --

Description Displays power factor of the selected phase on the LCD.

File emeter-basic-display.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

static void display_date(int year, int month, int day)

Parameters year - Year to be displayed.
month - Month to be displayed.
day - Day to be displayed.

Returns --

Description Displays a date on the LCD.

File emeter-basic-display.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

static void display_time(int hour, int minute, int second)

Parameters hour - Hour to be displayed.
minute- Minute to be displayed.
second - Second to be displayed.

Returns --

Description Displays a time on the LCD.

File emeter-basic-display.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

static / void display_current_date(void)

Parameters --

Returns --

Description Displays current date on the LCD

File emeter-basic-display.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

30 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family SLAA538–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

www.ti.com Function Description

static __inline__ void display_current_time(void)

Parameters --

Returns --

Description Displays current time on the LCD.

File emeter-basic-display.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

void display_current_tariff(void)

Parameters --

Returns --

Description Displays the current tariff on the LCD.

File emeter-basic-display.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

void display_tariff_holiday(void)

Parameters --

Returns --

Description Displays the dates of all holidays on the LCD.

File emeter-basic-display.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

void display_item(int item, int ph)

Parameters item - Integer that determines what parameter to display on the LCD.
ph - Which phase's parameter to display.

Returns --

Description Displays on the LCD the specified parameter of the specified phase.

File emeter-basic-display.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

void update_display(void)

Parameters --

Returns --

Description Update the LCD to cycle through displaying different parameters for each phase.

File emeter-basic-display.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

void send_1107d_report(void)

Parameters --

Returns --

Description Send 1107d report via Com port.

File emeter-communication.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

31SLAA538–May 2012 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

Function Description www.ti.com

int iec62056_21_process_ack(const uint8_t *msg, int len)

Parameters --

Returns --

Description Process ack.

File emeter-communication.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

int iec62056_21_process_nak(const uint8_t *msg, int len)

Parameters --

Returns --

Description Process nack

File emeter-communication.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

int iec62056_21_process_ident(const uint8_t *msg, int len)

Parameters --

Returns --

Description Process ident.

File emeter-communication.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

void iec62056_21_process_request(void)

Parameters --

Returns --

Description Process request.

File emeter-communication.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

int iec62056_21_process_header(const uint8_t *msg, int len)

Parameters --

Returns --

Description Process header.

File emeter-communication.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

int iec62056_21_process_field(const uint8_t instance_id[6], const uint8_t *val, int len)

Parameters --

Returns --

Description Process field.

File emeter-communication.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

void serial_rx_interrupt0 (void)

Parameters --

Returns --

Description Interrupt routine for receiving data via the Com port.

File emeter-communication.c

Comments This function is defined only if the MSP430 has UART_0 or USCI_AB0.

32 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family SLAA538–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

www.ti.com Function Description

void serial_tx_interrupt0 (void)

Parameters --

Returns --

Description Interrupt routine for sending data via the Com port.

File emeter-communication.c

Comments This function is defined only if the MSP430 has UART_0 or USCI_AB0.

void serial_interrupt0 (void)

Parameters --

Returns --

Description Interrupt routine for receiving and sending data via the Com port.

File emeter-communication.c

Comments This function is defined only if the MSP430 has a USCI_A0 or EUSCI_A0.

void serial_rx_interrupt1 (void)

Parameters --

Returns --

Description Interrupt routine for receiving data via the Com port.

File emeter-communication.c

Comments This function is defined only if the MSP430 has UART_1 or USCI_AB1.

void serial_tx_interrupt1 (void)

Parameters --

Returns --

Description Interrupt routine for sending data via the Com port.

File emeter-communication.c

Comments This function is defined only if the MSP430 has UART_1 or USCI_AB1.

void serial_interrupt1 (void)

Parameters --

Returns --

Description Interrupt routine for receiving and sending data via the Com port.

File emeter-communication.c

Comments This function is defined only if the MSP430 has a USCI_A1 or EUSCI_A1.

void serial_tx_interrupt2 (void)

Parameters --

Returns --

Description Interrupt routine for sending data via the Com port.

File emeter-communication.c

Comments This function is defined only if the MSP430 has USCI_AB2.

void serial_tx_interrupt2 (void)

Parameters --

Returns --

Description Interrupt routine for sending data via the Com port.

File emeter-communication.c

Comments This function is defined only if the MSP430 has USCI_AB3.

33SLAA538–May 2012 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

Function Description www.ti.com

void send_message(int port, int len)

Parameters port - Port number whose tx interrupt is desired to be triggered.
len - Length of the message to be sent.

Returns --

Description Triggers the tx interrupt of the specified port.

File emeter-communication.c

Comments This function is defined only if the MSP430 has USCI_AB3.

void comms_setup(void)

Parameters --

Returns --

Description Configures the com ports for communication.

File emeter-communication.c

Comments --

int prepare_tx_message(int port, int len)

Parameters port - Port number whose tx interrupt is desired to be triggered.
len - Length of the message to be sent.

Returns --

Description Formats a transmit message to adhere to dlt645 format. The tx interrupt is then triggered to send the message.

File emeter-dlt645.c

Comments --

static void dlt645_process_rx_message(int port, serial_msg_t *rx_msg, int rx_len)

Parameters port - Port number where dlt645 message came from.
rx_msg - Pointer to the received message.
rx_len - Length of the received message.

Returns --

Description Interpret received dlt645 messages and take the proper actions.

File emeter-dlt645.c

Comments

void dlt645_rx_byte(int port, uint8_t ch)

Parameters port - Port number where received byte came from.
len - Length of the message to be sent.

Returns --

Description Called when receive a byte. Determine if have received a full dlt645 message and call the function to manage a
dlt645 message.

File emeter-dlt645.c

Comments --

void dlt645_rx_byte(int port, uint8_t ch)

Parameters port - Port number where received byte came from.
len - Length of the message to be sent.

Returns --

Description Called when receive a byte. Determine if have received a full dlt645 message and call the function to manage a
dlt645 message.

File emeter-dlt645.c

Comments --

34 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family SLAA538–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

www.ti.com Function Description

void LCDinit(void)

Parameters --

Returns --

Description Initialize the LCD display, and set it to initially display all segments.

File emeter-lcd.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

void LCDsleep(void)

Parameters --

Returns --

Description Turn off LCD timing generator. This function is used when the meter goes to sleep.

File emeter-lcd.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

void LCDawaken(void)

Parameters --

Returns --

Description Turn on LCD timing generator. This function is used when the meter wakes up from sleeping.

File emeter-lcd.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

void LCDchars(const uint8_t *s, int pos, int len)

Parameters s - An array of character code-values needed to produce the desired string on the LCD. For example, the first
element in this array corresponds to the character code for the first character to be displayed on the LCD.
pos - LCD position where text should start to be displayed, where 1 is the most left-most character.
len - Number of characters of the string to display on the LCD.

Returns --

Description Displays characters on a LCD.

File emeter-basic-display.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

void LCDmodify_char(uint16_t ch, int pos, int on)

Parameters pos - An integer that determines the proper LCD memory register.
ch - The character code needed to turn on a symbol.
on - Turns a character on if this parameter is 1. Turns a character off if this parameter is 0.

Returns --

Description Turn a LCD icon on or off.

File emeter-lcd.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

void LCDdecu16(uint16_t value, int pos, int digits, int after)

Parameters value - Value to be displayed on the LCD.
pos - An integer that determines the starting location of where the number would be displayed.
digits - Number to display on the LCD.
after - The number of digits which are after the decimal point.

Returns --

Description Display an unsigned 16-bit integer, with leading zero suppression.

File emeter-lcd.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

35SLAA538–May 2012 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

Function Description www.ti.com

void LCDdecu32(uint32_t value, int pos, int digits, int after)

Parameters value - Value to be displayed on the LCD.
pos - An integer that determines the starting location of where the number would be displayed.
digits - Number to display on the LCD.
after - The number of digits which are after the decimal point.

Returns --

Description Display an unsigned 32-bit integer, with leading zero suppression.

File emeter-lcd.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

void LCDdec16(int16_t value, int pos, int digits, int after)

Parameters value - Value to be displayed on the LCD.
pos - An integer that determines the starting location of where the number would be displayed.
digits - Number to display on the LCD.
after - The number of digits which are after the decimal point.

Returns --

Description Display a signed 16-bit integer, with leading zero suppression.

File emeter-lcd.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

void LCDdec32(int32_t value, int pos, int digits, int after)

Parameters value - Value to be displayed on the LCD.
pos - An integer that determines the starting location of where the number would be displayed.
digits - Number to display on the LCD.
after - The number of digits which are after the decimal point.

Returns --

Description Display a signed 32-bit integer, with leading zero suppression.

File emeter-lcd.c

Comments This function is not available for the MSP430AFE, because it does not have a LCD driver.

void set_rtc_sumcheck(void)

Parameters --

Returns --

Description Update the sumcheck of the rtc based on the time and day paramters.

File emeter-rtc.c

Comments --

int bump_rtc(void)

Parameters --

Returns An integer that represents an inconsistent RTC if the current sumcheck does not equal the sumcheck stored in
the rtc structure or an integer that represents the greatest unit of time (second, minute, hour, day, month, or
year) that changed by updating the RTC. For example, if updating the RTC caused the month to change (which
also means the day, hour, minute, and second changed), return an identifier to signify only the month change
instead of the other parameters changing. The possible values to be returned by this function are:
RTC_INCONSISTENT = 0
RTC_CHANGED_SECOND = 1
RTC_CHANGED_MINUTE = 2
RTC_CHANGED_HOUR = 3
RTC_CHANGED_DAY = 4
RTC_CHANGED_MONTH = 5
RTC_CHANGED_YEAR = 6

Description Checks the RTC consistentcy. If the RTC is consistent, update the time by 1 second and update the minute,
hour, day, month, and year fields, if necessary. After updating the RTC, return the greatest unit-of-time change
that occurred by updating the RTC by one second.

File emeter-rtc.c

Comments --

36 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family SLAA538–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

www.ti.com Function Description

int check_rtc_sumcheck(void))

Parameters --

Returns 1 if the RTC is consistent
0 if the RTC is not consistent.

Description Checks if the RTC is consistent by comparing the stored sumcheck with the sumcheck created by using the
current time and day.

File emeter-rtc.c

Comments --

int weekday(void)

Parameters --

Returns Day of the week as a number from 0 (Sunday) to 6 (Saturday)

Description Finds the current day of the week.

File emeter-rtc.c

Comments --

void rtc_bumper(void)

Parameters --

Returns --

Description Call the function to update the RTC time/date (bump_rtc) and the necessary functions corresponding to any
time/date parameter change as a result of updating the RTC.

File emeter-rtc.c

Comments This function is called in an ISR routine that is triggered every second. This function is called only if
RTC_SUPPORT is defined.

void correct_rtc(void)

Parameters --

Returns --

Description Correct the RTC to allow for basic error in the crystal, and temperature dependant changes. This is called every
two seconds, so it must accumulate two seconds worth of error at the current temperature.

File emeter-rtc.c

Comments This is currently disabled in the code library.

void one_second_ticker (void)

Parameters --

Returns --

Description ISR that is triggered once a second. This also handles sensing when to change operating mode from powerfail
mode.

File emeter-rtc.c

Comments This is currently disabled in the code library.

int32_t assess_rtc_speed(void)

Parameters --

Returns The RTC speed in terms of SMCLK clock cycles.

Description Can be used to measure the speed difference between the MSP430's crystal and the external clock in a
reasonable time

File emeter-rtc.c

Comments SMCLK must be running much faster than the rtc in order to get an accurate reading. This function is available
only if CORRECTED_RTC_SUPPORT and __MSP430_HAS_TA3__ are defined.

37SLAA538–May 2012 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

Function Description www.ti.com

void rtc_init(void)

Parameters --

Returns --

Description Initialize the rtc structure with a date and time. As of this writing, the code initializes the date to October 9, 2011
at 12:00:00.

File emeter-rtc.c

Comments --

int align_hardware_with_calibration_data(void)

Parameters --

Returns 0

Description When calibrating, calibration constants in flash are updated so that the meter can run accurately. This function
reinitializes the sigma delta ADCs to work using the new calibration constants.

File emeter-setup.c

Comments This function is available only if ESP_SUPPORT is not defined.

void system_setup(void)

Parameters --

Returns --

Description Initializes the hardware and metering variables.

File emeter-setup.c

Comments --

void flash_clr(int *ptr)

Parameters ptr - Address of the integer in flash that is to be cleared.

Returns --

Description Clears an integer that is stored in flash.

File emeter-flash.c

Comments --

void flash_write_int8(int8_t *ptr, int8_t value)

Parameters ptr - Address of the integer in flash that is to be rewritten.
value - Value to be written to the integer in flash.

Returns --

Description Writes a value to an integer that is stored in flash.

File emeter-flash.c

Comments --

void flash_write_int8(int8_t *ptr, int8_t value)

Parameters ptr - Address of the byte in flash that is to be rewritten.
value - Value to be written to the byte in flash.

Returns --

Description Writes a value to a byte that is stored in flash.

File emeter-flash.c

Comments --

38 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family SLAA538–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

www.ti.com Function Description

void flash_write_int16(int16_t *ptr, int16_t value)

Parameters ptr - Address of the integer in flash that is to be rewritten.
value - Value to be written to the integer in flash.

Returns --

Description Writes a value to an integer that is stored in flash.

File emeter-flash.c

Comments --

void flash_write_int32(int32_t *ptr, int32_t value)

Parameters ptr - Address of the long in flash that is to be rewritten.
value - Value to be written to the long in flash.

Returns --

Description Writes a value to a long that is stored in flash.

File emeter-flash.c

Comments --

void flash_memcpy(char *ptr, char *from, int len)

Parameters ptr - Address of the destination of the copied bytes.
from - Source of the copied bytes.
len - Total bytes to write.

Returns --

Description Copies bytes from one location to another.

File emeter-flash.c

Comments --

void flash_replace16(int16_t *ptr, int16_t word)

Parameters ptr - Address of integer to be replaced.
word - Value to replace the desired integer in flash with.

Returns --

Description Makes the flash look like EEPROM. This function erases and replaces just one word. It erases SEGA and then
images SEGB to SEGA. It then erases SEGB and copies from SEGA back to SEGB all 128 bytes except the
one to be replaced.

File emeter-flash.c

Comments --

void flash_replace32(int32_t *ptr, int32_t word)

Parameters ptr - Address of long to be replaced.
word - Value to replace the desired long in flash with.

Returns --

Description Makes the flash look like EEPROM. This function erases and replaces just one long word. It erases SEGA and
then images SEGB to SEGA. It then erases SEGB and copies from SEGA back to SEGB all 128 bytes except
the one to be replaced.

File emeter-flash.c

Comments --

void flash_secure(void)

Parameters --

Returns --

Description Locks the flash so that it is now only read-only.

File emeter-flash.c

Comments --

39SLAA538–May 2012 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

Function Description www.ti.com

void add_sumcheck(void *buf, int len)

Parameters buf - Buffer to add a sumcheck to.
len- The size of the message.

Returns --

Description Add a one byte sumcheck to the passed message, in the byte after the message.

File emeter-multirate.c

Comments This function is available only if multirate support is enabled.

int test_sumcheck(const void *buf, int len)

Parameters buf - Buffer to check the sumcheck of.
len - The size of the message.

Returns 1 if the message is valid.
0 if the message fails the test.

Description check the passed message, which must include a one byte sumcheck, is OK and has not been corrupted.

File emeter-multirate.c

Comments This function is available only if multirate support is enabled.

void multirate_energy_pulse(void)

Parameters --

Returns --

Description Updates the log of the total number of energy pulses for the current tariff of the current bill-cutoff (bill cycle).

File emeter-multirate.c

Comments This function is available only if multirate support is enabled.

int find_next_cutoff_date(void)

Parameters --

Returns The index into the array of cutoff-structures where the information about the next cutoff date is stored.

Description Find the slot number in memory of cutoff dates for the next cutoff date (billing cycle) from today.

File emeter-multirate.c

Comments This function is available only if multirate support is enabled.

int find_previous_cutoff_date(void)

Parameters --

Returns The index into the array of cutoff-structures where the information about the previous cutoff date is stored.

Description Find the slot number in the array of cutoff dates for the previous cutoff date (billing cycle) from today.

File emeter-multirate.c

Comments This function is available only if multirate support is enabled.

void new_tariff_day(void)

Parameters --

Returns --

Description When it is a new day, update the tariff to the new day's schedule, which is based on whether it is a holiday or
what day of week it is, and clear the daily logged parameters. Also, check if the new day is on a new billing cycle
compared to the previous day, and if it is, update the current billing cycle.

File emeter-multirate.c

Comments This function is available only if multirate support is enabled.

40 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family SLAA538–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

www.ti.com Function Description

void new_tariff_minute(void)

Parameters --

Returns --

Description Check if the meter should be running on a different schedule after each minute. If it should be on a new
schedule, update the tariff to the new schedule's tariff and store the total accumulated energy of the previous
tariff to memory. Read the total accumulated energy of the new tariff and start accumulating energy from this
starting point.

File emeter-multirate.c

Comments This function is available only if multirate support is enabled.

int read_history_slot(int slot, int tariff)

Parameters slot - The index into the array of cutoff-structures that corresponds to the billing cycle whose energy
accumulation is desired to be read.
tariff- The tariff type whose energy accumulation is desired to be read.

Returns 0 if the read is successful.
(-1) if the read is not successful.

Description Reads the accumulated energy history for the particular billing cycle at the selected tariff and stores it in the
current_history structure.

File emeter-multirate.c

Comments This function is available only if multirate support is enabled.

int write_history_slot(int slot, int tariff)

Parameters slot - An index into the array of cutoff-structures that corresponds to the billing cycle whose energy accumulation
value is desired to be updated.
tariff - The tariff type whose energy accumulation is desired to be updated.

Returns The output of running the iicEEPROM_write function.

Description Writes the accumulated energy stored in the current_history structure to the energy accumulation data for the
selected tariff at the selected billing cycle.

File emeter-multirate.c

Comments This function is available only if multirate support is enabled.

void tariff_management(void)

Parameters --

Returns --

Description If it is a new day or minute, update the tariff accordingly.

File emeter-multirate.c

Comments This function is available only if multirate support is enabled.

void tariff_initialise(void)

Parameters --

Returns --

Description Initialize tariff information after starting from reset.

File emeter-multirate.c

Comments This function is available only if multirate support is enabled.

void multirate_align_with_rtc(void)

Parameters --

Returns --

Description Align the multi-rate activities with the new time and date after the RTC has just changed. The meter may have
hopped between cutoff dates so a full re-alignment with the new date is necessary.

File emeter-multirate.c

Comments This function is available only if multirate support is enabled.

41SLAA538–May 2012 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

Function Description www.ti.com

int multirate_put(uint8_t *msg)

Parameters msg - Received message from GUI.

Returns Returns 0 if the message received from the GUI requests to change a parameter not supported. Otherwise,
return the output from the iicEEPROM_write function.

Description Replace multirate parameters with parameters sent from the GUI.

File emeter-multirate.c

Comments This function is available only if multirate support is enabled.

int multirate_get(uint8_t *msg, uint8_t *txmsg)

Parameters msg - Received partial message from GUI.
txmsg - Message to be sent to GUI with the requested parameters.

Returns 8 if successfully read tariff, holiday, or cutoff parameters.
10 if successfully read information about the weekday schedule type.
4 otherwise.

Description Send requested multirate parameters to the GUI.

File emeter-multirate.c

Comments This function is available only if multirate support is enabled.

int multirate_clear_usage(uint8_t *msg)

Parameters msg - Received message from GUI.

Returns 0 if the message received from the GUI requests to clear a parameter not supported.
Otherwise, return the output from the iicEEPROM_write function.

Description Clear particular multirate Parameters

File emeter-multirate.c

Comments This function is available only if multirate support is enabled.

int multirate_get_usage(uint8_t *msg, uint8_t *txmsg)

Parameters msg - Received partial message from GUI.
txmsg - Message to be sent to GUI with the requested usage.

Returns 10 if successfully read information about the daily peak for a particular day.
12 if successfully read information about the power consumption for a particular tariff at a particular billing cycle.
4 otherwise.

Description Send requested multirate parameters to the GUI.

File emeter-multirate.c

Comments This function is available only if multirate support is enabled.

static __inline__ long int labs(long int __x)

Parameters x - Number to take the absolute value of.

Returns The absolute value of x.

Description Calculates the absolute value of a function.

File emeter-main.c

Comments --

int record_meter_failure(int type)

Parameters type - Parameter that should be a value between 0 and 15, specifying the unrecoverable error type to be
recorded in the failures word in flash.

Returns 1 if the function completes successfully.

Description Records a meter failure and the type of error.

File emeter-main.c

Comments Don't worry about the time taken to write to flash - we are recording a serious error condition. This function is
available only if SELF_TEST_SUPPORT is defined.

42 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family SLAA538–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

www.ti.com Function Description

int record_meter_warning(int type)

Parameters type - Should be a value between 0 and 15, specifying the warning type to be recorded in the recoverable
failures word in flash.

Returns 1 if the function completes successfully.

Description Records a meter warning and the type of warning.

File emeter-main.c

Comments Don't worry about the time taken to write to flash - we are recording a serious error condition. This function is
available only if SELF_TEST_SUPPORT is defined.

void test_battery(void)

Parameters --

Returns --

Description Tests battery.

File emeter-main.c

Comments This function is available only if BATTERY_MONITOR_SUPPORT is defined.

void set_io_expander(int what, int which)

Parameters what - Parameter that determines how to change the expanded IO's state.
If "what" is less than 0, the current value for the IO's state is combined by a logical AND with the bitwise-not of
the parameter "which".
If "what" is greater than 0, the current value for the IO's state is combined by a logical OR with the parameter
"which".
If "what" equals 0, the current value of the IO's state is set to the variable "which".
which - Variable used to change the IO state.

Returns --

Description Supports the use of a device like the 74HC595 to expand the number of output bits available on the lower pin
count MSP430s.

File emeter-main.c

Comments This function is available only if IO_EXPANDER_SUPPORT is defined.

static __inline__ int keypad_debounce(void)

Parameters --

Returns 1 if the foreground should be triggered.
0 if it should not be triggered.

Description Debouncing for 1 to 4 keys.

File emeter-main.c

Comments This function is available only if BASIC_KEYPAD_SUPPORT and x__MSP430__ are defined or if
CUSTOM_KEYPAD_SUPPORT is defined.

void main(void)

Parameters --

Returns --

Description The main function. When the background process has finished a block processing operation, the main function
calls a function that uses the parameters calculated by the background process to calculate the metering
parameters. It also calls a function to update the display and perform other housekeeping tasks.

File emeter-main.c

Comments --

43SLAA538–May 2012 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

Function Description www.ti.com

int32_t current_consumed_active_energy(int ph)

Parameters ph - Which phase's active energy is to be returned.

Returns Total consumed active energy of the selected phase.

Description Returns the total consumed active energy of the selected phase.

File emeter-main.c

Comments --

power_t current_active_power(int ph)

Parameters ph - Which phase's active power is to be returned.

Returns Active power of the selected phase.

Description Returns the active power of the selected phase.

File emeter-main.c

Comments --

int32_t current_consumed_reactive_energy(int ph)

Parameters ph - Which phase's total reactive energy is to be returned.

Returns Total consumed reactive energy of the selected phase.

Description Returns the total consumed reactive energy of the selected phase.

File emeter-main.c

Comments This function is not available if REACTIVE_POWER_SUPPORT is not defined.

power_t current_reactive_power(int ph)

Parameters ph - Which phase's reactive power is to be returned.

Returns Reactive power of the selected phase.

Description Returns the reactive power of the selected phase.

File emeter-main.c

Comments This function is not available if REACTIVE_POWER_SUPPORT is not defined.

power_t current_apparent_power(int ph)

Parameters ph - Which phase's apparent power is to be returned.

Returns Apparent power of the selected phase.

Description Returns the apparent power of the selected phase.

File emeter-main.c

Comments This function is not available if APPARENT_POWER_SUPPORT is not defined.

power_t current_fundamental_active_power(int ph)

Parameters ph - Which phase's fundamental active power is to be returned.

Returns Fundamental active power of the selected phase.

Description Returns the fundamental active power of the selected phase.

File emeter-main.c

Comments This function is not available if FUNDAMENTAL_ACTIVE_POWER_SUPPORT is not defined.

power_t current_fundamental_reactive_power(int ph)

Parameters ph - Which phase's fundamental reactive power is to be returned.

Returns Fundamental reactive power of the selected phase.

Description Returns the fundamental reactive power of the selected phase.

File emeter-main.c

Comments This function is not available if FUNDAMENTAL_REACTIVE_POWER_SUPPORT is not defined.

44 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family SLAA538–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

www.ti.com Function Description

int32_t current_power_factor(int ph)

Parameters ph - Which phase's power factor is to be returned.

Returns Power factor of the selected phase.

Description Returns the power factor of the selected phase.

File emeter-main.c

Comments This function is not available POWER_FACTOR_SUPPORT is not defined.

rms_voltage_t current_rms_voltage(int ph)

Parameters ph - Which phase's RMS voltage is to be returned.

Returns Rms voltage of the selected phase.

Description Returns the RMS voltage of the selected phase.

File emeter-main.c

Comments This function is not available if VRMS_SUPPORT is not defined.

rms_current_t current_rms_current(int ph)

Parameters ph - Which phase's RMS current is to be returned.

Returns Rms current of the selected phase.

Description Returns the RMS current of the selected phase.

File emeter-main.c

Comments This function is not available if IRMS_SUPPORT is not defined.

int32_t current_mains_frequency(int ph)

Parameters ph - Which phase's mains frequency reading is to be returned.

Returns Mains frequency reading of the selected phase.

Description Returns the mains frequency reading of the selected phase.

File emeter-main.c

Comments This function is not available if MAINS_FREQUENCY_SUPPORT is not defined.

void switch_to_normal_mode(void)

Parameters --

Returns --

Description Take the necessary actions when switching to normal mode.

File emeter-main.c

Comments --

void switch_to_limp_mode(void)

Parameters --

Returns --

Description Take the actions necessary when switching to limp-mode.

File emeter-main.c

Comments --

void switch_to_powerfail_mode(void)

Parameters --

Returns --

Description Take the necessary actions when switching to powerfail-mode.

File emeter-main.c

Comments --

45SLAA538–May 2012 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

Function Description www.ti.com

void phase_active_energy_pulse_start(void)

Parameters --

Returns --

Description Sets the active energy output to logic high. This function with the phase_active_energy_pulse_end function
creates a pulse.

File emeter-main.c

Comments This is the one-phase version needed to output pulses. This function is available only if
PER_PHASE_ACTIVE_ENERGY_SUPPORT is defined.

void phase_active_energy_pulse_end(void)

Parameters --

Returns --

Description Sets the active energy output to logic low. This function with the phase_active_energy_pulse_start function
creates a pulse.

File emeter-main.c

Comments This is the one-phase version needed to output pulses. This function is available only if
PER_PHASE_ACTIVE_ENERGY_SUPPORT is defined.

void phase_active_energy_pulse_start(int ph)

Parameters ph - Which phase's active energy pulse to output a pulse on.

Returns --

Description Sets the active energy output for a particular phase to logic high. This function with the
phase_active_energy_pulse_end function creates a pulse when the active energy for a phase reaches the user-
defined active-energy pulse threshold.

File emeter-main.c

Comments This function is the multi-phase version needed to output active energy pulses. This function is available only if
PER_PHASE_ACTIVE_ENERGY_SUPPORT is defined.

void phase_active_energy_pulse_end(int ph)

Parameters ph - Which phase's active energy pulse to output a pulse on.

Returns --

Description Sets the active energy output for a particular phase to logic low. This function with the
phase_active_energy_pulse_start creates a pulse when the active energy for a phase reaches the user-defined
active-energy pulse threshold.

File emeter-main.c

Comments This is the multi-phase version needed to output active energy pulses. This function is available only if
PER_PHASE_ACTIVE_ENERGY_SUPPORT is defined.

void phase_reactive_energy_pulse_start(void)

Parameters --

Returns --

Description Sets the reactive energy output to logic high. This function with the phase_reactive_energy_pulse_end function
creates a pulse.

File emeter-main.c

Comments This function is available only if PER_PHASE_REACTIVE_ENERGY_SUPPORT is defined.

46 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family SLAA538–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

www.ti.com Function Description

void phase_reactive_energy_pulse_end(void)

Parameters --

Returns --

Description Sets the reactive energy output to logic low. This function with the phase_reactive_energy_pulse_start function
creates a pulse.

File emeter-main.c

Comments This function is available only if PER_PHASE_REACTIVE_ENERGY_SUPPORT is defined.

void total_active_energy_pulse_start(void)

Parameters --

Returns --

Description Sets the total active energy output to logic high. This function with the total_active_energy_pulse_end function
creates a pulse.

File emeter-main.c

Comments This function is available only if TOTAL_ACTIVE_ENERGY_SUPPORT is defined.

void total_active_energy_pulse_end(void)

Parameters --

Returns --

Description Sets the total active energy output to logic low. This function with the phase_active_energy_pulse_start function
creates a pulse.

File emeter-main.c

Comments This function is available only if TOTAL_ACTIVE_ENERGY_SUPPORT is defined.

void total_reactive_energy_pulse_start(void)

Parameters --

Returns --

Description Sets the total reactive energy output to logic high. This function with the total_reactive_energy_pulse_end
function creates a pulse.

File emeter-main.c

Comments This function is available only if TOTAL_REACTIVE_ENERGY_SUPPORT is defined.

void total_reactive_energy_pulse_end(void)

Parameters --

Returns --

Description Sets the total reactive energy output to logic low. This function with the phase_reactive_energy_pulse_start
function creates a pulse.

File emeter-main.c

Comments This function is available only if TOTAL_REACTIVE_ENERGY_SUPPORT is defined.

47SLAA538–May 2012 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

Loading the Example Code www.ti.com

3 Loading the Example Code

The source code is developed in the IAR environment using IAR compiler version 6.x. The project files
cannot be opened in earlier versions of IAR. If a version later than 6.x versions is used, a prompt to create
a back-up is displayed when the project is loaded, and the user can click YES to proceed. To run the
code, first navigate to the Code Library\emeter directory, which is shown in Figure 1.

Figure 1. Loading the Example Code

The folders emeter-app, emeter-metrology, and emeter-toolkit each contain multiple project files. Within
these folders, the projects emeter-app_xxxx, emeter-metrology_xxxx, and emeter-toolkit_xxxx should
always be chosen, where xxxx represents the device family of the desired meter EVM. For first time use, it
is recommended that all three projects be completely rebuild. To do this, first Open the emeters.eww
workspace, select the emeter-toolkit-xxxx.ewp project from the project tabs beneath the current project's
files, and do a rebuild all. Then select the emeter-metrology_xxxx .ewp project from the project tabs
beneath the current project's files and do a rebuild all. Finally, select the emeter-app_xxxx.ewp project
from the project tabs beneath the current project's files, choose rebuild all, and load this on to the desired
meter. For the compilation to successfully complete, the projects should always be rebuilt in this order. In
the snapshots below, the rebuilding process is shown for the msp430afe253 meter; that is, xxxx=afe253.

Figure 2. Toolkit Compilation in IAR

48 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family SLAA538–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

www.ti.com Loading the Example Code

Figure 3. Metrology Compilation in IAR

Figure 4. Application Compilation in IAR

After the main project has been rebuilt, load it on to the EVM by clicking Download and Debug and then
pressing Go from the Debug menu.

49SLAA538–May 2012 Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA538

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://www.ti.com/wirelessconnectivity
http://e2e.ti.com

	Energy Meter Code Library for 1-Phase to 3-Phase Using MSP430 Family
	1 Introduction
	2 Function Description
	2.1 Toolkit Project
	2.2 Metrology Project
	2.3 Application Project

	3 Loading the Example Code

