SLVSEG1A July   2018  – September 2019 TPS56637

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Schematic
      2.      Efficiency vs Output Current VOUT = 5 V
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 Handling Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  The Adaptive On-Time Control and PWM Operation
      2. 7.3.2  Mode Selection
        1. 7.3.2.1 Eco-mode™ Control Scheme
        2. 7.3.2.2 FCCM Control
      3. 7.3.3  Soft Start and Pre-Biased Soft Start
      4. 7.3.4  Enable and Adjusting Undervoltage Lockout
      5. 7.3.5  Output Overcurrent Limit and Undervoltage Protection
      6. 7.3.6  Overvoltage Protection
      7. 7.3.7  UVLO Protection
      8. 7.3.8  Thermal Shutdown
      9. 7.3.9  Output Voltage Discharge
      10. 7.3.10 Power Good
    4. 7.4 Device Functional Modes
      1. 7.4.1 Standby Operation
      2. 7.4.2 Normal Operation
      3. 7.4.3 Light Load Operation
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Output Voltage Resistors Selection
        2. 8.2.2.2 Output Filter Selection
        3. 8.2.2.3 Input Capacitor Selection
        4. 8.2.2.4 Bootstrap Capacitor Selection
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Package Option Addendum
      1. 12.1.1 Packaging Information
      2. 12.1.2 Tape and Reel Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Layout Guidelines

  1. Recommend a four-layer PCB for good thermal performance and with maximum ground plane.
  2. VIN and GND traces should be as wide as possible to reduce trace impedance. The wide areas are also of advantage from the view point of heat dissipation.
  3. Putting at least two vias for VIN and GND traces, and as close as possible to the pins.
  4. The input capacitor and output capacitor should be placed as close to the device as possible to minimize trace impedance.
  5. Provide sufficient vias for the input capacitor and output capacitor.
  6. Keep the SW trace as physically short and wide as practical to minimize radiated emissions.
  7. Do not allow switching current to flow under the device.
  8. A separate VOUT path should be connected to the upper feedback resistor.
  9. Make a Kelvin connection to the GND pin for the feedback path.
  10. Voltage feedback loop should be placed away from the high-voltage switching trace, and preferably has ground shield.
  11. The trace of the VFB node should be as small as possible to avoid noise coupling.
  12. The GND trace between the output capacitor and the GND pin should be as wide as possible to minimize its trace impedance.