SBOS688A April   2015  – October 2015 OPA2625 , OPA625

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics High-Drive Mode
    6. 6.6  Electrical Characteristics Low-Power Mode
    7. 6.7  Electrical Characteristics High-Drive Mode
    8. 6.8  Electrical Characteristics Low-Power Mode
    9. 6.9  Switching Characteristics
    10. 6.10 Typical Characteristics
  7. Parameter Measurement Information
    1. 7.1 DC Parameter Measurements
    2. 7.2 Transient Parameter Measurements
    3. 7.3 AC Parameter Measurements
    4. 7.4 Noise Parameter Measurements
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 SAR ADC Driver
      2. 8.3.2 Electrical Overstress
    4. 8.4 Device Functional Modes
      1. 8.4.1 High-Drive Mode
      2. 8.4.2 Low-Power Mode
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Single-Supply, 16-Bit, 1-MSPS SAR ADC Driver
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Single-Supply, 16-Bit, 1-MSPS, Multiplexed, SAR ADC Driver
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
        3. 9.2.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Development Support
        1. 12.1.1.1 TINA-TI (Free Software Download)
        2. 12.1.1.2 TI Precision Designs
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Related Links
    4. 12.4 Community Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Supply voltage, VS (V+) – (V–) 6 V
Input voltage(2) +IN (V–) – 0.3 (V+) + 0.3 V
–IN (V–) – 0.3 (V+) + 0.3
MODE (V–) – 0.3 (V+) + 0.3
Output voltage OUT (V–) (V+) V
Sink current +IN 10 mA
–IN 10
MODE 10
OUT 150
Source current +IN 10 mA
–IN 10
MODE 10
OUT(2) 150
Temperature Operating junction –40 150 °C
Storage, Tstg –65 150
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) For input voltages beyond the power-supply rails, voltage or current must be limited.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±3000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VS Supply input voltage, (V+) – (V–) 2.7 5.5 V
VI Input voltage +IN (V–) (V+) – 1.15 V
–IN (V–) (V+) – 1.15
MODE (V–) (V+)
VO Output voltage (V–) (V+) V
IO Output current –120 120 mA
TA Operating free-air temperature –40 125 °C
TJ Operating junction temperature –40 125 °C

6.4 Thermal Information

THERMAL METRIC(1) OPA625 OPA2625 UNIT
DBV (SOT) DGS (VSSOP)
6 PINS 10 PINS
RθJA Junction-to-ambient thermal resistance 184.9 171.7 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 123.6 68.4 °C/W
RθJB Junction-to-board thermal resistance 30.7 91.9 °C/W
ψJT Junction-to-top characterization parameter 22.1 9.4 °C/W
ψJB Junction-to-board characterization parameter 30.2 90.5 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance N/A N/A °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics High-Drive Mode

at TA = 25°C, V+ = 5 V, V– = 0 V, MODE pin connected to V– pin, VCOM = VO = 2.5 V, gain (G) = 1, RF = 1 kΩ, CF = 2.7 pF, CLOAD = 20 pF, and RLOAD = 2 kΩ connected to 2.5 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
AC PERFORMANCE
Unity gain frequency VO = 10 mVPP 80 MHz
φm Phase margin 50 Degrees
GBW Gain-bandwidth product G = 100, VO = 10 mVPP 120 MHz
SR Slew rate VO = 1-V step, G = 1 45 V/µs
VO = 4-V step, G = 2 115
tsettle Settling time VO = 4-V step, G = 2 Settling time to 0.1%
(10-bit accuracy)
80 ns
to 0.005%
(14-bit accuracy)
110
to 0.00153%
(16-bit accuracy)
280
Overshoot VO = 4-V step, G = 2 2.5%
Undershoot VO = 4-V step, G = 2 3%
HD2 Second-order harmonic Distortion VO = 2 VPP, G = 2 f = 10 kHz 144 dBc
f = 100 kHz 122
f = 1 MHz 80
HD3 Third-order harmonic Distortion VO = 2 VPP, G = 2 f = 10 kHz 155 dBc
f = 100 kHz 140
f = 1 MHz 80
Second-order intermodulation distortion VO = 2 VPP, f = 1 MHz, 200-kHz tone spacing 90 dBc
Third-order intermodulation distortion VO = 2 VPP, f = 1 MHz, 200-kHz tone spacing 100 dBc
VN Input noise voltage f = 0.1 Hz to 10 Hz, peak-to-peak 0.8 µVPP
f = 0.1 Hz to 10 Hz, rms 120 nVRMS
Vn Input voltage noise density f = 1 kHz 3.2 nV/√Hz
f = 10 kHz 2.5
In Input current noise density f = 1 kHz 4.1 pA/√Hz
f = 10 kHz 2.8
tOR Overload recovery time G = 5 50 ns
Zo Open-loop output impedance f = 1 MHz 1 Ω
Crosstalk DC 150 dB
f = 1 MHz 127
DC PERFORMANCE
VOS Input offset voltage 15 ±100 µV
TA = –40°C to +125°C ±300
dVOS/dT Input offset voltage drift TA = –40°C to +125°C 0.5 ±3 µV/°C
OPA2625 only, TA = –40°C to +125°C 0.6 ±4
PSRR Power-supply rejection ratio 2.7 V ≤ (V+) ≤ 5 V 100 dB
TA = –40°C to +125°C 90 120
IB Input bias current 2 4 µA
TA = –40°C to +125°C 5.7
OPA2625 only, TA = –40°C to +125°C 6.5
dIB/dT Input bias current drift TA = –40°C to +125°C 15 nA/°C
IOS Input offset current 20 120 nA
TA = –40°C to +125°C 150
OPA2625 only, TA = –40°C to +125°C 200
dIOS/dT Input offset current drift TA = –40°C to +125°C 0.6 nA/°C
OPEN LOOP GAIN
AOL Open-loop gain (V–) + 0.2 V < VO < (V+) – 0.2 V, RLOAD = 600 Ω 110 dB
(V–) + 0.15 V < VO < (V+) – 0.15 V, RLOAD = 10 kΩ 114
TA = –40°C to +125°C (V–) + 0.2 V < VO < (V+) – 0.2 V,
RLOAD = 600 Ω
106 128
(V–) + 0.15 V < VO < (V+) – 0.15 V,
RLOAD = 10 kΩ
110 132
INPUT VOLTAGE
VCM Common-mode voltage range TA = –40°C to +125°C (V–) (V+) – 1.15 V
CMRR Common-mode rejection ratio (V–) < VCOM < (V+) – 1.15 V 100 117 dB
TA = –40°C to +125°C 90 115
INPUT IMPEDANCE
ZID Differential input impedance 27 || 1.2 KΩ || pF
ZIC Common-mode input impedance 47 || 1.5 MΩ || pF
OUTPUT
Output voltage swing to the rail RLOAD = 600 Ω 60 80 mV
TA = –40°C to +125°C 100
RLOAD = 10 kΩ 20 35
TA = –40°C to +125°C 40
Isc Short-circuit current 150 mA
CLOAD Capacitive load drive See Typical Characteristics
MODE
VIL High-drive (HD) mode threshold TA = –40°C to +125°C (V–) (V–) + 0.5 V
VIH Low-power (LP) mode threshold TA = –40°C to +125°C (V–) + 1.2 (V+) V
IIL Low-level input current TA = –40°C to +125°C, VMODE ≤ (V–) + 0.5 V 0.01 1 µA
IIH High-level input current TA = –40°C to +125°C, VMODE ≥ (V–) + 1.2 V 20 30 µA
OPA2625 only, TA = –40°C to +125°C, VMODE ≥ (V–) + 1.2 V 1
POWER SUPPLY
IQ Quiescent current per amplifier IO = 0 mA,
MODE connected to ground
2 2.2 mA
TA = –40°C to +125°C 3.1

6.6 Electrical Characteristics Low-Power Mode

at TA = 25°C, V+ = 5 V, V– = 0 V, VMODE = 5 V, VCOM = VO = 2.5 V, gain (G) = 1, RF = 1 kΩ, CF = 2.7 pF, CLOAD = 20 pF, and RLOAD = 2 kΩ connected to 2.5 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
AC PERFORMANCE
GBW Gain-bandwidth product G = 100, VO = 10 mVPP 1 MHz
φm Phase margin 72 Degrees
SR Slew rate VO = 1-V step 4.3 V/µs
VO = 4-V step, G = 2 4.1
Zo Open-loop output impedance f = 1 MHz 12 Ω
DC PERFORMANCE
VOS Input offset voltage 0.6 3 mV
TA = –40°C to +125°C 0.7 3.7
PSRR Power-supply rejection ratio 2.7 V ≤ (V+) ≤ 5 V 74 dB
TA = –40°C to +125°C 70 100
IB Input bias current 150 nA
TA = –40°C to +125°C 140 200
OPA2625 only, TA = –40°C to +125°C 250
IOS Input offset current 20 nA
TA = –40°C to +125°C 25
OPEN LOOP GAIN
AOL Open-loop gain TA = –40°C to +125°C (V–) + 0.2 V < VO < (V+) – 0.2 V,
RLOAD = 600 Ω
70 100 dB
(V–) + 0.15 V < VO < (V+) – 0.15 V,
RLOAD = 10 kΩ
90 100
INPUT VOLTAGE
VCM Common-mode voltage range TA = –40°C to +125°C (V–) (V+) – 1.15 V
CMRR Common-mode rejection ratio (V–) < VCOM < (V+) – 1.15 V 66 114 dB
TA = –40°C to +125°C 60 114
OUTPUT
Output voltage swing to the rail TA = –40°C to +125°C RLOAD = 600 Ω 110 mV
RLOAD = 10 kΩ 40
Isc Short-circuit current 100 mA
POWER SUPPLY
IQ Quiescent current per amplifier IO = 0 mA,
MODE connected to V+
270 320 µA
TA = –40°C to +125°C 450

6.7 Electrical Characteristics High-Drive Mode

at TA = +25°C, V+ = 2.7 V, V– = 0 V, VMODE = 0 V, VCOM = VO = 1.35 V, gain (G) = 1, RF = 1 kΩ, CF = 2.7 pF, CLOAD = 20 pF, and RLOAD = 1 kΩ connected to 1.35 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
AC PERFORMANCE
Unity gain frequency VO = 10 mVPP 76 MHz
φm Phase margin 45 Degrees
GBW Gain-bandwidth product G = 100, VO = 10 mVPP 120 MHz
SR Slew rate VO = 1-V step, G = 2 45 V/µs
tsettle Settling time VO = 1-V step, G = 2 to 0.1% 80 ns
to 0.01% 170
to 0.000763% (17-bit accuracy) 250
Overshoot VO = 1-V step, G = 2 6%
Undershoot VO = 1-V step, G = 2 5%
HD2 Second order harmonic Distortion (V+) = 3.3 V, (V–) = 0 V, VCOM = 1.1 V,
VO = 2 VPP
f = 10 kHz 136 dBc
f = 100 kHz 118
f = 1 MHz 80
HD3 Third order harmonic Distortion (V+) = 3.3 V, (V–) = 0 V, VCOM = 1.1 V,
VO = 2 VPP
f = 10 kHz 143 dBc
OPA2625 only, f = 10 kHz 143
f = 100 kHz 130
OPA2625 only, f = 100 kHz 125
f = 1 MHz 85
OPA2625 only, f = 1 MHz 74
Second order inter-modulation distortion (V+) = 3.3 V, (V–) = 0 V, VCOM = 1.1 V, VO = 2 VPP,
f = 1 MHz, 200-kHz tone spacing
95 dBc
Third order inter-modulation distortion (V+) = 3.3 V, (V–) = 0 V, VCOM = 1.1V, VO = 1 VPP,
f = 1 MHz, 200-kHz tone spacing
104 dBc
VN Input noise voltage f = 0.1 Hz to 10 Hz peak to peak 0.8 µVPP
f = 0.1 Hz to 10 Hz rms 120 nVRMS
Vn Input voltage noise density f = 10 kHz 2.5 nV/√Hz
In Input current noise density f = 10 kHz 2.8 pA/√Hz
tOR Overload recovery time G = 5 35 ns
Zo Open-loop output impedance f = 1 MHz 1.3 Ω
Crosstalk DC 150 dB
f = 1 MHz 127
DC PERFORMANCE
VOS Input offset voltage 15 ±100 µV
TA = –40°C to +125°C ±300
dVOS/dT Input offset voltage drift TA = –40°C to +125°C 0.5 ±3.1 µV/°C
OPA2625 only, TA = –40°C to +125°C 0.6 ±4
IB Input bias current 2 4 µA
TA = –40°C to +125°C 5.7
OPA2625 only, TA = –40°C to +125° 6.5
dIB/dT Input bias current drift TA = –40°C to +125°C 15 nA/°C
IOS Input offset current 20 120 nA
TA = –40°C to +125°C 150
OPA2625 only, TA = –40°C to +125° 200
dIOS/dT Input offset current drift TA = –40°C to +125°C 80 pA/°C
OPEN-LOOP GAIN
AOL Open-loop gain (V–) + 0.2 V < VO < (V+) – 0.2 V,
RLOAD = 600 Ω
110 dB
(V–) + 0.15 V < VO < (V+) – 0.15 V,
RLOAD = 10 kΩ
114
TA = –40°C to +125°C (V–) + 0.2 V < VO < (V+) – 0.2 V,
RLOAD = 600 Ω
106 128
(V–) + 0.15 V < VO < (V+) – 0.15 V,
RLOAD = 10 kΩ
110 132
INPUT VOLTAGE
VCM Common-mode voltage range TA = –40°C to +125°C (V–) (V+) – 1.15 V
CMRR Common-mode rejection ratio (V–) < VCOM < (V+) – 1.15 V 100 117 dB
TA = –40°C to +125°C 90 115
INPUT IMPEDANCE
ZID Differential input impedance 27 || 0.8 KΩ || pF
ZIC Common-mode input impedance 47 || 1.2 MΩ || pF
OUTPUT
Output voltage swing to the rail R LOAD = 600 Ω 60 80 mV
TA = –40°C to +125°C 100
R LOAD = 10 kΩ 20 35
TA = –40°C to +125°C 40
ISC Short-circuit current 80 mA
CLOAD Capacitive load drive See Typical Characteristics
MODE
VIL High-drive (HD) mode threshold TA = –40°C to +125°C (V–) (V–) + 0.5 V
VIH Low-power (LP) mode threshold TA = –40°C to +125°C (V–) + 1.2 (V+) V
POWER SUPPLY
IQ Quiescent current per amplifier IO = 0 mA
MODE connected to ground
2 2.1 mA
TA = –40°C to +125°C 2.8

6.8 Electrical Characteristics Low-Power Mode

at TA = +25°C, V+ = 2.7 V, V– = 0 V, VMODE = 2.7 V, VCOM = VO = 1.35V, gain (G) = 1, RF = 1 kΩ, CF = 2.7 pF, CLOAD = 20 pF, and RLOAD = 1 kΩ connected to 1.35 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
AC PERFORMANCE
GBW Gain-bandwidth product G = 100, VIN = 10 mVPP 0.8 MHz
φm Phase margin 72 Degrees
SR Slew rate VO = 1 V-step, G = 2 3.7 V/µs
Zo Open-loop output impedance f = 1 MHz 13 Ω
DC PERFORMANCE
VOS Input offset voltage 0.6 3 mV
TA = –40°C to +125°C 0.7 ±3.6
IB Input bias current 150 nA
TA = –40°C to +125°C 140 220
OPA2625 only, TA = –40°C to +125° 250
IOS Input offset current 20 nA
TA = –40°C to +125°C 25
OPEN LOOP GAIN
AOL Open-loop gain TA = –40°C to +125°C (V–) + 0.2 V < VO < (V+) – 0.2 V,
RLOAD = 600 Ω
74 100 dB
(V–) + 0.15 V < VO < (V+) – 0.15 V,
RLOAD = 10 kΩ
84 100
INPUT VOLTAGE
VCM Common-mode voltage range TA = –40°C to +125°C (V–) (V+) – 1.15 V
CMRR Common-mode rejection ratio (V–) < VCOM < (V+) – 1.15 V 66 114 dB
TA = –40°C to +125°C 60 114
OUTPUT
Output voltage swing to rail TA = –40°C to +125°C RLOAD = 600 Ω 110 mV
RLOAD = 10 kΩ 40
Isc Short-circuit current 50 mA
POWER SUPPLY
IQ Quiescent current per amplifier IO = 0 mA,
MODE connected to V+
250 270 µA
TA = –40°C to +125°C 400

6.9 Switching Characteristics

at TA = 25°C, V+ = 5 V, V– = 0 V, MODE pin connected to V– pin, gain (G) = 1 , VCOM = VO = 2.5 V, CLOAD = 20 pF, and RLOAD = 1 kΩ connected to 2.5 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tLP-HD Delay time, MODE pin falling
(low-power mode to high-drive mode)
Settling time to within 50 µV of final value,
MODE pin = high to low (LP to HD), VO = 3.8 V
180 ns
tLP-HD is defined as the time taken for the quiescent current to increase from 110% of its value in LP mode to 90% of its value in HD mode. 170 ns
tHD-LP Delay time, MODE pin rising
(high-drive mode to low-power mode)
tHD-LP is defined as the time taken for the quiescent current to decrease from 90% of its value in HD mode to 110% of its value in LP mode. 300 ns
OPA625 OPA2625 Switch_Char_Tim_Dia_sbos688.gif Figure 1. Switching Characteristics Timing Diagram

6.10 Typical Characteristics

At TA = 25°C, V+ = 5 V, V– = 0 V, MODE = V–, VCOM = VO = 2.5 V, gain (G) = 2, RF = 1 kΩ, CF= 2.7 pF, CLOAD= 20 pF, and RLOAD = 2 kΩ connected to 2.5 V (unless otherwise noted)
OPA625 OPA2625 C004_SBOS688.png
VO = 10 mVPP
Figure 2. Small-Signal Frequency Response for Various Gains
OPA625 OPA2625 C006_SBOS688.png
VO = 10 mVPP, G = 1
Figure 4. Small-Signal Frequency Response for Various Power Supply Voltages
OPA625 OPA2625 C008_SBOS688.png
VO = 2 VPP, G = 1
Figure 6. Large-Signal Frequency Response for Various Capacitive Loads
OPA625 OPA2625 C024_SBOS688.png
VO = 10 mVPP
Figure 8. High-Drive Mode Open-Loop Gain and Phase vs Frequency
OPA625 OPA2625 C037_SBOS688.png
VO = 10 mVPP , VMODE = 5 V
Figure 10. Low-Power Mode Open-Loop Gain and Phase vs Frequency
OPA625 OPA2625 D025_SBOS688.gif
Figure 12. Common-Mode Rejection Ratio vs Frequency
OPA625 OPA2625 C023_SBOS688.png
G = 1, CLOAD = 1.2 nF
Figure 14. Series Resistance for Capacitive Load Stability
OPA625 OPA2625 C028_SBOS688.png
G = –1, VO = 10 mVPP
Figure 16. Overshoot vs Capacitive Load, G = –1
OPA625 OPA2625 C011_SBOS688.png
G = 1, VO = 2 VPP, RLOAD = 600 Ω
Figure 18. Distortion vs Frequency for Various Power Supplies
OPA625 OPA2625 C013_SBOS688.png
G = 1, RLOAD = 600 Ω
Figure 20. Total Harmonic Distortion vs Output Voltage for Various Frequencies
OPA625 OPA2625 C015_SBOS688.png
Figure 22. Voltage Noise Density vs Frequency
OPA625 OPA2625 D200_sbos688.gif
Figure 24. Crosstalk vs Frequency
OPA625 OPA2625 C018_SBOS688.png
Figure 26. Slew Rate vs Output Step Size
OPA625 OPA2625 C020_SBOS688.png
G = 1, VO = 4-V step
Figure 28. Large-Signal Pulse Response
OPA625 OPA2625 C029_SBOS688.png
G = 1, VO = 10-mV step
Figure 30. Small-Signal Pulse Response
OPA625 OPA2625 C034_SBOS688.png
VO = 3.6-V step at t = 0 s
Figure 32. 16-Bit Negative Settling Time
OPA625 OPA2625 C031_SBOS688.png
VS = ±2.75 V, G = 1
Figure 34. No Phase Reversal
OPA625 OPA2625 C022_SBOS688.png
VS = ±2.75 V, G = 5
Figure 36. Negative Overload Recovery
OPA625 OPA2625 C014_OT.png
Distribution taken from 80 amplifiers, TA = 125°C
Figure 38. Input Offset Voltage Distribution
OPA625 OPA2625 C016_OT.png
Distribution taken from 80 amplifiers, TA = –40°C
Figure 40. Input Offset Voltage Distribution
OPA625 OPA2625 C006_OT.png
Distribution taken from 83 amplifiers, TA = –40°C to +125°C
Figure 42. Input Offset Voltage Drift Distribution
OPA625 OPA2625 C020_OT.png
Figure 44. Input Bias Current vs Temperature
OPA625 OPA2625 C021_OT.png
Figure 46. Input Offset Current vs Temperature
OPA625 OPA2625 C010_OT.png
2.7 V ≤ VS ≤ 5.5 V
Figure 48. Power-Supply Rejection Ratio vs Temperature
OPA625 OPA2625 C013_OT.png
RLOAD = 600 Ω
Figure 50. Open-Loop Gain vs Temperature with 600-Ω Load
OPA625 OPA2625 C009_OT.png
6 typical units shown, VS = ±1.35 V to ±2.75 V
Figure 52. Input Offset Voltage vs Power-Supply Voltage
OPA625 OPA2625 C004_OT.png
Figure 54. Output Voltage vs Output Current
OPA625 OPA2625 C001_OT.png
High-drive mode
Figure 56. High-Drive Mode Quiescent Current vs Power-Supply Voltage
OPA625 OPA2625 C018_OT.png
MODE pin connected to V+
Figure 58. Low-Power Mode Quiescent Current vs Temperature
OPA625 OPA2625 C036_SBOS688.png
VS = ±2.75 V
Figure 60. Quiescent Current When MODE transitions From High To Low
OPA625 OPA2625 C032_SBOS688.png
VO = 3.8 VDC
Figure 62. Output Voltage When MODE Transitions From High To Low
OPA625 OPA2625 C005_SBOS688.png
VO = 2 VPP
Figure 3. Large-Signal Frequency Response for Various Gains
OPA625 OPA2625 C007_SBOS688.png
VO = 10 mVPP , G = 1
Figure 5. Small-Signal Frequency Response for Various Capacitive Loads
OPA625 OPA2625 C009_SBOS688.png
VO = 10 mVPP , G = 1
Figure 7. Small-Signal Frequency Response for Various Resistive Loads
OPA625 OPA2625 D003_SBOS688.gif
Figure 9. High-Drive Mode Open-Loop Output Impedance vs Frequency
OPA625 OPA2625 D002_SBOS688.gif
Figure 11. Low-Power Mode Open-Loop Output Impedance vs Frequency
OPA625 OPA2625 C026_SBOS688.png
Figure 13. Power-Supply Rejection Ratio vs Frequency
OPA625 OPA2625 C027_SBOS688.png
G = 1, VO = 10 mVPP
Figure 15. Overshoot vs Capacitive Load, G = 1
OPA625 OPA2625 C010_SBOS688.png
VS = 5.5 V, VO = 2 VPP, RLOAD = 600 Ω
Figure 17. Distortion vs Frequency for Various Gains
OPA625 OPA2625 C012_SBOS688.png
G = 2, VO = 2 VPP, RLOAD = 600 Ω
Figure 19. Distortion vs Frequency for Various Power Supplies
OPA625 OPA2625 C014_SBOS688.png
G = 1, VO = 2 VPP , RLOAD = 600 Ω
Figure 21. Total Harmonic Distortion vs Frequency for Various Loads
OPA625 OPA2625 C016_SBOS688.png
Figure 23. Current Noise Density vs Frequency
OPA625 OPA2625 C017_SBOS688.png
Figure 25. 0.1-Hz to 10-Hz Voltage Noise
OPA625 OPA2625 D001_SBOS688.gif
Figure 27. Maximum Output Voltage vs Frequency
OPA625 OPA2625 C019_SBOS688.png
G = –1, VO = 4-V step
Figure 29. Large-Signal Pulse Response
OPA625 OPA2625 C030_SBOS688.png
G = –1, VO = 10-mV step
Figure 31. Small-Signal Pulse Response
OPA625 OPA2625 C033_SBOS688.png
VO = 3.6-V step at t = 0 s
Figure 33. 16-Bit Positive Settling Time
OPA625 OPA2625 C021_SBOS688.png
VS = ±2.75 V, G = 5
Figure 35. Positive Overload Recovery
OPA625 OPA2625 C007_OT.png
Distribution taken from 3139 amplifiers
Figure 37. Input Offset Voltage Distribution
OPA625 OPA2625 C015_OT.png
Distribution taken from 80 amplifiers, TA = 85°C
Figure 39. Input Offset Voltage Distribution
OPA625 OPA2625 C005_OT.png
7 typical units shown
Figure 41. Input Offset Voltage vs Temperature
OPA625 OPA2625 C022_OT.png
Distribution taken from 3139 amplifiers
Figure 43. Input Bias Current Distribution
OPA625 OPA2625 C023_OT.png
Distribution taken from 3139 amplifiers
Figure 45. Input Offset Current Distribution
OPA625 OPA2625 C011_OT.png
Figure 47. Common-Mode Rejection Ratio vs Temperature
OPA625 OPA2625 C012_OT.png
RLOAD = 10 kΩ
Figure 49. Open-Loop Gain vs Temperature with 10-kΩ Load
OPA625 OPA2625 C019_OT.png
High-drive mode, VS = ±2.5 V
Figure 51. Input Bias Current vs Input Common-Mode Voltage
OPA625 OPA2625 C008_OT.png
6 typical units shown, VS = ±2.5 V
Figure 53. Input Offset Voltage vs Common-Mode Voltage
OPA625 OPA2625 C003OT.png
Figure 55. Short-Circuit Current vs Temperature
OPA625 OPA2625 C017_OT.png
Figure 57. High-Drive Mode Quiescent Current vs Temperature
OPA625 OPA2625 C002_OT.png
Low-drive mode, MODE pin connected to V+
Figure 59. Low-Power Mode Quiescent Current vs Power-Supply Voltage
OPA625 OPA2625 C035_SBOS688.png
VS = ±2.75 V
Figure 61. Quiescent Current When MODE Transitions From Low To High
OPA625 OPA2625 D006_SBOS688.gif
OPA625 powered on in high-drive mode at t = 0 s, PCB dimensions: 4 in2, 2 layer, FR4
Figure 63. Warm-Up Time