SLVSCC3C May   2014  – July 2019 TPS62150A-Q1 , TPS62152A-Q1 , TPS62153A-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Typical Application Schematic space space space
      2.      Efficiency vs Output Current space
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 Handling Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Pulse Width Modulation (PWM) Operation
      2. 9.3.2  Power Save Mode Operation
      3. 9.3.3  100% Duty-Cycle Operation
      4. 9.3.4  Enable / Shutdown (EN)
      5. 9.3.5  Soft Start / Tracking (SS/TR)
      6. 9.3.6  Current Limit And Short Circuit Protection
      7. 9.3.7  Power Good (PG)
      8. 9.3.8  Pin-Selectable Output Voltage (DEF)
      9. 9.3.9  Frequency Selection (FSW)
      10. 9.3.10 Under Voltage Lockout (UVLO)
      11. 9.3.11 Thermal Shutdown
    4. 9.4 Device Functional Modes
      1. 9.4.1 Operation above TJ=125°C
      2. 9.4.2 Operation with VIN < 3V
      3. 9.4.3 Operation with separate EN Control
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 TPS62150A-Q1 Point-Of-Load Step Down Converter
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
          1. 10.2.1.2.1 Custom Design With WEBENCH® Tools
          2. 10.2.1.2.2 Programming The Output Voltage
          3. 10.2.1.2.3 External Component Selection
          4. 10.2.1.2.4 Inductor Selection
          5. 10.2.1.2.5 Output Capacitor
          6. 10.2.1.2.6 Input Capacitor
          7. 10.2.1.2.7 Soft Start Capacitor
          8. 10.2.1.2.8 Tracking Function
          9. 10.2.1.2.9 Output Filter And Loop Stability
        3. 10.2.1.3 Application Curves
      2. 10.2.2 System Examples
        1. 10.2.2.1 Regulated Power LED Supply
        2. 10.2.2.2 Inverting Power Supply
        3. 10.2.2.3 Active Output Discharge
        4. 10.2.2.4 Various Output Voltages
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Device Support
      1. 13.1.1 Third-Party Products Disclaimer
    2. 13.2 Related Links
    3. 13.3 Receiving Notification of Documentation Updates
    4. 13.4 Community Resources
    5. 13.5 Trademarks
    6. 13.6 Electrostatic Discharge Caution
    7. 13.7 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • RGT|16
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Inductor Selection

The inductor selection is affected by several effects like inductor ripple current, output ripple voltage, PWM-to-PSM transition point and efficiency. In addition, the inductor selected has to be rated for appropriate saturation current and DC resistance (DCR). Equation 7 and Equation 8 calculate the maximum inductor current under static load conditions.

spacing

Equation 7. TPS62150A-Q1 TPS62152A-Q1 TPS62153A-Q1 SLVSAG7_eqilmax.gif

spacing

Equation 8. TPS62150A-Q1 TPS62152A-Q1 TPS62153A-Q1 SLVSAG7_eqiripple.gif

where

IL(max) is the maximum inductor current,

ΔIL is the Peak to Peak Inductor Ripple Current,

L(min) is the minimum effective inductor value and

fSW is the actual PWM Switching Frequency.

spacing

Calculating the maximum inductor current using the actual operating conditions gives the minimum saturation current of the inductor needed. A margin of about 20% is recommended to add. A larger inductor value is also useful to get lower ripple current, but increases the transient response time and solution size as well. The following inductors have been used with the TPS6215xA-Q1 and are recommended for use:

Table 4. List of Inductors(1)

Type Inductance [µH] Current [A](2) Dimensions [LxBxH] mm MANUFACTURER
XFL4020-102ME_ 1.0 µH, ±20% 4.7 4 x 4 x 2.1 Coilcraft
XFL4020-152ME_ 1.5 µH, ±20% 4.2 4 x 4 x 2.1 Coilcraft
XFL4020-222ME_ 2.2 µH, ±20% 3.8 4 x 4 x 2.1 Coilcraft
IHLP1212BZ-11 1.0 µH, ±20% 4.5 3 x 3.6 x 2 Vishay
IHLP1212BZ-11 2.2 µH, ±20% 3.0 3 x 3.6 x 2 Vishay
SRP4020-3R3M 3.3µH, ±20% 3.3 4.8 x 4 x 2 Bourns
VLC5045T-3R3N 3.3µH, ±30% 4.0 5 x 5 x 4.5 TDK
Lower of IRMS at 40°C rise or ISAT at 30% drop.

spacing

The inductor value also determines the load current at which Power Save Mode is entered:

Equation 9. TPS62150A-Q1 TPS62152A-Q1 TPS62153A-Q1 SLVSAG7_eqipsm.gif

Using Equation 8, this current level can be adjusted by changing the inductor value.