
 Application Report
SPRAA25 – May 2004

1 Synchronizing DSP/BIOS Threads

Synchronizing DSP/BIOS Threads
Prashanth L A, Eldo Tony Kuruvilla Software Development Systems

ABSTRACT

DSP programming has transitioned from single loop programs to complex multi-threaded
applications that utilize real-time features. Multi-threaded applications need to
synchronize access to shared resources.

DSP/BIOS provides multiple mechanisms for synchronizing threads. The mechanisms
provide ways to disable thread types, change thread priorities, and provide for mutual
exclusion through semaphores and locks.

The mechanisms you choose depend upon the types of threads you need to synchronize.
This application note describes various DSP/BIOS thread synchronization primitives and
related issues and constraints.

 DSP/BIOS is a trademark of Texas Instruments.

Contents
1 Issues for Thread Synchronization ... 2

1.1 Thread Priority and Preemption .. 3
1.2 Race Conditions and Critical Sections .. 4

2 Disabling Threads .. 5
2.1 Disabling and Enabling HWIs ... 6
2.2 Using IER and IMR Masks.. 7
2.3 Using HWI_enter/HWI_exit and the HWI Dispatcher... 8
2.4 Disabling and Enabling SWIs.. 10
2.5 Disabling and Enabling TSKs ... 11

3 Changing Thread Priority .. 11
3.1 Changing SWI Priority .. 12
3.2 Changing Task Priority ... 12

4 Mutual Exclusion.. 14
4.1 Mutual Exclusion Using Semaphores.. 14
4.2 Mutual Exclusion Using Locks .. 15
4.3 Avoiding Multi-Mutex Deadlocks... 16
4.4 Avoiding Priority Inversion .. 17

5 RTS Reentrancy Issues.. 18
6 CSL Reentrancy Issues.. 19
7 Conclusion.. 19
8 References.. 19

SPRAA25

2 Synchronizing DSP/BIOS Threads

 Figures
Figure 1. DSP/BIOS Thread Priorities .. 3
Figure 2. Illustration of Race Condition... 4
Figure 3. Priority Inversion ... 17
Figure 4. Raise Priority Before Mutex .. 18

Tables
Table 1. Thread Scheduling Status for Disable API Calls ... 5
Table 2. Summary of Disable/Enable APIs... 5
Table 3. Interrupt Masking Functions for Different ISAs... 7
Table 4. Synchronization APIs Summary... 14

1 Issues for Thread Synchronization

DSP/BIOS enables you to structure applications as a collection of threads, each of which carries
out a modularized function. Thread use OS services—based on semaphores, mutex, interrupt
protection, and changing thread priorities—to achieve synchronization.

In real time applications, multiple threads require access to common resources such as queues,
shared variables, and lists. Critical sections are used to access these common resources without
any conflicts. Techniques such as semaphores, locks, and disabling threads can protect critical
sections.

An application programmer must ensure that critical sections have the following attributes:

• Safety. At most one thread may be executing during the critical section. That is, there must
be mutual exclusion for access to shared resources.

• Liveness. If one or more threads run the section that performs mutual exclusion, eventually
at least one of them enters the critical section. That is, no deadlock occurs.

The different DSP/BIOS thread types and the synchronization mechanisms that can be
associated with each are discussed in detail in this application note. These mechanisms fall into
three general categories:

• Disabling Threads, page 5

• Changing Thread Priority, page 11

• Mutual Exclusion, page 14

Before discussing mechanisms in detail, let's first review some issues related to thread
synchronization—the priority levels provided by the DSP/BIOS thread types, and how problems
can occur in critical sections.

SPRAA25

Synchronizing DSP/BIOS Threads 3

1.1 Thread Priority and Preemption

DSP/BIOS supports several types of program threads with different priorities. Execution and
preemption characteristics of a thread depend upon its type. Figure 1 shows the different
DSP/BIOS thread types in order from highest to lowest priority.

Tasks (TSK)
16 priority levels (-1 to 15,

excluding 0)

Hardw are Interrupts (HW I);
includes Clock functions (CLK)

Softw are Interrupts(SW I);
includes Periodic functions (PRD)

15 priority levels (0 to 14)

Background Thread (IDL)

Highest Priority
Low est Latency

Low est Priority
Highest Latency

Figure 1. DSP/BIOS Thread Priorities

The thread types (from highest to lowest priority) are:

• Hardware interrupts (HWI), includes CLK functions
– have the highest priorities
– one HWI can interrupt another

• Software interrupts (SWI), includes PRD functions
– have lower priority than hardware interrupts
– 14 sub-levels of priority
– can be preempted by a higher priority SWI or HWI

• Tasks (TSK)
– have lower priority than software interrupts
– can be preempted by a higher priority task
– have 16 sub-levels of priority
– If priority is less than 0, the task is barred from execution until its priority is raised at a

later time by another thread. A priority value of 0 is reserved for the TSK_idle task
defined in the default configuration.Background thread (IDL)

– Has the lowest priority level and can be preempted by a TSK, SWI or HWI

SPRAA25

4 Synchronizing DSP/BIOS Threads

Thread priorities impose a synchronization mechanism that protects higher-priority threads. For
example, HWI threads are protected against SWIs and TSKs. Similarly, SWI threads are
protected against TSKs. In other words, a critical section in a HWI thread need not be protected
against SWI/TSK interventions.

1.2 Race Conditions and Critical Sections

Race conditions can occur in an application when multiple threads compete for the same
resource at the same time. The cause of race conditions typically is an unsynchronized access
to shared resources. These are annoyingly difficult to detect. Figure 2 illustrates a simple race
condition arising out of unsynchronized access to a shared variable “cnt”. The threads here may
be HWIs, SWIs or TSKs.

In the code in Figure 2, two threads have different priorities. Both increment the same count
variable (cnt). The low_pri_thread() has lower priority than high_pri_thread().

Context Sw itch
due to interrupt

Void low_pri_thread(Void)
{
 // begin critical section
 cnt = cnt + 1;
 // end critical section
}

MOV CNT, ACC ; cnt = 5
ADD 1, ACC; acc = 6

Incorrect Result!

Equivalent Assem bly Code

Void high_pri_thread(Void)
{
 // begin critical section
 cnt = cnt + 1;
 // end critical section
}

MOV CNT, ACC ; cnt = 5
ADD 1, ACC; acc = 6
MOV ACC, CNT; cnt = 6

MOV ACC, CNT; cnt = 6

Figure 2. Illustration of Race Condition

The example in Figure 2 generates an incorrect result. The initial value of the cnt variable is 5
and its value should be 7 after both threads increment it. However, because of thread pre-
emption the final cnt value is 6 instead of 7.

SPRAA25

Synchronizing DSP/BIOS Threads 5

To avoid such situations, access to shared resources needs to be performed atomically. Such
atomic access to shared resources constitutes a critical section. The three instructions that
increment cnt should be treated as a "critical section" in this example.

Figure 2 uses a simple “cnt” variable to illustrate the race condition. In real-time systems, shared
resources such as queues and shared data structures are used.

Context switches occur between different threads. To achieve criticality, various synchronization
primitives need to be used. When synchronizing threads, you should be aware of
interdependencies and should deploy OS synchronization services carefully so that they do not
lead to deadlocks, high interrupt latency, and other problems.

2 Disabling Threads
To protect a critical section in a multi-threaded application, you can disable all threads except
the thread currently executing before entering the critical section. This prevents the running
thread from being preempted by other threads while executing the critical section. After the
critical section is complete, you can re-enable all threads. This enabling and disabling of threads
can be accomplished using DSP/BIOS API calls.

Table 1 summarizes the API calls used for disabling various thread types. These APIs are
discussed in more detail in the sections that follow.

Table 1. Thread Scheduling Status for Disable API Calls
 Hardware

Interrupts (HWI)
Software Interrupts

(SWI)
Tasks (TSK)

HWI_disable Disabled Disabled Disabled

SWI_disable Enabled Disabled Disabled

TSK_disable Enabled Enabled Disabled

Table 2 shows the number of CPU cycles involved in executing each API call, its calling context
and additional information.

Table 2. Summary of Disable/Enable APIs
 C62x Cycles Calling Context Notes

HWI_disable/enable 12/12 (24)* HWI, SWI, TSK This block is best suitable for short
critical sections. Fast and fewer cycles.

SWI_disable/enable 24/64 (88)* SWI, TSK Nested calls are supported.

TSK_disable/enable 64/104 (168)* TSK Nested calls are supported.

* For more information on timing numbers, see “DSP/BIOS Timing Benchmarks for CCS 2.2” (SPRA 900)

SPRAA25

6 Synchronizing DSP/BIOS Threads

2.1 Disabling and Enabling HWIs

Recall from Section 1.1, Thread Priority and Preemption, that higher-priority threads can
preempt lower-priority threads. Disabling hardware interrupt (HWI) threads protects all thread
types against preemption by HWIs.

A thread can use DSP/BIOS API calls to disable all hardware interrupts before entering the
critical section. After completing the critical section, HWIs can be re-enabled. Hardware
interrupts can be disabled and re-enabled using the following APIs:

• HWI_disable. Disables interrupts globally. On the C6000 platform, HWI_disable clears the
GIE bit in the control status register (CSR). On the C5000 and C2800 platforms,
HWI_disable sets the INTM bit in the ST1 register. On both platforms, this prevents the CPU
from taking any maskable hardware interrupt.

• HWI_enable. Renables the GIE bit on the C6000 platform or clears the INTM bit in the ST1
register on the C5000 and C2800 platforms.

• HWI_restore. Restores the value to the state that existed before HWI_disable was called.

The following example uses HWI_disable and HWI_restore. Before disabling interrupts, the
current interrupt status information is captured in the key”, which is later used for restoration.

key = HWI_disable();
cnt = cnt+1;
HWI_restore(key);

Issues to Consider

The following issues need to be considered when using HWI_disable, HWI_enable, and
HWI_restore:

• All thread types (HWIs, SWIs, and TSKs) can call HWI_disable and
HWI_enable/HWI_restore.

• While HWIs are disabled, no DSP/BIOS calls that exercise the scheduler should be made.
This includes calls that may block and calls that post other threads. Such calls typically
require that HWI interrupts be enabled or that the timeout for blocking be 0.
The following example illustrates the problem that can occur if SWI_post or SEM_post is
called within a critical section where HWI interrupts are disabled.

key = HWI_disable();
cnt = cnt+1;
SWI_post(&SWI0);
HWI_restore(key);

SWI_post has a pre-condition that hardware interrupts should be enabled (that is, intm=0 or
GIE=1) if invoked outside the context of an ISR. There is a clear violation of this constraint
in line 3 of this example, since HWI_disable sets the intm or clears GIE.
Also, SWI_post or SEM_post calls in a critical section could cause another thread to run
with interrupts disabled. This is especially undesirable if that thread happens to be a TSK,
since interrupts can be disabled for a long time.

SPRAA25

Synchronizing DSP/BIOS Threads 7

• HWI_enable enables interrupts regardless of the previous context. For example:

HWI_disable();
cnt = cnt+1;
HWI_enable();

In this example, it is possible that interrupts were already disabled prior to the call to
HWI_disable. But, the call to HWI_enable enables interrupts without taking into
consideration the previous context. Hence, it is recommended that you use HWI_restore
instead of HWI_enable, since HWI_restore restores the intm/GIE value to the state that
existed before HWI_disable was called.

• Nesting of HWI_disable and HWI_enable calls is not supported. As explained previously,
HWI_enable enables interrupts irrespective of the previous context, and hence nesting of
HWI_disable/HWI_enable is not possible.

• Interrupt latency is directly affected when disabling interrupts. It is advisable to keep critical
sections as short as possible to avoid long delays for servicing other interrupts.

2.2 Using IER and IMR Masks

The interrupt enable register (IER) determines whether or not the CPU responds to interrupts.
By specifying the masks, other HWIs can be disabled while a critical section is being executed.
IER masks operate by affecting individual bits in the interrupt enable register, as opposed to
affecting all interrupts on a global basis by setting the intm or clearing the GIE.

Masks can be set up for individual interrupts. On a 'C54x target such as the 'C5402, the mask for
the timer interrupt (TINT) can be defined as:

#define TINTMASK 0x0008

After defining the IMR mask, the C54_disableIMR/C54_enableIMR APIs can be called to protect
a critical section. The following example illustrates the usage of these APIs.

oldmask = C54_disableIMR(mask);
cnt = cnt + 1;

The masking functions for different ISAs are as follows:

Table 3. Interrupt Masking Functions for Different ISAs
 TMS320C54x TMS320C55x TMS320C28x TMS320C62x

Disable
certain
interrupts

C54_disableIMR(mask) C55_disableIER0(mask)
C55_disableIER1(mask)

C28_disableIER(mask) C62_disableIER(mask)/
C64_disableIER(mask)

Enable
certain
interrupts

C54_enableIMR(oldmask) C55_enableIER0(oldmask)
C55_enableIER1(oldmask)

C28_enableIER(oldmask) C62_enableIER(oldmask)/
C64_enableIER(oldmask)

SPRAA25

8 Synchronizing DSP/BIOS Threads

Issues to Consider

The following issues need to be considered when calling Cxx_disableIER and Cxx_enableIER:

• All thread types (HWIs, SWIs, and TSKs) can call Cxx_disableIER and Cxx_enableIER.

• If you use these APIs, you need to be aware of interdependencies between threads. For
example, suppose T1 is a TSK that calls C54_disableIMR and C54_enableIMR. Suppose
that both T1 and T2 (another TSK thread) share the cnt variable. In T1, the interrupt that
invokes or wakes up T2 needs to be masked to synchronize access to cnt. This prevents a
context switch to T2 during the critical section, and makes access to the shared variable
atomic.

• While interrupts are disabled, DSP/BIOS calls that can cause a context switch to a thread
that shares the protected resource should not be made. Inside the Cxx_disableIER/
Cxx_enableIER block, calls to SWI_post, SEM_post, TSK_yield, or other APIs that cause
other threads to run can violate the critical section constraints. This is illustrated in the
following example:

oldmask = C54_disableIMR(mask);
cnt = cnt+1;
SWI_post(&SWI0);
C54_enableIMR(mask);

In this example, SWI_post can cause a context switch to SWI0. This can cause
unsynchronized access to the shared variable, if cnt happens to be shared with SWI0.
Another problem with calling a scheduling API with interrupts disabled is the thread that
runs as a result of the scheduling API is run with interrupts disabled. This is especially
undesirable if that thread is a TSK, since interrupts can be disabled for a long time.

• Cxx_disableIER is used to disable selected interrupts, allowing other interrupts to occur.
However, if another interrupt occurs during this region, it could cause a context switch to a
SWI or TSK. You can prevent this by using SWI_disable and SWI_enable around the entire
region. The context switch will eventually occur after the SWI_enable call.

• It is advisable to keep critical sections as small as possible to avoid long delays for servicing
other interrupts.

2.3 Using HWI_enter/HWI_exit and the HWI Dispatcher

Logical priorities among HWI threads can be achieved using the IER/IMR masks of the
HWI_enter/HWI_exit macros or the HWI dispatcher. A brief description of these is as follows:

• HWI_enter. An API (assembly macro) used to save the appropriate context for a DSP/BIOS
interrupt service routine (ISR).

• HWI_exit. An API (assembly macro) used to restore the context that existed before a
DSP/BIOS interrupt service routine (ISR) was invoked.

• HWI Dispatcher. Provides an easy way to write ISR in C without the application having to
save and restore context.

SPRAA25

Synchronizing DSP/BIOS Threads 9

As described in Section 2.2, "Using IER and IMR Masks", other HWIs can be disabled while a
section of code is being executed by specifying the IER/IMR masks.

The following code uses the HWI_enter and HWI_exit macros on a C54x target to achieve
logical priorities among HWI threads.

HWI_enter MASK,IMRDISABLEMASK
; isr code
HWI_exit MASK,IMRRESTOREMASK

Support ISR1 is the HWI thread that invokes HWI_enter and HWI_exit. ISR1 shares cnt with
ISR2. In ISR1, the IMRDISABLEMASK of HWI_enter masks ISR2. This prevents a context
switch to ISR2 within the critical section. Hence, access to the shared variable is atomic.

It is important to note that HWI_enter and HWI_exit must be used at the beginning and end of
the entire ISR code. They cannot be used to protect only the critical section of the ISR code. At
the end of the ISR, interrupts are re-enabled using the IMRRESTOREMASK of the HWI_exit
macro.

HWI objects can be configured to use the dispatcher in the configuration file (.cdb). Criticality
can be achieved by specifying the interrupt masks (IER/IMR) in the HWI object properties in the
configuration file. The HWI dispatcher, in effect, calls the function for that HWI object from within
an HWI_enter/HWI_exit macro pair, thus disabling interrupts specified in the masks before
calling the function and re-enabling them before exiting the function.

Issues to Consider

The following issues need to be considered when invoking the HWI_enter and HWI_exit macros
or using HWI dispatcher:

• Only HWI threads can invoke the HWI_enter/HWI_exit macros or use the HWI dispatcher.

• If you use these APIs, you need to be aware of interdependencies between threads. In
particular, be aware of all interrupts that could possibly violate the critical section contained
in the ISR and mask these interrupts using the IER/IMR masks of the HWI_enter/HWI_exit
macros or in the HWI dispatcher configuration.

• HWI_enter and HWI_exit cannot be used to protect only a portion of the code in an ISR.
The following example does not achieve criticality and may even lead to fatal errors, since
nesting of HWI_enter/HWI_exit code is not possible within a single ISR.

HWI_enter MASK,IMRDISABLEMASK
;rest of the isr code

HWI_enter MASK,IMRDISABLEMASK
; critical section code
HWI_exit MASK,IMRRESTOREMASK

;rest of the isr code
HWI_exit MASK,IMRRESTOREMASK

• The HWI_enter/HWI_exit macros and HWI dispatcher disable selected interrupts, allowing
other interrupts to occur. If another interrupt occurs during the protected region, it could

SPRAA25

10 Synchronizing DSP/BIOS Threads

cause a context switch to a SWI or TSK. You can prevent this by using SWI_disable and
SWI_enable around the entire region. The context switch will eventually occur after
SWI_enable call.

• Interrupt latency is directly affected when disabling interrupts. It is advisable to keep critical
sections as small as possible to avoid long delays for servicing other interrupts.

2.4 Disabling and Enabling SWIs

Section 2.1, "Disabling and Enabling HWIs" showed how to disable HWI threads to protect
critical sections. The principle of disabling threads applies to SWI threads also. Preemption by
SWI threads can be prevented using the SWI_disable and SWI_enable APIs. SWI_disable
disables all other SWI threads from running until SWI_enable is called. HWI threads can still run.

Use of the SWI_disable and SWI_enable calls to protect critical sections is similar to the
HWI_enable/HWI_disable calls. This is illustrated in the following example:

SWI_disable();
cnt = cnt+1;
SWI_enable();

Issues to Consider

The following issues need to be considered when calling SWI_disable and SWI_enable:

• SWI_disable or SWI_enable cannot be called within a HWI thread.

• SWI_disable/SWI_enable calls don’t protect a critical section from being preempted by
HWIs.

• SWI_disable and SWI_enable calls can be nested. SWI_disable must be followed by a
matching number of SWI_enable calls. Only the outermost SWI_enable call actually
enables software interrupts.

• The scheduling requested by calls such as SEM_post or TSK_yield within a SWI_disable/
SWI_enable block are performed only after SWI_enable.

• A SEM_pend call within a SWI_disable/SWI_enable block immediately returns with a
FALSE return value if the semaphore is not available, even if the timeout is non-zero or
SYS_FOREVER.

SPRAA25

Synchronizing DSP/BIOS Threads 11

2.5 Disabling and Enabling TSKs

Similar to HWI and SWI threads, critical section can be protected using TSK_disable and
TSK_enable calls. TSK_disable disables the DSP/BIOS task scheduler. The current task
continues to execute until TSK_enable is called.

Use of the TSK_disable and TSK_enable calls is similar to HWI/SWI enable/disable calls. This is
illustrated in the following example:

TSK_disable();
cnt = cnt+1;
TSK_enable();

Issues to Consider

The following issues need to be considered when calling TSK_disable and TSK_enable:

• TSK_disable/TSK_enable don’t protect a critical section execution from being preempted by
HWIs and SWIs.

• No kernel operations that can cause the current task to block can be made within a
TSK_disable/TSK_enable block. This includes SEM_pend (unless timeout is 0), TSK_sleep,
and TSK_yield.

• TSK_disable/TSK_enable cannot be called from a SWI or HWI.

• TSK_disable and TSK_enable calls can be nested. Task switching is not reenabled until
TSK_enable has been called as many times as TSK_disable.

• TSK_disable can prohibit ready tasks of higher priority from running since the task
scheduler is disabled within the TSK_disable/enable block. This latency can be prevented
using semaphores, which are discussed in Section 4.1, "Mutual Exclusion Using
Semaphores".

• Scheduling calls such as SEM_post and TSK_yield within the TSK_disable/TSK_enable
block are taken only after TSK_enable.

3 Changing Thread Priority
In the previous sections, disabling threads was discussed as a method of synchronization. In this
section, we discuss changing thread priorities to protect critical sections. This method is based
on the fact that the priorities of SWI and TSK threads can be changed at run-time to prevent
their preemption while executing a critical section.

You can make the currently executing thread the highest priority thread of its type in the
application before entering a critical section. After executing the critical section, you restore the
thread’s priority to its original level.

SPRAA25

12 Synchronizing DSP/BIOS Threads

3.1 Changing SWI Priority

SWI priorities can be modified using the SWI_raisepri and SWI_restorepri APIs:

• SWI_raisepri. Raises the priority of the currently running SWI to the priority passed as the
argument.

• SWI_restorepri. Restores the priority of the SWI to the priority prior to the SWI_raisepri call.

The following example uses SWI_raisepri and SWI_restorepri:

/* Raise priority of current SWI to that of highest priority SWI in the application */
mask = SWI_getpri(&highest_pri_swi);

key = SWI_raisepri(mask);
cnt = cnt + 1;
SWI_restorepri(key);

In this example, SWI_raisepri sets the current SWI to the highest priority used in the application
before entering the critical section. Before raising the priority of the SWI, the current priority
mask is captured in the “key”. After executing the critical section, the SWI’s priority is restored to
the original level using the “key”.

Issues to Consider

The following issues need to be considered when calling SWI_raisepri and SWI_restorepri.

• The SWI_raisepri/SWI_restorepri calls can be made only from the context of a SWI. They
cannot be called from HWI or TSK threads.

• SWI priorities may be changed during the maintenance lifetime of an application. Hence,
this method for achieving mutual exclusion is dangerous, as later changes in thread
priorities can break the mutual exclusion.

• Use of SWI_raisepri requires that you know the highest priority SWI in the system.
Otherwise, you can raise a SWI executing a critical section to the highest priority possible
(priority 14).

• This method cannot protect a critical section from HWIs. HWI threads have higher priority
than SWI threads, and hence can break the mutual exclusion.

• SWI_raisepri cannot lower the priority of a SWI.

3.2 Changing Task Priority

In the previous section, changing the SWI thread priority to protect shared resources was seen.
The principle of changing thread priority applies to TSK threads also. Criticality is achieved here
by using TSK_setpri/TSK_create APIs.

• TSK_create. Creates a new task object and makes it ready for execution. The task’s
execution priority attribute can be specified.

• TSK_setpri. Sets the execution priority of a task and returns that task's old priority value.

SPRAA25

Synchronizing DSP/BIOS Threads 13

A task can be created dynamically as in the following example.

TSK_Attrs attrs;
TSK_Handle task;

attrs = TSK_ATTRS; /* Default task attributes */
attrs.priority = PRIORITY;

task = TSK_create(func, &attrs);

The following example uses TSK_setpri to protect a critical section.

Uns oldpri;

oldpri = TSK_setpri(TSK_self(), newpri);
cnt = cnt + 1; /* Critical Section */
TSK_setpri(TSK_self(), oldpri);

As done previously with SWI threads, TSK_setpri makes the current task the highest priority task
in the application before entering the critical section. Before raising the priority of the current
task, the priority mask is captured in “oldpri”. After executing the critical section, the current
task’s priority is restored to its original level using “oldpri”.

Issues to Consider
The following issues need to be taken considered when using TSK_setpri:

• This method cannot protect critical sections from SWIs and HWIs. Hence, from the
perspective of thread synchronization, the TSK_setpri call can only be used to synchronize
access to a resource shared by task threads.

• Inside the critical section, calls to SWI_post or SEM_post or TSK_yield can violate the
critical section constraints. This is shown in the following example:

oldpri = TSK_setpri(TSK_self(), newpri);
cnt = cnt + 1; /* Critical Section */
SWI_post(&SWI0)
TSK_setpri(TSK_self(), oldpri);

In this example, the call to SWI_post causes a context switch to SWI0. This can cause
unsynchronized access to the shared variable cnt, if cnt is shared with SWI0. Hence, critical
sections cannot contain DSP/BIOS API calls that can cause a context switch to a thread
with which the variable is shared.

• The new priority should not be zero (0). This priority level is reserved for the TSK_idle task.

• As with SWI threads, TSK priorities may be changed during the maintenance lifetime of an
application. Hence, this method for achieving mutual exclusion is dangerous, as later
changes in thread priorities can break the mutual exclusion.

• Use of TSK_setpri requires that you know the highest priority TSK in the system. Otherwise,
you can raise a TSK executing a critical section to the highest priority possible (priority 15).

SPRAA25

14 Synchronizing DSP/BIOS Threads

4 Mutual Exclusion
DSP/BIOS provides structures like semaphores and locks to support synchronization in a multi-
threaded environment. The following sections demonstrate the use of semaphores and locks for
achieving mutual exclusion (mutex).

Table 4 shows the number of CPU cycles involved in executing the API calls discussed in this
section, their allowed calling contexts, and some additional information.

Table 4. Synchronization APIs Summary
 C62x Cycles Calling Context Notes

SEM_pend/post 228/264 (492)* TSK, SWI, HWI Deadlocks and priority inversion could occur in
the program.

LCK_pend/post 252/296 (548)* TSK Fixes the recursive deadlock problem. Priority
inversion could still occur.

* For more information on timing numbers, see “DSP/BIOS Timing Benchmarks for CCS 2.2” (SPRA 900)

4.1 Mutual Exclusion Using Semaphores

SEM objects are counting semaphores that can be used for task synchronization and mutual
exclusion. Counting semaphores keep an internal count of the number of corresponding
resources available. When the count is greater than 0, tasks do not block when acquiring a
semaphore.

SEM objects can be created statically using the Configuration Tool or dynamically using the
SEM_create API call. To create a mutex semaphore, the SEM must be created with an initial
count of one. The following APIs are used to achieve mutual exclusion:

• SEM_pend. If the semaphore count is greater than zero, SEM_pend decrements the count
and returns TRUE. Otherwise, SEM_pend suspends the execution of the current task until
SEM_post is called or the timeout expires.

• SEM_post. Readies the first task waiting for the semaphore. If no task is waiting, SEM_post
simply increments the semaphore count and returns.

The following example uses SEM_pend and SEM_post to achieve mutual exclusion.

Void task0(void)
{
 SEM_pend(mutex, SYS_FOREVER);
 'Shared resource/critical section'
 SEM_post(mutex);
}

Void task1(void)
{
 SEM_pend(mutex, SYS_FOREVER);
 'Shared resource/critical section'
 SEM_post(mutex);
}

In this example, the mutex semaphores were created with an initial count of 1. Each task calls
SEM_pend before entering the critical section. If the mutex count is 1, SEM_pend changes the
count from 1 to 0 to acquire a mutex. If the mutex count is 0, SEM_pend blocks execution to wait
for the mutex. After executing the critical section, the tasks call SEM_post, which changes the
count from 0 to 1 to release the mutex.

SPRAA25

Synchronizing DSP/BIOS Threads 15

Issues to Consider

The following issues need to be considered when calling SEM_pend and SEM_post.

• This method cannot protect critical sections from SWIs and HWIs.

• SEM_pend and SEM_post can be called from HWI and SWI threads only if the timeout is 0.

• Semaphores can lead to a recursive semaphore deadlock, which is a situation where two or
more threads are directly or indirectly waiting for the same shared resource and none of
them can continue executing without getting access to the critical resource. This is shown in
the following example.

Void task()
{
 SEM_pend(mutex, SYS_FOREVER);
 `access shared resource`
 func(); /* Call to func */
 SEM_post(mutex);
}

Void func()
{
 SEM_pend(mutex, SYS_FOREVER); /*Will block forever. Deadlock. */
 `access shared resource`
 SEM_post(mutex);
}

In this example, the second call to SEM_pend blocks the task forever. This is a typical
example of functions shared by multiple code paths that cause recursive calls to SEM_pend
leading to deadlock. This form of deadlock is relatively easy to detect when debugging, but
the fix can complicate the code.

4.2 Mutual Exclusion Using Locks

Locks (LCK) can be used to achieve mutual exclusion in the same way as SEMs. LCK objects
can be created statically using the Configuration Tool or dynamically using the LCK_create API
call. The following APIs are used to achieve mutual exclusion:

• LCK_pend. Acquires ownership of a lock, which grants the current task exclusive access to
the corresponding resource. If the lock is already owned by another task, LCK_pend
suspends execution of the current task until the resource becomes available.

• LCK_post. Relinquishes ownership of the lock, and resumes execution of the first task (if
any) awaiting availability of the corresponding resource.

If the current task calls LCK_pend more than once with the same lock, ownership remains with
the current task until LCK_post is called an equal number of times. This feature of LCK can be
used to overcome the recursive semaphore deadlock scenario displayed in the previous section.
This is illustrated in the following example.

SPRAA25

16 Synchronizing DSP/BIOS Threads

Void task()
{
 LCK_pend(mutex, SYS_FOREVER);
 `access shared resource`
 func(); /* Call to func */
 LCK_post(mutex);
}

Void func()
{
 /*LCK allows owner to acquire the same lock multiple times. No deadlock. */
 LCK_pend(mutex, SYS_FOREVER);
 `access shared resource`
 LCK_post(mutex);
}

In this example, the second call to LCK_pend allows the task to acquire the resource, since the
same LCK is already owned by that same task.

Issues to Consider

The following issues need to be considered when calling LCK_pend and LCK_post.

• This method cannot protect critical sections from SWIs and HWIs.

• LCK_pend and LCK_post cannot be called from HWI and SWI threads.

4.3 Avoiding Multi-Mutex Deadlocks

A multi-mutex deadlock can occur between multiple threads in a system with more than one
mutex where threads wait on shared resources. A multi-mutex deadlock can occur with both
LCK and SEM objects.

The following example shows this scenario with LCK API calls.

Void task1()
{
 LCK_pend(lockA, SYS_FOREVER);
 'access shared resource A'
 f1();
 LCK_post(lockA);
}

Void f1()
{
 LCK_pend(lockB, SYS_FOREVER);
 /* Deadlock */
 'access shared resource B'
 LCK_post(lockB);
}

Void task2()
{
 LCK_pend(lockB, SYS_FOREVER);
 'access shared resource B'
 g2();
 LCK_post(lockB);
}

Void g2()
{
 LCK_pend(lockA, SYS_FOREVER);
 /* Deadlock */
 'access shared resource A'
 LCK_post(lockA);
}

SPRAA25

Synchronizing DSP/BIOS Threads 17

Both threads block on shared resources held by each other, and a deadlock ensues. The Kernel
Object View (KOV) can be used to detect this kind of deadlock in Code Composer Studio.

It is recommended that mutexes be acquired in a well-understood manner to avoid multi-mutex
deadlocks. Also the number of mutexes in the application should be minimized. Simple
applications should try to work with a single mutex.

4.4 Avoiding Priority Inversion

A priority inversion occurs when a higher priority task must wait for the completion of a lower
priority task over an indefinite period. This scenario is illustrated in Figure 3.

pprriioorriittyy__ llooww

pprriioorriittyy__hh iigghh

pprriioorriittyy__mm eeddiiuumm

pprriioorriittyy__ llooww

pprriioorriittyy__hh iigghh

TT iimm ee

PPrriioorr iittyy

LL ooww eerr

HH iigghheerr

ppeenndd((mmuutteexx))
bblloocckkss ppoosstt ((mmuutteexx))

ppoosstt ((mm uutteexx))

IInn tteerrrruupptt

ppeenndd((mm uutteexx))

Figure 3. Priority Inversion

In Figure 3, priority_low, priority_medium and priority_high are tasks with differing priorities.

The priority_low task acquires a resource by pending on the mutex semaphore. When
priority_high preempts priority_low and contends for the resource by pending on the same mutex
semaphore, priority_high becomes blocked.

If priority_high were blocked no longer than the time it takes priority_low to finish using the
shared resource, there would be no issue. However, in this case the priority_low task is
preempted by the priority_medium thread. This prevents the priority_low thread from executing
and relinquishing the shared resource. This causes the priority_high task to block for a long time.
Such a scenario can drastically affect the real time behavior of a system.

SPRAA25

18 Synchronizing DSP/BIOS Threads

The solution for such a scenario in a DSP/BIOS application is to temporarily raise the priority of
the priority_low task to the highest priority that uses the same mutex. This enables the
priority_low task to finish the critical section and relinquish the mutex without being preempted
by medium priority tasks. This is illustrated in Figure 4.

pprriioo rriittyy__ llooww

PPrriioorriittyy

LLooww eerr

HH iigghheerr

pprriioorrii ttyy__mm eedd iiuumm
ppoosstt((mm uutteexx))

ppeenndd((mm uutteexx))

ppeenndd((mmuutteexx))

RRaaiissee PP rriioorriittyy

post(mutex),
Lower Priority

pprriioo rriittyy__hh iigghh

pprriioorriittyy__ llooww

TT iimm ee

IInntteerrrruupptt
rreeaadd iieess BB

Figure 4. Raise Priority Before Mutex

In Figure 4, the priority of the priority_low task is raised to that of the priority_high task before
priority_low starts executing the critical section. This is done using the TSK_setpri API call. After
priority_low (now executing with high priority) completes the critical section and relinquishes the
mutex, its priority is lowered to its previous state. This enables the priority_low task to complete
the critical section without being preempted by the priority_medium task.

5 RTS Reentrancy Issues
Most of the Run Time Support (RTS) library functions are reentrant and thread safe when used
with DSP/BIOS. Functions that are re-entrant can be invoked multiple times by different threads
without leading to race conditions. RTS library functions have a mechanism built in that allows
for thread safety, and DSP/BIOS utilizes this mechanism.

When not using DSP/BIOS, by default this mechanism is disabled and certain RTS functions are
not reentrant. malloc() is the most common example. Also stdio functions (fopen, fread, etc.) and
printf are also not reentrant. Basically, any function that needs to communicate with Code
Composer Studio is not reentrant (when used without DSP/BIOS). Also, functions that hold
state, such as strtok, are also not reentrant.

SPRAA25

Synchronizing DSP/BIOS Threads 19

_lock() and _unlock() are supplied by the run-time support library. These locking functions are
initialized to support reentrancy by DSP/BIOS. Specifically, _lock() and _unlock() are initialized
to point to LCK_pend and LCK_post, which use a mutex LCK_Obj. It is important to note that
lock() and unlock() cannot be implemented with a semaphore because there is the possibility of
nested calls. (See Section 4.2, "Mutual Exclusion Using Locks" for information on how LCK
solves the recursive semaphore deadlock scenario.) printf is one such RTS function where we
encounter nested lock and unlock calls.

Using the LCK_pend/LCK_post mechanism to achieve reentrancy imposes the constraint that
printf calls cannot be made from an ISR. This is because incorrect scheduling can occur since
LCK_pend calls should not be made from HWI/SWI context.

6 CSL Reentrancy Issues
In the Chip Support Library (CSL), all the _open() and _close() functions are thread-safe and
reentrant. This is because all of them access the allocation data-structures within
IRQ_globalDisable/IRQ_globalRestore blocks. The reentrancy of these functions can be used to
ensure reentrancy for the entire module. Before using any CSL API, the application code should
_open the peripheral and verify that it received a valid handle. Two threads cannot receive a
handle to the same peripheral (because the _open function is thread safe). This in turn ensures
that two threads would not call the same CSL API for the same device. And hence two threads
would not attempt to manipulate the same peripheral register.

There could be issues if you decide to share a handle between two threads. But then you can
easily ensure that both threads make the CSL calls wisely. There are more issues—not all CSL
modules are handle-based—which mean that they do not have _open/_close functions. In such
cases you need to solve reentrancy issues for calls to these modules.

7 Conclusion
Before adopting a particular synchronization method for any DSP application, it is important that
you make the application design as simple as possible.

Study the relative priorities of different threads in the system. Over-prioritization of threads
should be avoided. This allows you to avoid needless context switches and priority inversion.
Also you should try to minimize the number of SEM and LCK mutexes used. Over-use of SEM
and LCK for mutual exclusion can lead to issues like multi-mutex deadlocks.

The choice of a particular method requires careful analysis of the application’s real time
requirements. The use of APIs in each method has associated overheads of which you should
be aware. There is no one right method for any application. Choose the method that makes
sense for the requirements of your system. If need be, an application can use multiple methods
for thread synchronization.

8 References
1. TMS320 DSP/BIOS User’s Guide (SPRU423)
2. TMS320C28x DSP/BIOS Application Programming Interface Reference Guide (SPRU625)
3. TMS320C5000 DSP/BIOS Application Programming Interface Reference Guide (SPRU404)
4. TMS320C6000 DSP/BIOS Application Programming Interface Reference Guide (SPRU403)
5. DSP/BIOS Timing Benchmarks for Code Composer Studio 2.2 (SPRA900)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third–party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright  2004, Texas Instruments Incorporated

	Synchronizing DSP/BIOS Threads
	Issues for Thread Synchronization
	Thread Priority and Preemption
	Race Conditions and Critical Sections

	Disabling Threads
	Disabling and Enabling HWIs
	Using IER and IMR Masks
	Using HWI_enter/HWI_exit and the HWI Dispatcher
	Disabling and Enabling SWIs
	Disabling and Enabling TSKs

	Changing Thread Priority
	Changing SWI Priority
	Changing Task Priority

	Mutual Exclusion
	Mutual Exclusion Using Semaphores
	Mutual Exclusion Using Locks
	Avoiding Multi-Mutex Deadlocks
	Avoiding Priority Inversion

	RTS Reentrancy Issues
	CSL Reentrancy Issues
	Conclusion
	References

