SBOS710D October   2014  – February 2018 LMH5401

PRODUCTION DATA.  

  1. Features
  2. Applications
    1.     Distortion versus Frequency (G = 12 dB, SE-DE, RL = 200 Ω, VPP = 2 V)
  3. Description
    1.     LMH5401 Driving an ADC12J4000
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics: VS = 5 V
    6. 6.6 Electrical Characteristics: VS = 3.3 V
    7. 6.7 Typical Characteristics: 5 V
    8. 6.8 Typical Characteristics: 3.3 V
    9. 6.9 Typical Characteristics: 3.3-V to 5-V Supply Range
  7. Parameter Measurement Information
    1. 7.1  Output Reference Points
    2. 7.2  ATE Testing and DC Measurements
    3. 7.3  Frequency Response
    4. 7.4  S-Parameters
    5. 7.5  Frequency Response with Capacitive Load
    6. 7.6  Distortion
    7. 7.7  Noise Figure
    8. 7.8  Pulse Response, Slew Rate, and Overdrive Recovery
    9. 7.9  Power Down
    10. 7.10 VCM Frequency Response
    11. 7.11 Test Schematics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Fully-Differential Amplifier
        1. 8.3.1.1 Power Down and Ground Pins
      2. 8.3.2 Operations for Single-Ended to Differential Signals
        1. 8.3.2.1 AC-Coupled Signal Path Considerations for Single-Ended Input to Differential Output Conversion
        2. 8.3.2.2 DC-Coupled Input Signal Path Considerations for SE-DE Conversions
        3. 8.3.2.3 Resistor Design Equations for Single-to-Differential Applications
        4. 8.3.2.4 Input Impedance Calculations
      3. 8.3.3 Differential-to-Differential Signals
        1. 8.3.3.1 AC-Coupled, Differential-Input to Differential-Output Design Issues
        2. 8.3.3.2 DC-Coupled, Differential-Input to Differential-Output Design Issues
      4. 8.3.4 Output Common-Mode Voltage
      5. 8.3.5 LMH5401 Comparison
    4. 8.4 Device Functional Modes
      1. 8.4.1 Operation With a Split Supply
      2. 8.4.2 Operation With a Single Supply
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Stability
      2. 9.1.2 Input and Output Headroom Considerations
      3. 9.1.3 Noise Analysis
      4. 9.1.4 Noise Figure
      5. 9.1.5 Thermal Considerations
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Driving Matched Loads
        2. 9.2.2.2 Driving Unmatched Loads For Lower Loss
        3. 9.2.2.3 Driving Capacitive Loads
        4. 9.2.2.4 Driving ADCs
          1. 9.2.2.4.1 SNR Considerations
          2. 9.2.2.4.2 SFDR Considerations
          3. 9.2.2.4.3 ADC Input Common-Mode Voltage Considerations : AC-Coupled Input
          4. 9.2.2.4.4 ADC Input Common-Mode Voltage Considerations : DC-Coupled Input
        5. 9.2.2.5 GSPS ADC Driver
        6. 9.2.2.6 Common-Mode Voltage Correction
        7. 9.2.2.7 Active Balun
      3. 9.2.3 Application Curves
    3. 9.3 Do's and Don'ts
      1. 9.3.1 Do:
      2. 9.3.2 Don't:
  10. 10Power Supply Recommendations
    1. 10.1 Supply Voltage
    2. 10.2 Single-Supply
    3. 10.3 Split-Supply
    4. 10.4 Supply Decoupling
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Device Nomenclature
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Receiving Notification of Documentation Updates
    4. 12.4 Community Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Typical Characteristics: 3.3 V

at TA = 25°C, split supplies, VCM = 0 V, RL = 200-Ω differential (RO = 40 Ω each), G = 12 dB, single-ended input and differential output, and input and output pins referenced to midsupply, (unless otherwise noted). Measured using an EVM as discussed in the section (see Figure 56 to Figure 59).
LMH5401 TC_C029_Freq_Gain_3p3V_0p2Vpp.png
VS = ±1.65 V, VOUT_AMP = 0.2 VPP, RL = 200 Ω
Figure 29. Small-Signal Frequency Response vs Gain
LMH5401 TC_C031_Freq_RLd_3p3V_0p2vpp.png
VS = ±1.65 V, VOUT_AMP = 0.2 VPP, G = 12 dB
Figure 31. Small-Signal Frequency Response vs RL
LMH5401 TC_C033_Freq_RLoad_3p3V_0p2Vpp.png
VS = ±1.65 V, VOUT_AMP = 0.2 VPP, G = 12 dB
Figure 33. Small-Signal Differential Input Frequency Response vs RL
LMH5401 TC_C035_Freq_CLoad_3p3V_0p2Vpp.png
VS = ±1.65 V, VOUT_AMP = 2 VPP, capacitance at DUT output pins,
Figure 35. Small-Signal Frequency Response with Capacitive Load
LMH5401 TC_C037_Sparam_SEin_3V.png
VS = ±1.65 V, VOUT_AMP = 200 mVPP
Figure 37. Single-Ended Input, S-Parameters
LMH5401 TC_C039_Freq_CM_0p2Vpp_3p3V.png
VS = ±1.65 V, VOUT_AMP = 200 mVPP
Figure 39. Common-Mode Frequency Response
LMH5401 TC_C045_IMD23_Frequency_3p3V.png
VS = ±1.65 V, VOUT_AMP = 0.5 VPP per tone, RL = 200 Ω, G = 12 dB
Figure 45. Intermodulation Distortion vs Frequency
LMH5401 TC_C047_Pulse_3p3V_CM.png
VS = ±1.65 V, VOUT_AMP, VCM = (VO+ + VO–) / 2
Figure 47. Pulse Response Common-Mode
LMH5401 TC_C028_Overdrive_5v_bos695.png
VS = ±2.5 V
Figure 49. Overdrive Recovery