SNVSAP6 September   2017 LM5150-Q1


  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Enable (EN Pin)
      2. 7.3.2  High Voltage VCC Regulator (PVCC, AVCC Pin)
      3. 7.3.3  Power-On Voltage Selection (VSET Pin)
      4. 7.3.4  Switching Frequency (RT Pin)
      5. 7.3.5  Clock Synchronization (SYNC Pin in SS Configuration)
      6. 7.3.6  Current Sense, Slope Compensation, and PWM (CS Pin)
      7. 7.3.7  Current Limit (CS Pin)
      8. 7.3.8  Feedback and Error Amplifier (COMP Pin)
      9. 7.3.9  Automatic Wake-Up and Standby
      10. 7.3.10 Boost Status Indicator (STATUS Pin)
      11. 7.3.11 Maximum Duty Cycle Limit, Minimum Input Supply Voltage
      12. 7.3.12 MOSFET Driver (LO Pin)
      13. 7.3.13 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Mode
      2. 7.4.2 Standby Mode
      3. 7.4.3 Wake-Up Mode
        1. Start-Stop Configuration (SS Configuration)
        2. Emergency-Call Configuration (EC Configuration)
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Bypass Switch / Disconnection Switch Control
      2. 8.1.2 Loop Response
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1.  Custom Design With WEBENCH® Tools
        2.  RSET Resistor
        3.  RT Resistor
        4.  Inductor Selection (LM)
        5.  Current Sense (RS)
        6.  Slope Compensation Ramp (RSL)
        7.  Output Capacitor (COUT)
        8.  Loop Compensation Component Selection and Maximum ESR
        9.  PVCC Capacitor, AVCC Capacitor, and AVCC Resistor
        10. VOUT Filter (CVOUT, RVOUT)
        11. Input Capacitor
        12. MOSFET Selection
        13. Diode Selection
        14. Efficiency Estimation
      3. 8.2.3 Application Curves
    3. 8.3 System Examples
      1. 8.3.1 Lower Standby Threshold in SS Configuration
      2. 8.3.2 Dithering Using Dither Enabled Device
      3. 8.3.3 Clock Synchronization With LM5140
      4. 8.3.4 Dynamic Frequency Change
      5. 8.3.5 Dithering Using an External Clock
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Development Support
        1. Custom Design With WEBENCH® Tools
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • RUM|16
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Device and Documentation Support

Device Support

Development Support

Custom Design With WEBENCH® Tools

Click here to create a custom design using the LM5150-Q1 device with the WEBENCH® Power Designer.

  1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.
  2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.
  3. Compare the generated design with other possible solutions from Texas Instruments.

The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability.

In most cases, these actions are available:

  • Run electrical simulations to see important waveforms and circuit performance
  • Run thermal simulations to understand board thermal performance
  • Export customized schematic and layout into popular CAD formats
  • Print PDF reports for the design, and share the design with colleagues

Get more information about WEBENCH tools at

Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

    TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.
    Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.


E2E is a trademark of Texas Instruments.

WEBENCH is a registered trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

Electrostatic Discharge Caution


This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.


SLYZ022TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.