--- | --- | --- | --- | --- | --- | ---
8 to 9 a.m. | Registration | | | | | |
9 to 10 a.m. | 1 | Low-Power RF Basics and Modulation Techniques | Illuminating Facts About High Power LEDs, Both Visible and Invisible by OSRAM | Circuit Isolation Techniques and Implementation | FRAM: The Future of Embedded Memory for Microcontrollers | Power Consumption of Embedded Processors and the Advantages of SmartReflex™
10 to 10:30 a.m. | Break | | | | | |
10:30 to 11:30 a.m. | 2 | Improving the Range of Your LPW Design | Designing Power Drivers for Solid State Lighting (LEDs) | Op-Amp Stability and Fixes | Understanding 32-Bit MCU Peripherals Advanced Capability in Embedded Systems Using the Piccolo™ MCU ControlSTICK | Linux Development Tutorial on TI Processors
11:30 a.m. to 1 p.m. | Lunch/Keynote/Exhibits | | | | | |
1 to 2 p.m. | 3 | Adapting TI LPW Reference Designs | Introduction to Digital Power | Sensors and the Analog Interface | Introduction to Targeted Code Generation for TMS320C2000™ MCUs by The MathWorks | HD Digital Video Recorder Using TI DM6467 by Ingenient
2 to 2:15 p.m. | Break | | | | | |
2:15 to 3:15 p.m. | 4 | Eliminating Wires Made Simple with SimpliciTI™ | Choose Your Weapon – Selecting an Optimal MOSFET | The New THS4521 Fully Differential Amp Driving ADCs | Digital Motion Control System Design – From the Ground Up by D3 Engineering | OMAP™ 3 Graphics Overview
3:15 to 3:30 p.m. | Break | | | | | |
3:30 to 4:30 p.m. | 5 | An Introduction to Antennas and the Theories Behind Them | Li-Ion Battery Characteristics, Trends and Its’ Fuel Gauge and Cell Balance in Multi-Cell Battery Packs | Approaches to Multi-Channel, High-Resolution Data Acquisition | Advanced Digital Lighting Control with C2000™ MCUs | Introduction to Windows CE 6.0 on the OMAP35xx by BSQUARE

C2000, OMAP, Piccolo, SimpliciTI, SmartReflex and TMS320C2000 are trademarks of Texas Instruments.

All other trademarks are the property of their respective owners.

© 2009 Texas Instruments Inc.