SLDS216 December   2017 PGA302

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Overvoltage and Reverse Voltage Protection
    6. 7.6  Linear Regulators
    7. 7.7  Internal Reference
    8. 7.8  Internal Oscillator
    9. 7.9  Bridge Sensor Supply
    10. 7.10 Temperature Sensor Supply
    11. 7.11 Bridge Offset Cancel
    12. 7.12 P Gain and T Gain Input Amplifiers (Chopper Stabilized)
    13. 7.13 Analog-to-Digital Converter
    14. 7.14 Internal Temperature Sensor
    15. 7.15 Bridge Current Measurement
    16. 7.16 One Wire Interface
    17. 7.17 DAC Output
    18. 7.18 DAC Gain for DAC Output
    19. 7.19 Non-Volatile Memory
    20. 7.20 Diagnostics - PGA30x
    21. 7.21 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Overvoltage and Reverse Voltage Protection
      2. 8.3.2  Linear Regulators
      3. 8.3.3  Internal Reference
      4. 8.3.4  Internal Oscillator
      5. 8.3.5  VBRGP and VBRGN Supply for Resistive Bridge
      6. 8.3.6  ITEMP Supply for Temperature Sensor
      7. 8.3.7  P Gain
      8. 8.3.8  T Gain
      9. 8.3.9  Bridge Offset Cancel
      10. 8.3.10 Analog-to-Digital Converter
        1. 8.3.10.1 Sigma Delta Modulator for ADC
        2. 8.3.10.2 Decimation Filter for ADC
        3. 8.3.10.3 Internal Temperature Sensor ADC Conversion
        4. 8.3.10.4 ADC Scan Mode
          1. 8.3.10.4.1 P-T Multiplexer Timing in Auto Scan Mode
      11. 8.3.11 Internal Temperature Sensor
      12. 8.3.12 Bridge Current Measurement
      13. 8.3.13 Digital Interface
      14. 8.3.14 OWI
        1. 8.3.14.1 Overview of OWI Interface
        2. 8.3.14.2 Activating and Deactivating the OWI Interface
          1. 8.3.14.2.1 Activating OWI Communication
          2. 8.3.14.2.2 Deactivating OWI Communication
        3. 8.3.14.3 OWI Protocol
          1. 8.3.14.3.1 OWI Frame Structure
            1. 8.3.14.3.1.1 Standard field structure:
            2. 8.3.14.3.1.2 Frame Structure
            3. 8.3.14.3.1.3 Sync Field
            4. 8.3.14.3.1.4 Command Field
            5. 8.3.14.3.1.5 Data Field(s)
          2. 8.3.14.3.2 OWI Commands
            1. 8.3.14.3.2.1 OWI Write Command
            2. 8.3.14.3.2.2 OWI Read Initialization Command
            3. 8.3.14.3.2.3 OWI Read Response Command
            4. 8.3.14.3.2.4 OWI Burst Write Command (EEPROM Cache Access)
            5. 8.3.14.3.2.5 OWI Burst Read Command (EEPROM Cache Access)
          3. 8.3.14.3.3 OWI Operations
            1. 8.3.14.3.3.1 Write Operation
            2. 8.3.14.3.3.2 Read Operation
            3. 8.3.14.3.3.3 EEPROM Burst Write
            4. 8.3.14.3.3.4 EEPROM Burst Read
        4. 8.3.14.4 OWI Communication Error Status
      15. 8.3.15 I2C Interface
        1. 8.3.15.1 Overview of I2C Interface
        2. 8.3.15.2 I2C Interface Protocol
        3. 8.3.15.3 Clocking Details of I2C Interface
      16. 8.3.16 DAC Output
      17. 8.3.17 DAC Gain for DAC Output
        1. 8.3.17.1 Connecting DAC Output to DAC GAIN Input
      18. 8.3.18 Memory
        1. 8.3.18.1 EEPROM Memory
          1. 8.3.18.1.1 EEPROM Cache
          2. 8.3.18.1.2 EEPROM Programming Procedure
          3. 8.3.18.1.3 EEPROM Programming Current
          4. 8.3.18.1.4 CRC
      19. 8.3.19 Diagnostics
        1. 8.3.19.1 Power Supply Diagnostics
        2. 8.3.19.2 Sensor Connectivity/Gain Input Faults
        3. 8.3.19.3 Gain Output Diagnostics
        4. 8.3.19.4 PGA302 Harness Open Wire Diagnostics
        5. 8.3.19.5 EEPROM CRC and TRIM Error
      20. 8.3.20 Digital Compensation and Filter
        1. 8.3.20.1 Digital Gain and Offset
        2. 8.3.20.2 TC and NL Correction
        3. 8.3.20.3 Clamping
        4. 8.3.20.4 Filter
      21. 8.3.21 Revision ID
    4. 8.4 Device Functional Modes
    5. 8.5 Register Maps
      1. 8.5.1 Programmer's Model
        1. 8.5.1.1 Memory Map
        2. 8.5.1.2 Control and Status Registers
          1. 8.5.1.2.1  MICRO_INTERFACE_CONTROL (DI Page Address = 0x0) (DI Page Offset = 0x0C)
          2. 8.5.1.2.2  PSMON1 (M0 Address= 0x40000558) (DI Page Address = 0x2) (DI Page Offset = 0x58)
          3. 8.5.1.2.3  AFEDIAG (M0 Address= 0x4000055A) (DI Page Address = 0x2) (DI Page Offset = 0x5A)
          4. 8.5.1.2.4  P_GAIN_SELECT (DI Page Address = 0x2) (DI Page Offset = 0x47)
          5. 8.5.1.2.5  T_GAIN_SELECT (DI Page Address = 0x2) (DI Page Offset = 0x48)
          6. 8.5.1.2.6  TEMP_CTRL (DI Page Address = 0x2) (DI Page Offset = 0x4C)
          7. 8.5.1.2.7  OFFSET_CANCEL (DI Page Address = 0x2) (DI Page Offset = 0x4E)
          8. 8.5.1.2.8  PADC_DATA1 (DI Page Address = 0x0) (DI Page Offset = 0x10)
          9. 8.5.1.2.9  PADC_DATA2 (DI Page Address = 0x0) (DI Page Offset = 0x11)
          10. 8.5.1.2.10 TADC_DATA1 (DI Page Address = 0x0) (DI Page Offset = 0x14)
          11. 8.5.1.2.11 TADC_DATA2 (DI Page Address = 0x0) (DI Page Offset = 0x15)
          12. 8.5.1.2.12 DAC_REG0_1 (DI Page Address = 0x2) (DI Page Offset = 0x30)
          13. 8.5.1.2.13 DAC_REG0_2 (DI Page Address = 0x2) (DI Page Offset = 0x31)
          14. 8.5.1.2.14 OP_STAGE_CTRL (DI Page Address = 0x2) (DI Page Offset = 0x3B)
          15. 8.5.1.2.15 EEPROM_ARRAY (DI Page Address = 0x5) (DI Page Offset = 0x00 - 0x7F)
          16. 8.5.1.2.16 EEPROM_CACHE_BYTE0 (DI Page Address = 0x5) (DI Page Offset = 0x80)
          17. 8.5.1.2.17 EEPROM_CACHE_BYTE1 (DI Page Address = 0x5) (DI Page Offset = 0x81)
          18. 8.5.1.2.18 EEPROM_PAGE_ADDRESS (DI Page Address = 0x5) (DI Page Offset = 0x82)
          19. 8.5.1.2.19 EEPROM_CTRL (DI Page Address = 0x5) (DI Page Offset = 0x83)
          20. 8.5.1.2.20 EEPROM_CRC (DI Page Address = 0x5) (DI Page Offset = 0x84)
          21. 8.5.1.2.21 EEPROM_STATUS (DI Page Address = 0x5) (DI Page Offset = 0x85)
          22. 8.5.1.2.22 EEPROM_CRC_STATUS (DI Page Address = 0x5) (DI Page Offset = 0x86)
          23. 8.5.1.2.23 EEPROM_CRC_VALUE (DI Page Address = 0x5) (DI Page Offset = 0x87)
          24. 8.5.1.2.24 H0 (EEPROM Address= 0x40000000)
          25. 8.5.1.2.25 H1 (EEPROM Address= 0x40000002)
          26. 8.5.1.2.26 H2 (EEPROM Address= 0x40000004)
          27. 8.5.1.2.27 H3 (EEPROM Address= 0x40000006)
          28. 8.5.1.2.28 G0 (EEPROM Address= 0x40000008)
          29. 8.5.1.2.29 G1 (EEPROM Address= 0x4000000A)
          30. 8.5.1.2.30 G2 (EEPROM Address= 0x4000000C)
          31. 8.5.1.2.31 G3 (EEPROM Address= 0x4000000E)
          32. 8.5.1.2.32 N0 (EEPROM Address= 0x40000010)
          33. 8.5.1.2.33 N1 (EEPROM Address= 0x40000012)
          34. 8.5.1.2.34 N2 (EEPROM Address= 0x40000014)
          35. 8.5.1.2.35 N3 (EEPROM Address= 0x40000016)
          36. 8.5.1.2.36 M0 (EEPROM Address= 0x40000018)
          37. 8.5.1.2.37 M1 (EEPROM Address= 0x4000001A)
          38. 8.5.1.2.38 M2 (EEPROM Address= 0x4000001C)
          39. 8.5.1.2.39 M3 (EEPROM Address= 0x4000001E)
          40. 8.5.1.2.40 PADC_GAIN (EEPROM Address= 0x40000020)
          41. 8.5.1.2.41 TADC_GAIN (EEPROM Address= 0x40000021)
          42. 8.5.1.2.42 PADC_OFFSET (EEPROM Address= 0x40000022)
          43. 8.5.1.2.43 TADC_OFFSET (EEPROM Address= 0x40000024)
          44. 8.5.1.2.44 TEMP_SW_CTRL (EEPROM Address= 0x40000028)
          45. 8.5.1.2.45 DAC_FAULT_MSB (EEPROM Address= 0x4000002A)
          46. 8.5.1.2.46 LPF_A0_MSB (EEPROM Address= 0x4000002B)
          47. 8.5.1.2.47 LPF_A1 (EEPROM Address= 0x4000002C)
          48. 8.5.1.2.48 LPF_A2 (EEPROM Address= 0x4000002E)
          49. 8.5.1.2.49 .LPF_B1 (EEPROM Address= 0x40000030)
          50. 8.5.1.2.50 NORMAL_LOW (EEPROM Address= 0x40000032)
          51. 8.5.1.2.51 NORMAL_HIGH (EEPROM Address= 0x40000034)
          52. 8.5.1.2.52 LOW_CLAMP (EEPROM Address= 0x40000036)
          53. 8.5.1.2.53 HIGH_CLAMP (EEPROM Address= 0x40000038)
          54. 8.5.1.2.54 DIAG_BIT_EN (EEPROM Address= 0x4000003A)
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 0-5V Voltage Output
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Application Data
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Receiving Notification of Documentation Updates
    2. 12.2 Community Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Features

  • Analog Features
    • Dual Channel Analog Front-End
    • On-Chip Temperature Sensor
    • Programmable Gain up to 200 V/V
    • 16-Bit Sigma-Delta Analog-to-Digital Converter
  • Digital Features
    • 3rd-Order Linearity Compensation Algorithm
    • EEPROM Memory for Device Configuration, Calibration Data, and User Data
    • I2C Interface
    • One-Wire Interface Through Power Line
  • General Features
    • AFE Sensor Input, Power Supply, and Output Buffer Diagnostics
    • Memory Built-In Self-Test (MBIST)
    • Watchdog
    • Power Management Control

Applications

  • Powertrain Pressure Sensors
  • Powertrain Exhaust Sensors
  • HVAC Sensors
  • Seat Occupancy Sensors
  • Brake Systems
  • Battery Management Systems (BMS)

Description

The PGA302 is a low-drift, low-noise, programmable signal-conditioner device designed for a variety of resistive bridge-sensing applications like pressure-, temperature-, and level-sensing applications. The PGA302 can also support flow metering applications, weight scale and force-sensing applications that use strain gauge load cells, and other general resistive bridge signal-conditioning applications.

The PGA302 provides a bridge excitation voltage of 2.5 V and a current output source with programmable current output up to 1 mA. At the input, the device contains two identical analog front-end (AFE) channels followed by a 16-bit Sigma-Delta ADC. Each AFE channel has a dedicated programmable gain amplifier with gain up to 200 V/V.

In addition, one of the channels integrates a sensor offset compensation function while the other channel integrates an internal temperature sensor.

At the output of the device, a 1.25-V, 14-bit DAC is followed by a ratiometric-voltage supply output buffer with gain of 4 V/V allowing a 0-5V ratiometric voltage system output. The PGA302 device implements a third-order temperature coefficient (TC) and non-linearity (NL) digital compensation algorithm to calibrate the analog output signal. All required parameters for the linearization algorithm as well as other user data is stored in the integrated EEPROM memory.

Device Information(1)

PART NUMBER PACKAGE BODY SIZE (NOM)
PGA302 TSSOP (16) 5.00 mm × 4.40 mm
  1. For all available packages, see the orderable addendum at the end of the data sheet.

PGA302 Simplified Block Diagram

PGA302 PGA302_FAD.gif