SLAS671C February   2010  – January 2017 TLV320DAC3100

PRODUCTION DATA.  

  1. Device Overview
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Functional Block Diagram
  2. Revision History
  3. Pin Configuration and Functions
    1. 3.1 Pin Attributes
  4. Specifications
    1. 4.1  Absolute Maximum Ratings
    2. 4.2  ESD Ratings
    3. 4.3  Recommended Operating Conditions
    4. 4.4  Thermal Information
    5. 4.5  Electrical Characteristics
    6. 4.6  Power Dissipation Ratings
    7. 4.7  I2S, LJF, and RJF Timing in Master Mode
    8. 4.8  I2S, LJF, and RJF Timing in Slave Mode
    9. 4.9  DSP Timing in Master Mode
    10. 4.10 DSP Timing in Slave Mode
    11. 4.11 I2C Interface Timing
    12. 4.12 Typical Characteristics
      1. 4.12.1 DAC Performance
      2. 4.12.2 Class-D Speaker Driver Performance
      3. 4.12.3 Analog Bypass Performance H
      4. 4.12.4 MICBIAS Performance H
  5. Parameter Measurement Information
  6. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Power-Supply Sequence
      2. 6.3.2  Reset
      3. 6.3.3  Device Start-Up Lockout Times
      4. 6.3.4  PLL Start-Up
      5. 6.3.5  Power-Stage Reset
      6. 6.3.6  Software Power Down
      7. 6.3.7  Audio Analog I/O
      8. 6.3.8  Digital Processing Low-Power Modes
        1. 6.3.8.1 DAC Playback on Headphones, Stereo, 48 kHz, DVDD = 1.8 V, AVDD = 3.3 V, HPVDD = 3.3 V
        2. 6.3.8.2 DAC Playback on Headphones, Mono, 48 kHz, DVDD = 1.8 V, AVDD = 3.3 V, HPVDD = 3.3 V
        3. 6.3.8.3 DAC Playback on Headphones, Stereo, 8 kHz, DVDD = 1.8 V, AVDD = 3.3 V, HPVDD = 3.3 V
        4. 6.3.8.4 DAC Playback on Headphones, Mono, 8 kHz, DVDD = 1.8 V, AVDD = 3.3 V, HPVDD = 3.3 V
        5. 6.3.8.5 DAC Playback on Headphones, Stereo, 192 kHz, DVDD = 1.8 V, AVDD = 3.3 V, HPVDD = 3.3 V
        6. 6.3.8.6 DAC Playback on Line Out (10 k-Ω load), Stereo, 48 kHz, DVDD = 1.8 V, AVDD = 3 V, HPVDD = 3 V
      9. 6.3.9  Analog Signals
        1. 6.3.9.1 MICBIAS
        2. 6.3.9.2 Analog Inputs AIN1 and AIN2
      10. 6.3.10 Audio DAC and Audio Analog Outputs
        1. 6.3.10.1  DAC
          1. 6.3.10.1.1 DAC Processing Blocks
          2. 6.3.10.1.2 DAC Processing Blocks — Details
            1. 6.3.10.1.2.1  Three Biquads, Filter A
            2. 6.3.10.1.2.2  Six Biquads, First-Order IIR, DRC, Filter A or B
            3. 6.3.10.1.2.3  Six Biquads, First-Order IIR, Filter A or B
            4. 6.3.10.1.2.4  IIR, Filter B or C
            5. 6.3.10.1.2.5  Four Biquads, DRC, Filter B
            6. 6.3.10.1.2.6  Four Biquads, Filter B
            7. 6.3.10.1.2.7  Four Biquads, First-Order IIR, DRC, Filter C
            8. 6.3.10.1.2.8  Four Biquads, First-Order IIR, Filter C
            9. 6.3.10.1.2.9  Two Biquads, 3D, Filter A
            10. 6.3.10.1.2.10 Five Biquads, DRC, 3D, Filter A
            11. 6.3.10.1.2.11 Five Biquads, DRC, 3D, Beep Generator, Filter A
          3. 6.3.10.1.3 DAC User-Programmable Filters
            1. 6.3.10.1.3.1 First-Order IIR Section
            2. 6.3.10.1.3.2 Biquad Section
          4. 6.3.10.1.4 DAC Interpolation Filter Characteristics
            1. 6.3.10.1.4.1 Interpolation Filter A
            2. 6.3.10.1.4.2 Interpolation Filter B
            3. 6.3.10.1.4.3 Interpolation Filter C
        2. 6.3.10.2  DAC Digital-Volume Control
        3. 6.3.10.3  Volume Control Pin
        4. 6.3.10.4  Dynamic Range Compression
          1. 6.3.10.4.1 DRC Threshold
          2. 6.3.10.4.2 DRC Hysteresis
          3. 6.3.10.4.3 DRC Hold Time
          4. 6.3.10.4.4 DRC Attack Rate
          5. 6.3.10.4.5 DRC Decay Rate
          6. 6.3.10.4.6 Example Setup for DRC
        5. 6.3.10.5  Headphone Detection
        6. 6.3.10.6  Interrupts
        7. 6.3.10.7  Key-Click Functionality With Digital Sine-Wave Generator (PRB_P25)
        8. 6.3.10.8  Programming DAC Digital Filter Coefficients
        9. 6.3.10.9  Updating DAC Digital Filter Coefficients During PLAY
        10. 6.3.10.10 Digital Mixing and Routing
        11. 6.3.10.11 Analog Audio Routing
          1. 6.3.10.11.1 Analog Output Volume Control
          2. 6.3.10.11.2 Headphone Analog-Output Volume Control
          3. 6.3.10.11.3 Class-D Speaker Analog Output Volume Control
        12. 6.3.10.12 Analog Outputs
          1. 6.3.10.12.1 Headphone Drivers
          2. 6.3.10.12.2 Speaker Drivers
        13. 6.3.10.13 Audio-Output Stage-Power Configurations
        14. 6.3.10.14 DAC Setup
        15. 6.3.10.15 Example Register Setup to Play Digital Data Through DAC and Headphone/Speaker Outputs
      11. 6.3.11 CLOCK Generation and PLL
        1. 6.3.11.1 PLL
      12. 6.3.12 Timer
      13. 6.3.13 Digital Audio and Control Interface
        1. 6.3.13.1 Digital Audio Interface
          1. 6.3.13.1.1 Right-Justified Mode
          2. 6.3.13.1.2 Left-Justified Mode
          3. 6.3.13.1.3 I2S Mode
          4. 6.3.13.1.4 DSP Mode
        2. 6.3.13.2 Primary and Secondary Digital Audio Interface Selection
        3. 6.3.13.3 Control Interface
          1. 6.3.13.3.1 I2C Control Mode
    4. 6.4 Register Map
      1. 6.4.1 TLV320DAC3100 Register Map
      2. 6.4.2 Registers
        1. 6.4.2.1 Control Registers, Page 0 (Default Page): Clock Multipliers, Dividers, Serial Interfaces, Flags, Interrupts, and GPIOs
        2. 6.4.2.2 Control Registers, Page 1: DAC, Power-Controls, and MISC Logic-Related Programmability
        3. 6.4.2.3 Control Registers, Page 3: MCLK Divider for Programmable Delay Timer
        4. 6.4.2.4 Control Registers, Page 8: DAC Programmable Coefficients RAM Buffer A (1:63)
        5. 6.4.2.5 Control Registers, Page 9: DAC Programmable Coefficients RAM Buffer A (65:127)
        6. 6.4.2.6 Control Registers, Page 12: DAC Programmable Coefficients RAM Buffer B (1:63)
        7. 6.4.2.7 Control Registers, Page 13: DAC Programmable Coefficients RAM Buffer B (65:127)
  7. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
      3. 7.2.3 Application Curves
  8. Power Supply Recommendations
  9. Layout
    1. 9.1 Layout Guidelines
    2. 9.2 Layout Example
  10. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Device Nomenclature
    2. 10.2 Community Resources
    3. 10.3 Trademarks
    4. 10.4 Electrostatic Discharge Caution
    5. 10.5 Glossary
  11. 11Mechanical Packaging and Orderable Information
    1. 11.1 Packaging Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)
MIN MAX UNIT
AVDD to AVSS –0.3 3.9 V
DVDD to DVSS –0.3 2.5 V
HPVDD to HPVSS –0.3 3.9 V
SPKVDD to SPKVSS –0.3 6 V
IOVDD to IOVSS –0.3 3.9 V
Digital input voltage IOVSS – 0.3 IOVDD + 0.3 V
Analog input voltage AVSS – 0.3 AVDD + 0.3 V
Operating temperature –40 85 °C
Junction temperature (TJ Max) 105 °C
Storage temperature, Tstg –55 150 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
AVDD(2) Power-supply voltage Referenced to AVSS(1) 2.7 3.3 3.6 V
DVDD Referenced to DVSS(1) 1.65 1.8 1.95
HPVDD Referenced to HPVSS(1) 2.7 3.3 3.6
SPKVDD(2) Referenced to SPKVSS(1) 2.7 5.5
IOVDD Referenced to IOVSS(1) 1.1 3.3 3.6
Speaker impedance Resistance applied across class-D ouput pins (BTL) 4 Ω
Headphone impedance AC coupled to RL 16 Ω
VI Analog audio full-scale input voltage AVDD = 3.3 V, single-ended 0.707 VRMS
Stereo line output load impedance AC coupled to RL 10
MCLK(3) Master clock frequency IOVDD = 3.3 V 50 MHz
fSCL SCL clock frequency 400 kHz
TA Operating free-air temperature –40 85 °C
All grounds on board are tied together, so they should not differ in voltage by more than 0.2-V maximum for any combination of ground signals. By use of a wide trace or ground plane, ensure a low-impedance connection between HPVSS and DVSS.
To minimize battery-current leakage, the SPKVDD voltage level should not be below the AVDD voltage level.
The maximum input frequency must be 50 MHz for any digital pin used as a general-purpose clock.

Thermal Information

THERMAL METRIC(1) TLV320DAC3100 UNIT
RHB (VQFN)
32 PINS
RθJA Junction-to-ambient thermal resistance 31.4 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 21.9 °C/W
RθJB Junction-to-board thermal resistance 5.6 °C/W
ψJT Junction-to-top characterization parameter 0.2 °C/W
ψJB Junction-to-board characterization parameter 5.6 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 0.9 °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report..

Electrical Characteristics

At 25°C, AVDD = HPVDD = IOVDD = 3.3 V, SPKVDD = 3.6 V, DVDD = 1.8 V, fS (audio) = 48 kHz, CODEC_CLKIN = 256 × fS, PLL = Off, VOL/MICDET pin disabled (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
INTERNAL OSCILLATOR-RC_CLK
Oscillator frequency 8.2 MHz
VOLUME CONTROL PIN (ADC); VOL/MICDET pin enabled
Input voltage range VOL/MICDET pin configured as volume control (page 0 / register 116, bit D7 = 1 and page 0 / register 67, bit D7 = 0) 0 0.5 x AVDD V
Input capacitance 2 pF
Volume control steps 128 Steps
MICROPHONE BIAS
Voltage output Page 1 / register 46, bits D1–D0 = 10 2.25 2.5 2.75 V
Page 1 / register 46, bits D1–D0 = 01 2
Voltage regulation At 4-mA load current, page 1 / register 46, bits D1–D0 = 10 (MICBIAS = 2.5 V) 5 mV
At 4-mA load current, page 1 / register 46, bits D1–D0 = 01 (MICBIAS = 2 V) 7
AUDIO DAC
DAC HEADPHONE OUTPUT, AC-coupled load = 16 Ω (single-ended), driver gain = 0 dB, parasitic capacitance = 30 pF
Full-scale output voltage (0 dB) Output common-mode setting = 1.65 V 0.707 VRMS
SNR Signal-to-noise ratio Measured as idle-channel noise, A-weighted(1) (2) 80 95 dB
THD Total harmonic distortion 0-dBFS input –85 –65 dB
THD+N Total harmonic distortion + noise 0-dBFS input –82 –60 dB
Mute attenuation 87 dB
PSRR Power-supply rejection ratio(4) Ripple on HPVDD (3.3 V) = 200 mVp-p at 1 kHz –62 dB
PO Maximum output power RL = 32 Ω, THD+N = –60 dB 20 mW
RL = 16 Ω, THD+N = –60 dB 60
DAC LINEOUT (HP Driver in Lineout Mode)
SNR Signal-to-noise ratio Measured as idle-channel noise, A-weighted 95 dB
THD Total harmonic distortion 0-dBFS input, 0-dB gain –86 dB
THD+N Total harmonic distortion + noise 0-dBFS input, 0-dB gain –82 dB
DAC DIGITAL INTERPOLATION FILTER CHARACTERISTICS
See Section 6.3.10.1.4 for DAC interpolation filter characteristics.
DAC Output to Class-D SPEAKER OUTPUT; Load = 4 Ω (Differential), 50 pF
Output voltage SPKVDD = 3.6 V, BTL measurement, DAC input = 0 dBFS, CM = 1.8 V, class-D gain = 6 dB, THD = –16.5 dB 2.3 VRMS
SPKVDD = 3.6 V, BTL measurement, DAC input = –2 dBFS, CM = 1.8 V, class-D gain = 6 dB, THD = –20 dB 2.1
Output, common-mode SPKVDD = 3.6 V, BTL measurement, DAC input = mute, class-D gain = 6 dB 1.8 V
SNR Signal-to-noise ratio SPKVDD = 3.6 V, BTL measurement, class-D gain = 6 dB, measured as idle-channel noise, A-weighted (with respect to full-scale output value of 2.3 VRMS)(1) (2) 88 dB
THD Total harmonic distortion SPKVDD = 3.6 V, BTL measurement, DAC input = –6 dBFS, CM = 1.8 V, class-D gain = 6 dB –65 dB
THD+N Total harmonic distortion + noise SPKVDD = 3.6 V, BTL measurement, DAC input = –6 dBFS, CM = 1.8 V, class-D gain = 6 dB –63 dB
PSRR Power-supply rejection ratio(3) SPKVDD = 3.6 V, BTL measurement, ripple on SPKVDD = 200 mVp-p at 1 kHz –44 dB
Mute attenuation 110 dB
PO Maximum output power SPKVDD = 3.6 V, BTL measurement, CM = 1.8 V, class-D gain = 18 dB, THD = 10% 1 W
SPKVDD = 4.3 V, BTL measurement, CM = 1.8 V, class-D gain = 18 dB, THD = 10% 1.5 W
SPKVDD = 5.5 V, BTL measurement, CM = 1.8 V, class-D gain = 18 dB, THD = 10% 2.5 W
DAC Output to Class-D Speaker Output; Load = 8 Ω (Differential), 50 pF
Output voltage SPKVDD = 3.6 V, BTL measurement, DAC input = 0 dBFS, CM = 1.8 V, class-D gain = 6 dB, THD = –16.5 dB 2.2 VRMS
SPKVDD = 3.6 V, BTL measurement, DAC input = –2 dBFS, CM = 1.8 V, class-D gain = 6 dB, THD = –20 dB 2.1 VRMS
Output, common-mode SPKVDD = 3.6 V, BTL measurement, DAC input = mute, class-D gain = 6 dB 1.8 V
SNR Signal-to-noise ratio SPKVDD = 3.6 V, BTL measurement, class-D gain = 6 dB, measured as idle-channel noise, A-weighted (with respect to full-scale output value of 2.2 VRMS) 87 dB
THD Total harmonic distortion SPKVDD = 3.6 V, BTL measurement, DAC input = –6 dBFS, CM = 1.8 V, class-D gain = 6 dB –67 dB
THD+N Total harmonic distortion + noise SPKVDD = 3.6 V, BTL measurement, DAC input = –6 dBFS, CM = 1.8 V, class-D gain = 6 dB –66 dB
PSRR Power-supply rejection ratio(3) SPKVDD = 3.6 V, BTL measurement, ripple on SPKVDD = 200 mVp-p at 1 kHz –44 dB
Mute attenuation 110 dB
PO Maximum output power SPKVDD = 3.6 V, BTL measurement, CM = 1.8 V, class-D gain = 18 dB, THD = 10% 0.7 W
SPKVDD = 4.3 V, BTL measurement, CM = 1.8 V, class-D gain = 18 dB, THD = 10% 1
SPKVDD = 5.5 V, BTL measurement, CM = 1.8 V, class-D gain = 18 dB, THD = 10% 1.6
Output-stage leakage current for direct battery connection SPKVDD = 4.3 V, device is powered down (power-up-reset condition) 80 nA
DAC POWER CONSUMPTION
For DAC power consumption based on the selected processing block, see Section 6.3.8.
DIGITAL INPUT/OUTPUT
Logic family CMOS
VIH Logic Level IIH = 5 µA, IOVDD = 1.6 V 0.7 × IOVDD V
IIH = 5 µA, IOVDD = 1.6 V IOVDD
VIL IIL = 5 µA, IOVDD = 1.6 V –0.3 0.3 × IOVDD
IIL = 5 µA, IOVDD = 1.6 V 0
VOH IOH = 2 TTL loads 0.8 × IOVDD
VOL IOL = 2 TTL loads 0.1 × IOVDD
Capacitive load 10 pF
Ratio of output level with 1-kHz full-scale sine-wave input, to the output level with the inputs short-circuited, measured A-weighted over a 20-Hz to 20-kHz bandwidth using an audio analyzer.
All performance measurements done with 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values.
DAC to speaker-out PSRR is a differential measurement calculated as PSRR = 20 × log(∆VSPK(P + M) / ∆VSPKVDD) .
DAC to headphone-out PSRR measurement is calculated as PSRR = 20 × log(∆VHPL / ∆VHPVDD).

Power Dissipation Ratings

This data was taken using 2-oz. (0,071-mm thick) trace and copper pad that is soldered to a JEDEC high-K, standard 4-layer 3-inch × 3-inch (7,62-cm × 7,62-cm) PCB.
Power Rating at 25°C Derating Factor Power Rating at 70°C Power Rating at 85°C
2.3 W 28.57 mW/°C 1 W 0.6 W

I2S, LJF, and RJF Timing in Master Mode

All specifications at 25°C, DVDD = 1.8 V. Note: All timing specifications are measured at characterization but not tested at final test. See Figure 4-1.
PARAMETER IOVDD = 1.1 V IOVDD = 3.3 V UNIT
MIN MAX MIN MAX
td(WS) WCLK delay 45 20 ns
td(DO-WS) WCLK to delay (for LJF mode only) 45 20 ns
td(DO-BCLK) BCLK to delay 45 20 ns
ts(DI) DIN setup 8 6 ns
th(DI) DIN hold 8 6 ns
tr Rise time 25 10 ns
tf Fall time 25 10 ns

I2S, LJF, and RJF Timing in Slave Mode

All specifications at 25°C, DVDD = 1.8 V. Note: All timing specifications are measured at characterization but not tested at final test. See Figure 4-2.
PARAMETER IOVDD = 1.1 V IOVDD = 3.3 V UNIT
MIN MAX MIN MAX
tH(BCLK) BCLK high period 35 35 ns
tL(BCLK) BCLK low period 35 35 ns
ts(WS) WCLK setup 8 6 ns
th(WS) WCLK hold 8 6 ns
td(DO-WS) WCLK to delay (for LJF mode only) 45 20 ns
td(DO-BCLK) BCLK to delay 45 20 ns
ts(DI) DIN setup 8 6 ns
th(DI) DIN hold 8 6 ns
tr Rise time 4 4 ns
tf Fall time 4 4 ns

DSP Timing in Master Mode

All specifications at 25°C, DVDD = 1.8 V. Note: All timing specifications are measured at characterization but not tested at final test. See Figure 4-3.
PARAMETER IOVDD = 1.1 V IOVDD = 3.3 V UNIT
MIN MAX MIN MAX
td(WS) WCLK delay 45 20 ns
td(DO-BCLK) BCLK to delay 45 20 ns
ts(DI) DIN setup 8 8 ns
th(DI) DIN hold 8 8 ns
tr Rise time 25 10 ns
tf Fall time 25 10 ns

DSP Timing in Slave Mode

All specifications at 25°C, DVDD = 1.8 V. Note: All timing specifications are measured at characterization but not tested at final test. See Figure 4-4.
PARAMETER IOVDD = 1.1 V IOVDD = 3.3 V UNIT
MIN MAX MIN MAX
tH(BCLK) BCLK high period 35 35 ns
tL(BCLK) BCLK low period 35 35 ns
ts(WS) WCLK setup 8 8 ns
th(WS) WCLK hold 8 8 ns
td(DO-BCLK) BCLK to delay 45 20 ns
ts(DI) DIN setup 8 8 ns
th(DI) DIN hold 8 8 ns
tr Rise time 4 4 ns
tf Fall time 4 4 ns

I2C Interface Timing

All specifications at 25°C, DVDD = 1.8 V. Note: All timing specifications are measured at characterization.See Figure 4-5.
PARAMETER Standard Mode Fast Mode UNIT
MIN TYP MAX MIN TYP MAX
fSCL SCL clock frequency 0 100 0 400 kHz
tHD;STA Hold time (repeated) START condition. After this period, the first clock pulse is generated. 4 0.8 μs
tLOW LOW period of the SCL clock 4.7 1.3 μs
tHIGH HIGH period of the SCL clock 4 0.6 μs
tSU;STA Setup time for a repeated START condition 4.7 0.8 μs
tHD;DAT Data hold time: for I2C bus devices 0 3.45 0 0.9 μs
tSU;DAT Data set-up time 250 100 ns
tr SDA and SCL rise time 1000 20 + 0.1Cb 300 ns
tf SDA and SCL fall time 300 20 + 0.1Cb 300 ns
tSU;STO Set-up time for STOP condition 4 0.8 μs
tBUF Bus free time between a STOP and START condition 4.7 1.3 μs
Cb Capacitive load for each bus line 400 400 pF
TLV320DAC3100 t0145-08_las644.gif Figure 4-1 I2S/LJF/RJF Timing in Master Mode
TLV320DAC3100 t0145-09_las644.gif Figure 4-2 I2S/LJF/RJF Timing in Slave Mode
TLV320DAC3100 t0146-07_las644.gif Figure 4-3 DSP Timing in Master Mode
TLV320DAC3100 t0146-08_las644.gif Figure 4-4 DSP Timing in Slave Mode
TLV320DAC3100 t0295-02_las550.gif Figure 4-5 I2C Interface Timing Diagram

Typical Characteristics

DAC Performance

TLV320DAC3100 G001_LAS659.gif Figure 4-6 Amplitude vs Frequency
FFT - DAC to Line Output
TEXT ADDED FOR SPACING
TLV320DAC3100 g025_las644.gif Figure 4-8 Total Harmonic Distortion + Noise vs Output Power
Headphone Output Power
TLV320DAC3100 G002_LAS659.gif Figure 4-7 Amplitude vs Frequency
FFT - DAC to Headphone Output
TEXT ADDED FOR SPACING

Class-D Speaker Driver Performance

TLV320DAC3100 G010_LAS667.gif Figure 4-9 Total Harmonic Distortion + Noise vs Output Power
Max Class-D Speaker-Driver Output Power (RL = 4 Ω)
TLV320DAC3100 G012_LAS667.gif Figure 4-11 Total Harmonic Distortion + Noise vs Output Power
Max Class-D Speaker-Driver Output Power (RL = 8 Ω)
TLV320DAC3100 G011_LAS667.gif Figure 4-10 Total Harmonic Distortion + Noise vs Output Power
Class-D Speaker-Driver Output Power (RL = 4 Ω)
TLV320DAC3100 G013_LAS667.gif Figure 4-12 Total Harmonic Distortion + Noise vs Output Power
Class-D Speaker-Driver Output Power (RL = 8 Ω)

Analog Bypass Performance
H

TLV320DAC3100 G008_LAS659.gif Figure 4-13 Amplitude vs Frequency
FFT - Line-In Bypass to Line Output
TLV320DAC3100 G009_LAS659.gif Figure 4-14 Amplitude vs Frequency
FFT - Line-In Bypass to Headphone Output

MICBIAS Performance
H

TLV320DAC3100 g016_las644.gif Figure 4-15 Voltage vs Current
MICBIAS