SBOS839J March   2017  – September 2019 TLV9061 , TLV9062 , TLV9064

UNLESS OTHERWISE NOTED, this document contains PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Single-Pole, Low-Pass Filter
      2.      Small-Signal Overshoot vs Load Capacitance
  4. Revision History
  5. Description (continued)
  6. Device Comparison Table
  7. Pin Configuration and Functions
    1.     Pin Functions: TLV9061
    2.     Pin Functions: TLV9061S
    3.     Pin Functions: TLV9062
    4.     Pin Functions: TLV9062S
    5.     Pin Functions: TLV9064
    6.     Pin Functions: TLV9064S
  8. Specifications
    1. 8.1  Absolute Maximum Ratings
    2. 8.2  ESD Ratings
    3. 8.3  Recommended Operating Conditions
    4. 8.4  Thermal Information: TLV9061
    5. 8.5  Thermal Information: TLV9061S
    6. 8.6  Thermal Information: TLV9062
    7. 8.7  Thermal Information: TLV9062S
    8. 8.8  Thermal Information: TLV9064
    9. 8.9  Thermal Information: TLV9064S
    10. 8.10 Electrical Characteristics
    11. 8.11 Typical Characteristics
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Rail-to-Rail Input
      2. 9.3.2 Rail-to-Rail Output
      3. 9.3.3 EMI Rejection
      4. 9.3.4 Overload Recovery
      5. 9.3.5 Shutdown Function
    4. 9.4 Device Functional Modes
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Applications
      1. 10.2.1 Typical Low-Side Current Sense Application
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
        3. 10.2.1.3 Application Curve
  11. 11Power Supply Recommendations
    1. 11.1 Input and ESD Protection
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 Related Links
    3. 13.3 Receiving Notification of Documentation Updates
    4. 13.4 Community Resources
    5. 13.5 Trademarks
    6. 13.6 Electrostatic Discharge Caution
    7. 13.7 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Detailed Design Procedure

The transfer function of the circuit in Figure 38 is given in Equation 1.

Equation 1. TLV9061 TLV9062 TLV9064 EQ_2_SBOS701.gif

The load current (ILOAD) produces a voltage drop across the shunt resistor (RSHUNT). The load current is set from 0 A to 1 A. To keep the shunt voltage below 100 mV at maximum load current, the largest shunt resistor is defined using Equation 2.

Equation 2. TLV9061 TLV9062 TLV9064 EQ_3_SBOS701.gif

Using Equation 2, RSHUNT equals 100 mΩ. The voltage drop produced by ILOAD and RSHUNT is amplified by the TLV906x to produce an output voltage of approximately 0 V to 4.95 V. Equation 3 calculates the gain required for the TLV906x to produce the required output voltage.

Equation 3. TLV9061 TLV9062 TLV9064 EQ_4_SBOS701.gif

Using Equation 3, the required gain equals 49.5 V/V, which is set with the RF and RG resistors. Equation 4 sizes the RF and RG, resistors to set the gain of the TLV906x to 49.5 V/V.

Equation 4. TLV9061 TLV9062 TLV9064 EQ_5_SBOS701.gif

Selecting RF to equal 165 kΩ and RG to equal 3.4 kΩ provides a combination that equals approximately 49.5 V/V. Figure 39 shows the measured transfer function of the circuit shown in Figure 38. Notice that the gain is only a function of the feedback and gain resistors. This gain is adjusted by varying the ratio of the resistors and the actual resistor values are determined by the impedance levels that the designer wants to establish. The impedance level determines the current drain, the effect that stray capacitance has, and a few other behaviors. There is no optimal impedance selection that works for every system, you must choose an impedance that is ideal for your system parameters.