SLUSBW3D March   2014  – December 2017 UCC28630 , UCC28631 , UCC28632 , UCC28633 , UCC28634

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Schematic
      2.      Typical Application Measured Regulation
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1.     PIN Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information (UCC28630, UCC28631)
    5. 7.5 Thermal Information (UCC28632, UCC28633, (UCC28630, UCC28634)
    6. 7.6 Electrical Characteristics
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  High-Voltage Current Source Start-Up Operation
      2. 8.3.2  AC Input UVLO / Brownout Protection
      3. 8.3.3  Active X-Capacitor Discharge (UCC28630 and UCC28633 only)
        1. 8.3.3.1 Improved Performance with UCC28630 and UCC28633
      4. 8.3.4  Magnetic Input and Output Voltage Sensing
      5. 8.3.5  Fixed-Point Magnetic Sense Sampling Error Sources
      6. 8.3.6  Magnetic Sense Resistor Network Calculations
        1. 8.3.6.1 Step 1
        2. 8.3.6.2 Step 2
        3. 8.3.6.3 Step 3
        4. 8.3.6.4 Step 4
      7. 8.3.7  Magnetic Sensing: Power Stage Design Constraints
      8. 8.3.8  Magnetic Sense Voltage Control Loop
      9. 8.3.9  Peak Current Mode Control
      10. 8.3.10 IPEAK Adjust vs. Line
      11. 8.3.11 Primary-Side Constant-Current Limit (CC Mode)
      12. 8.3.12 Primary-Side Overload Timer (UCC28630 only)
      13. 8.3.13 Overload Timer Adjustment (UCC28630 only)
      14. 8.3.14 CC-Mode IOUT(lim) Adjustment
      15. 8.3.15 Fault Protections
      16. 8.3.16 Pin-Fault Detection and Protection
      17. 8.3.17 Over-Temperature Protection
      18. 8.3.18 External Fault Input
      19. 8.3.19 External SD Pin Wake Input (except UCC28633)
      20. 8.3.20 External Wake Input at VSENSE Pin (UCC28633 Only)
      21. 8.3.21 Mode Control and Switching Frequency Modulation
      22. 8.3.22 Frequency Dither For EMI (except UCC28632)
    4. 8.4 Device Functional Modes
      1. 8.4.1 Device Internal Key Parameters
  9. Applications and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Notebook Adapter, 19.5 V, 65 W
      2. 9.2.2 UCC28630 Application Schematic
      3. 9.2.3 Design Requirements
      4. 9.2.4 Detailed Design Procedure
        1. 9.2.4.1  Custom Design With WEBENCH® Tools
        2. 9.2.4.2  Input Bulk Capacitance and Minimum Bulk Voltage
        3. 9.2.4.3  Transformer Turn Ratio
        4. 9.2.4.4  Transformer Magnetizing Inductance
        5. 9.2.4.5  Current Sense Resistor RCS
        6. 9.2.4.6  Transformer Constraint Verification
        7. 9.2.4.7  Transformer Selection and Design
        8. 9.2.4.8  Slope Compensation Verification
        9. 9.2.4.9  Power MOSFET and Output Rectifier Selection
        10. 9.2.4.10 Output Capacitor Selection
        11. 9.2.4.11 Calculation of CC Mode Limit Point
        12. 9.2.4.12 VDD Capacitor Selection
        13. 9.2.4.13 Magnetic Sense Resistor Network Selection
        14. 9.2.4.14 Output LED Pre-Load Resistor Calculation
      5. 9.2.5 External Wake Pulse Calculation at VSENSE Pin (UCC28633 Only)
      6. 9.2.6 Energy Star Average Efficiency and Standby Power
      7. 9.2.7 Application Performance Plots
    3. 9.3 Dos and Don'ts
      1. 9.3.1 Test and Debug Recommendations
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 HV Pin
      2. 11.1.2 VDD Pin
      3. 11.1.3 VSENSE Pin
      4. 11.1.4 CS Pin
      5. 11.1.5 SD Pin
      6. 11.1.6 DRV Pin
      7. 11.1.7 GND Pin
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Development Support
        1. 12.1.1.1 Custom Design With WEBENCH® Tools
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
        1. 12.2.1.1 Related Links
    3. 12.3 Receiving Notification of Documentation Updates
    4. 12.4 Community Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Electrical Characteristics

over operating junction temperature range (unless otherwise noted) and VDD = 12 V
PARAMETERTEST CONDITIONSMINTYPMAXUNIT
START-UP CURRENT SOURCE
IVDD0 VDD pin short-circuit charging current VDD = 0.2 V, VHV = 100 V 0.6 0.9 1.2 mA
IVDD1 VDD pin final charging current VDD = 11.9 V, VHV = 100 V 1.1 4.0 7.6 mA
ILEAK HV current source leakage current VDD = 18 V, VHV = 100 V HV,
current source off, TA = 25°C
0.1 0.5 μA
SUPPLY VOLTAGE MONITORING
VDD(start) VDD start-up voltage VDD increasing 13.00 14.75 16.50 V
VDD(stop) VDD minimum operating voltage after start-up VDD decreasing after start-up 7.3 8.0 8.5 V
VDD(hyst) VDD start – VDD stop level 6.5 V
VDD(reset) VDD reset restart level 3.5 5.0 6.5 V
VDD(ovp) VDD over-voltage protection level VDD increasing after start-up, UCC28630, UCC28631, UCC28632, UCC28633 16.5 17.5 18.3 V
VDD increasing after start-up, UCC28634 only 14.0 14.85 15.55 V
IDD(run) Supply current during normal operation VSENSE = 0.45 V, CS = 0 V See (1) CLOAD = 700 pF on DRV 6.0 9.0 13.0 mA
IDD(sleep) Supply current during sleep mode, between switching pulses VSENSE = 8.0 V, VCS = 1.0 V, light-load mode at 200 Hz, TA = 25°C 90 110 μA
OSCILLATOR
fSW(max) Maximum switching frequency VSENSE = 0.45 V, VCS = 0 V 110 120 130 kHz
fSW(min) Minimum switching frequency VSENSE = 8.0 V, VCS = 1.0 V, light-load mode 0.18 0.20 0.22 kHz
DMAX Maximum Duty Cycle VSENSE = 0.45 V, VCS = 0 V 70%
tON(min) Minimum On time VSENSE = 8.0 V, VCS = 1.0 V, light-load mode 550 600 650 ns
fSW(dith) Frequency dither range Except UCC28632 ± 6.7%
tDITH Dither repetition period Except UCC28632 6.0 ms
SHUTDOWN (SD) PIN (EXTERNAL FAULT INPUT)(2)
IPULLUP Internal pull-up current source See (2), (3), (4) 185 210 235 µA
VTRIP(rise) Fault ok level (rising) See (2), (3), (4) , UCC28630, UCC28631, UCC28632,UCC28633 3.2 3.5 3.8 V
See (2), (3), (4) , UCC28634 only 2.2 2.5 2.8 V
VTRIP(fall) Fault trip level (falling) See (2), (3), (4) 1.7 2.00 2.3 V
VTRIP(hyst) See (2), (3), (4) 1.5 V
VWAKE(rise) Wake-up level (rising) See (2), (3), (4)Except UCC28633 1.8 2.2 2.6 V
tWAKE Wake delay time Delay to first DRV pulse 10 µs
VSENSE Pin (MAGNETIC SENSE)
VOUT(ref) Internal output voltage sense reference level Required positive voltage at VSENSE pin during off-time (at 25°C) 7.425 7.500 7.575 V
tOUT(smp) Vsense sample delay for VOUT Measured w.r.t. DRV falling edge 1.7 µs
VOUT(ovp) Internal output voltage sense OVP level Measured w.r.t. regulation level, tracking 120%
CURRENT SENSE (CS) Pin
VCS(max) Peak CS pin voltage level At maximum modulator demand 800 mV
VCS(min) Peak CS pin voltage level At minimum modulator demand 172 mV
VSLOPE Slope compensation ramp 30 mV/µs
OVER TEMPERATURE PROTECTION
TEMPTRIP Thermal protection shutdown temperature Default internal setting, latch-off protection 125 °C
TEMPHYST Thermal protection hysteresis 10 °C
GATE DRIVE OUTPUT (DRV)
ROH High level source resistance IOH = 100 mA 22 35 Ω
ROL Low level sink resistance IOL = –100 mA 1.2 2.5 Ω
CLOAD = 700 pF included on DRV pin.
The SD pin functions as an NTC input pin (with internal pull-up) during normal operation. The internal pull-up is clamped to 4 V. At start-up, the external temperature sensor (NTC) must be cool enough that the SD pin pulls up above the VTRIP(rise) start level. After start-up, if this pin is pulled below VTRIP(fall) level, this activates external over-temperature shut-down.
During low power modes (when FSW < FSMP(max)), the internal SD pin pull-up is disabled, and the pin functions as a transient wake-up input. In this case, if the pin is raised above VWAKE(rise) level, the device wakes from low power sleep mode (rather than waiting for the scheduled timer-based wake). This is useful for applications that require a response to load transients from zero or near-zero load, where a wake-up signal can be appropriately coupled to the SD pin from the secondary-side.
A decoupling capacitor on the SD pin should not be required; if used, it must not exceed 1 nF.