SLCS141H May   2003  – January 2020 LM2903-Q1 , LM2903B-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Family Comparison Table
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings, LM2903-Q1 and LM2903E-Q1
    2. 6.2  Absolute Maximum Ratings, LM2903B-Q1
    3. 6.3  ESD Ratings, LM2903-Q1 and LM2903E-Q1
    4. 6.4  ESD Ratings, LM2903B-Q1
    5. 6.5  Recommended Operating Conditions, LM2903B-Q1
    6. 6.6  Recommended Operating Conditions, LM2903-Q1
    7. 6.7  Recommended Operating Conditions, LM2903E-Q1
    8. 6.8  Thermal Information, LM2903-Q1 and LM2903E-Q1
    9. 6.9  Thermal Information, LM2903B-Q1
    10. 6.10 Electrical Characteristics LM2903B-Q1
    11. 6.11 Switching Characteristics LM2903B-Q1
    12. 6.12 Electrical Characteristics, LM2903-Q1 and LM2903E-Q1
    13. 6.13 Switching Characteristics, LM2903-Q1 and LM2903E-Q1
    14. 6.14 Typical Characteristics, LM2903-Q1 and LM2903E-Q1 Only
    15. 6.15 Typical Characteristics, LM2903B-Q1 Only
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
    4. 7.4 Device Functional Modes
      1. 7.4.1 Voltage Comparison
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Input Voltage Range
        2. 8.2.2.2 Minimum Overdrive Voltage
        3. 8.2.2.3 Output and Drive Current
        4. 8.2.2.4 Response Time
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Related Links
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • D|8
  • DGK|8
  • PW|8
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Input Voltage Range

When choosing the input voltage range, the input common mode voltage range (VICR) must be taken in to account. If temperature operation is above or below 25°C the VICR can range from 0 V to VCC– 2.0 V. This limits the input voltage range to as high as VCC– 2.0 V and as low as 0 V. Operation outside of this range can yield incorrect comparisons.

Below is a list of input voltage situation and their outcomes:

  1. When both IN- and IN+ are both within the common mode range:
    1. If IN- is higher than IN+ and the offset voltage, the output is low and the output transistor is sinking current
    2. If IN- is lower than IN+ and the offset voltage, the output is high impedance and the output transistor is not conducting
  2. When IN- is higher than common mode and IN+ is within common mode, the output is low and the output transistor is sinking current
  3. When IN+ is higher than common mode and IN- is within common mode, the output is high impedance and the output transistor is not conducting
  4. When IN- and IN+ are both higher than common mode, the output is low and the output transistor is sinking current