SLVSDD1E December   2017  – January 2019 TPS62800 , TPS62801 , TPS62802 , TPS62806 , TPS62807 , TPS62808

UNLESS OTHERWISE NOTED, this document contains PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Typical Application
      2.      Efficiency vs. IOUT at 1.2VOUT
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Smart Enable and Shutdown (EN)
      2. 8.3.2 Softstart
      3. 8.3.3 VSEL/MODE Pin
        1. 8.3.3.1 Output Voltage Selection (R2D Converter)
        2. 8.3.3.2 Mode Selection: Power Save Mode / Forced PWM Operation
      4. 8.3.4 Undervoltage Lockout (UVLO)
      5. 8.3.5 Switch Current Limit / Short Circuit Protection
      6. 8.3.6 Thermal Shutdown
      7. 8.3.7 Output Voltage Discharge
    4. 8.4 Device Functional Modes
      1. 8.4.1 Power Save Mode Operation
      2. 8.4.2 Forced PWM Mode Operation
      3. 8.4.3 100% Mode Operation
      4. 8.4.4 Optimized Transient Performance from PWM to PFM Mode Operation
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Custom Design With WEBENCH® Tools
        2. 9.2.2.2 Inductor Selection
        3. 9.2.2.3 Output Capacitor Selection
        4. 9.2.2.4 Input Capacitor Selection
      3. 9.2.3 Application Curves
    3. 9.3 System Examples
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Custom Design With WEBENCH® Tools
    3. 12.3 Related Links
    4. 12.4 Community Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Custom Design With WEBENCH® Tools

Click here to create a custom design using the TPS62800 device with the WEBENCH® Power Designer.

Click here to create a custom design using the TPS62801 device with the WEBENCH® Power Designer.

Click here to create a custom design using the TPS62802 device with the WEBENCH® Power Designer.

Click here to create a custom design using the TPS62806 device with the WEBENCH® Power Designer.

Click here to create a custom design using the TPS62807 device with the WEBENCH® Power Designer.

Click here to create a custom design using the TPS62808 device with the WEBENCH® Power Designer.

  1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.
  2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.
  3. Compare the generated design with other possible solutions from Texas Instruments.

The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability.

In most cases, these actions are available:

  • Run electrical simulations to see important waveforms and circuit performance
  • Run thermal simulations to understand board thermal performance
  • Export customized schematic and layout into popular CAD formats
  • Print PDF reports for the design, and share the design with colleagues

Get more information about WEBENCH tools at www.ti.com/WEBENCH.