SNLS266E May   2007  – March 2015 DP83848C , DP83848I , DP83848VYB , DP83848YB

PRODUCTION DATA.  

  1. 1Introduction
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Functional Block Diagram
  2. 2Revision History
  3. 3 Device Comparison
  4. 4Pin Configuration and Functions
    1. 4.1  Pin Layout
    2. 4.2  Package Pin Assignments
    3. 4.3  Serial Management Interface
    4. 4.4  Mac Data Interface
    5. 4.5  Clock Interface
    6. 4.6  LED Interface
    7. 4.7  JTAG Interface for DP83848I/VYB/YB
    8. 4.8  Reset and Power Down
    9. 4.9  Strap Options
    10. 4.10 10 Mb/s and 100 Mb/s PMD Interface
    11. 4.11 Special Connections
    12. 4.12 Power Supply Pins
  5. 5Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 DC Specifications
    6. 5.6 AC Timing Requirements
  6. 6Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Auto-Negotiation
        1. 6.3.1.1 Auto-Negotiation Pin Control
        2. 6.3.1.2 Auto-Negotiation Register Control
        3. 6.3.1.3 Auto-Negotiation Parallel Detection
        4. 6.3.1.4 Auto-Negotiation Restart
        5. 6.3.1.5 Enabling Auto-Negotiation Through Software
        6. 6.3.1.6 Auto-Negotiation Complete Time
      2. 6.3.2 Auto-MDIX
      3. 6.3.3 LED Interface
        1. 6.3.3.1 LEDs
        2. 6.3.3.2 LED Direct Control
      4. 6.3.4 Internal Loopback
      5. 6.3.5 BIST
      6. 6.3.6 Energy Detect Mode
    4. 6.4 Device Functional Modes
      1. 6.4.1 MII Interface
        1. 6.4.1.1 Nibble-wide MII Data Interface
        2. 6.4.1.2 Collision Detect
        3. 6.4.1.3 Carrier Sense
      2. 6.4.2 Reduced MII Interface
      3. 6.4.3  802.3 MII Serial Management Interface
        1. 6.4.3.1 Serial Management Register Access
        2. 6.4.3.2 Serial Management Access Protocol
        3. 6.4.3.3 Serial Management Preamble Suppression
      4. 6.4.4 10 Mb Serial Network Interface (SNI)
      5. 6.4.5 PHY Address
        1. 6.4.5.1 MII Isolate Mode
      6. 6.4.6 Half Duplex vs. Full Duplex
      7. 6.4.7 Reset Operation
        1. 6.4.7.1 Hardware Reset
        2. 6.4.7.2 Software Reset
    5. 6.5 Programming
      1. 6.5.1 Architecture
        1. 6.5.1.1 100BASE-TX Transmitter
          1. 6.5.1.1.1 Code-group Encoding and Injection
          2. 6.5.1.1.2 Scrambler
          3. 6.5.1.1.3 NRZ to NRZI Encoder
          4. 6.5.1.1.4 Binary to MLT-3 Convertor
        2. 6.5.1.2 100BASE-TX Receiver
          1. 6.5.1.2.1  Analog Front End
          2. 6.5.1.2.2  Digital Signal Processor
            1. 6.5.1.2.2.1 Digital Adaptive Equalization and Gain Control
            2. 6.5.1.2.2.2 Base Line Wander Compensation
          3. 6.5.1.2.3  Signal Detect
          4. 6.5.1.2.4  MLT-3 to NRZI Decoder
          5. 6.5.1.2.5  NRZI to NRZ
          6. 6.5.1.2.6  Serial to Parallel
          7. 6.5.1.2.7  Descrambler
          8. 6.5.1.2.8  Code-group Alignment
          9. 6.5.1.2.9  4B/5B Decoder
          10. 6.5.1.2.10 100BASE-TX Link Integrity Monitor
          11. 6.5.1.2.11 Bad SSD Detection
        3. 6.5.1.3 10BASE-T Transceiver Module
          1. 6.5.1.3.1  Operational Modes
            1. 6.5.1.3.1.1 Half Duplex Mode
            2. 6.5.1.3.1.2 Full Duplex Mode
          2. 6.5.1.3.2  Smart Squelch
          3. 6.5.1.3.3  Collision Detection and SQE
          4. 6.5.1.3.4  Carrier Sense
          5. 6.5.1.3.5  Normal Link Pulse Detection/Generation
          6. 6.5.1.3.6  Jabber Function
          7. 6.5.1.3.7  Automatic Link Polarity Detection and Correction
          8. 6.5.1.3.8  Transmit and Receive Filtering
          9. 6.5.1.3.9  Transmitter
          10. 6.5.1.3.10 Receiver
    6. 6.6 Memory
      1. 6.6.1 Register Block
        1. 6.6.1.1 Register Definition
          1. 6.6.1.1.1 Basic Mode Control Register (BMCR)
          2. 6.6.1.1.2 Basic Mode Status Register (BMSR)
          3. 6.6.1.1.3 PHY Identifier Register #1 (PHYIDR1)
          4. 6.6.1.1.4 PHY Identifier Register #2 (PHYIDR2)
          5. 6.6.1.1.5 Auto-Negotiation Advertisement Register (ANAR)
          6. 6.6.1.1.6 Auto-Negotiation Link Partner Ability Register (ANLPAR) (BASE Page)
          7. 6.6.1.1.7 Auto-Negotiation Link Partner Ability Register (ANLPAR) (Next Page)
          8. 6.6.1.1.8 Auto-Negotiate Expansion Register (ANER)
          9. 6.6.1.1.9 Auto-Negotiation Next Page Transmit Register (ANNPTR)
        2. 6.6.1.2 Extended Registers
          1. 6.6.1.2.1  PHY Status Register (PHYSTS)
          2. 6.6.1.2.2  MII Interrupt Control Register (MICR)
          3. 6.6.1.2.3  MII Interrupt Status and Misc. Control Register (MISR)
          4. 6.6.1.2.4  False Carrier Sense Counter Register (FCSCR)
          5. 6.6.1.2.5  Receiver Error Counter Register (RECR)
          6. 6.6.1.2.6  100 Mb/s PCS Configuration and Status Register (PCSR)
          7. 6.6.1.2.7  RMII and Bypass Register (RBR)
          8. 6.6.1.2.8  LED Direct Control Register (LEDCR)
          9. 6.6.1.2.9  PHY Control Register (PHYCR)
          10. 6.6.1.2.10 10 Base-T Status/Control Register (10BTSCR)
          11. 6.6.1.2.11 CD Test and BIST Extensions Register (CDCTRL1)
          12. 6.6.1.2.12 Energy Detect Control (EDCR)
  7. 7Application, Implementation, and Layout
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
        1. 7.2.1.1 TPI Network Circuit
        2. 7.2.1.2 Clock IN (X1) Requirements
          1. 7.2.1.2.1 Oscillator
          2. 7.2.1.2.2 Crystal
        3. 7.2.1.3 Power Feedback Circuit
          1. 7.2.1.3.1 Power Down and Interrupt
            1. 7.2.1.3.1.1 Power Down Control Mode
            2. 7.2.1.3.1.2 Interrupt Mechanisms
        4. 7.2.1.4 Magnetics
        5. 7.2.1.5 ESD Protection
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 MAC Interface (MII/RMII)
          1. 7.2.2.1.1 Termination Requirement
          2. 7.2.2.1.2 Recommended Maximum Trace Length
        2. 7.2.2.2 Calculating Impedance
          1. 7.2.2.2.1 Microstrip Impedance - Single-Ended
          2. 7.2.2.2.2 Stripline Impedance - Single Ended
          3. 7.2.2.2.3 Microstrip Impedance - Differential
          4. 7.2.2.2.4 Stripline Impedance - Differential
      3. 7.2.3 Application Curves
    3. 7.3 Layout
      1. 7.3.1 Layout Guidelines
        1. 7.3.1.1 PCB Layout Considerations
        2. 7.3.1.2 PCB Layer Stacking
      2. 7.3.2 Layout Example
    4. 7.4 Power Supply Recommendations
  8. 8Device and Documentation Support
    1. 8.1 Documentation Support
      1. 8.1.1 Related Documentation
    2. 8.2 Related Links
    3. 8.3 Trademarks
    4. 8.4 Electrostatic Discharge Caution
    5. 8.5 Glossary
  9. 9Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

5 Specifications

5.1 Absolute Maximum Ratings (1)(2)

MIN MAX UNIT
Supply Voltage (VCC) –0.5 4.2 V
DC Input Voltage (VIN) –0.5 VCC + 0.5 V
DC Output Voltage (VOUT) –0.5 VCC + 0.5 V
Maximum Die Temperature 121.5 °C
Lead Temperature (TL) (Soldering, 10 sec.) 260 °C
Storage Temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) If Military/Aerospace specified devices are required, please contact the TI Sales Office/ Distributors for availability and specifications.

5.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) ±4000 V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) ±1000
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

MIN MAX UNIT
Supply voltage (VCC) 3.3 V ± 0.3 V
Commercial 0 70 °C
Industrial –40 85
Extended –40 105
Extreme –40 125
Power Dissipation (PD) 267 mW

5.4 Thermal Information

THERMAL METRIC(1) DP83848C/I DP83848VYB/YB UNIT
PT [HLQFP] PTB [LQFP]
48 PINS 48 PINS
RθJA Junction-to-ambient thermal resistance 73.9 40.1 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 30.9 25.5
RθJB Junction-to-board thermal resistance 37.2 21
ψJT Junction-to-top characterization parameter 2.8 2.7
ψJB Junction-to-board characterization parameter 37 20.9
RθJC(bot) Junction-to-case (bottom) thermal resistance N/A 3.6
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

5.5 DC Specifications

PARAMETER TEST CONDITIONS PIN
TYPES
MIN TYP MAX UNIT
VIH Input High Voltage Nominal VCC I, 2.0 V
I/O
VIL Input Low Voltage I, 0.8 V
I/O
IIH Input High Current VIN = VCC I, 10 µA
I/O
IIL Input Low Current VIN = GND I, 10 µA
I/O
VOL Output Low IOL = 4 mA O, 0.4 V
Voltage I/O
VOH Output High IOH = –4 mA O, VCC - 0.5 V
Voltage I/O
IOZ TRI-STATE VOUT = VCC I/O, ±10 µA
Leakage VOUT = GND O
VTPTD_100 100M Transmit Voltage PMD Output Pair 0.95 1 1.05 V
VTPTDsym 100M Transmit Voltage Symmetry PMD Output Pair ±2%
VTPTD_10 10M Transmit Voltage PMD Output Pair 2.2 2.5 2.8 V
CIN1 CMOS Input I 5 pF
Capacitance
COUT1 CMOS Output O 5 pF
Capacitance
SDTHon 100BASE-TX PMD Input Pair 1000 mV diff pk-pk
Signal detect turnon threshold
SDTHoff 100BASE-TX PMD Input Pair 200 mV diff pk-pk
Signal detect turnoff threshold
VTH1 10BASE-T Receive Threshold PMD Input Pair 585 mV
Idd100 100BASE-TX Supply 81 mA
(Full Duplex)
Idd10 100BASE-TX Supply 92 mA
(Full Duplex)
Idd Power Down Mode CLK2MAC disabled Supply 14 mA

5.6 AC Timing Requirements

PARAMETER DESCRIPTION NOTES MIN TYP MAX UNIT
POWER-UP TIMING
T2.1.1  Post Power-Up Stabilization time prior to MDC preamble for register accesses(1) MDIO is pulled high for 32-bit serial management initialization 167 ms
X1 Clock must be stable for a min. of 167 ms at power up.
T2.1.2  Hardware Configuration Latch-in Time from power up(1) Hardware Configuration Pins are described in the Section 4 section. 167 ms
X1 Clock must be stable for a min. of 167 ms at power up.
T2.1.3  Hardware Configuration pins transition to output drivers 50 ns
RESET TIMING
T2.2.1  Post RESET Stabilization time prior to MDC preamble for register accesses(2) MDIO is pulled high for 32-bit serial management initialization 3 µs
T2.2.2  Hardware Configuration Latch-in Time from the Deassertion of RESET (either soft or hard)(2) Hardware Configuration Pins are described in the Section 4 section 3 µs
T2.2.3  Hardware Configuration pins transition to output drivers 50 ns
T2.2.4  RESET pulse width X1 Clock must be stable for at min. of 1us during RESET pulse low time. 1 µs
MII SERIAL MANAGEMENT TIMING
T2.3.1  MDC to MDIO (Output) Delay Time 0 30 ns
T2.3.2  MDIO (Input) to MDC Setup Time 10 ns
T2.3.3  MDIO (Input) to MDC Hold Time 10 ns
T2.3.4  MDC Frequency 2.5 25 MHz
100 Mb/s MII TRANSMIT TIMING
T2.4.1  TX_CLK High/Low Time 100 Mb/s Normal mode 16 20 24 ns
T2.4.2  TXD[3:0], TX_EN Data Setup to TX_CLK 100 Mb/s Normal mode 10 ns
T2.4.3  TXD[3:0], TX_EN Data Hold from TX_CLK 100 Mb/s Normal mode 0 ns
100 Mb/s MII RECEIVE TIMING
T2.5.1  RX_CLK High/Low Time(3) 100 Mb/s Normal mode 16 20 24 ns
T2.5.2  RX_CLK to RXD[3:0], RX_DV, RX_ER Delay 100 Mb/s Normal mode 10 30 ns
100BASE-TX MII TRANSMIT PACKET LATENCY TIMING
T2.6.1  TX_CLK to PMD Output Pair Latency(4) 100BASE-TX mode 6 bits
100BASE-TX TRANSMIT PACKET DEASSERTION TIMING
T2.7.1  TX_CLK to PMD Output Pair Deassertion(5) 100BASE-TX mode 5 bits
100BASE-TX TRANSMIT TIMING (tR/F and Jitter)
T2.8.1  100 Mb/s PMD Output Pair tR and tF(7) 3 4 5 ns
100 Mb/s tR and tF Mismatch(6)(7) 500 ps
T2.8.2  100 Mb/s PMD Output Pair Transmit Jitter 1.4 ns
100BASE-TX RECEIVE PACKET LATENCY TIMING(10)
T2.9.1  Carrier Sense ON Delay(8) 100 Mb/s Normal mode(9) 20 bits
T2.9.2  Receive Data Latency 100 Mb/s Normal mode(9) 24 bits
100BASE-TX RECEIVE PACKET DEASSERTION TIMING
T2.10.1  Carrier Sense OFF Delay(11) 100 Mb/s Normal mode(9) 24 bits
10 Mb/s MII TRANSMIT TIMING(12)
T2.11.1  TX_CLK High/Low Time 10 Mb/s MII mode 190 200 210 ns
T2.11.2  TXD[3:0], TX_EN Data Setup to TX_CLK fall 10 Mb/s MII mode 25 ns
T2.11.3  TXD[3:0], TX_EN Data Hold from TX_CLK rise 10 Mb/s MII mode 0 ns
10 Mb/s MII RECEIVE TIMING
T2.12.1  RX_CLK High/Low Time(13) 160 200 240 ns
T2.12.2  RX_CLK TO RXD[3:0}, RX_DV Delay 10 Mb/s MII mode 100 ns
T2.12.3  RX_CLK rising edge delay from RXD[3:0], RX_DV Valid 10 Mb/s MII mode 100 ns
10 Mb/s SERIAL MODE (SNI) TRANSMIT TIMING
T2.13.1  TX_CLK High Time 10 Mb/s Serial mode (SNI) 20 25 30 ns
T2.13.2  TX_CLK Low Time 10 Mb/s Serial mode (SNI) 70 75 80 ns
T2.13.3  TXD_0, TX_EN Data Setup to TX_CLK rise 10 Mb/s Serial mode (SNI) 25 ns
T2.13.4  TXD_0, TX_EN Data Hold from TX_CLK rise 10 Mb/s Serial mode (SNI) 0 ns
10 Mb/s SERIAL MODE (SNI) RECEIVE TIMING
T2.14.1  RX_CLK High/Low Time(14) 35 50 65 ns
T2.14.2  RX_CLK fall to RXD_0, RX_DV Delay 10 Mb/s Serial mode (SNI) –10 10 ns
10BASE-T TRANSMIT TIMING (START OF PACKET)
T2.15.1  Transmit Output Delay from the 10 Mb/s MII mode(15) 3.5 bits
Falling Edge of TX_CLK
T2.15.2  Transmit Output Delay from the 10 Mb/s Serial mode (SNI)(15) 3.5 bits
Rising Edge of TX_CLK
10BASE-T TRANSMIT TIMING (END OF PACKET)
T2.16.1  End of Packet High Time 250 300 ns
(with '0' ending bit)
T2.16.2  End of Packet High Time 250 300 ns
(with '1' ending bit)
10BASE-T RECEIVE TIMING (START OF PACKET)(17)
T2.17.1  Carrier Sense Turnon Delay (PMD Input Pair to CRS) 630 1000 ns
T2.17.2  RX_DV Latency(16) 10 bits
T2.17.3  Receive Data Latency Measurement shown from SFD 8 bits
10BASE-T RECEIVE TIMING (END OF PACKET)
T2.18.1  Carrier Sense Turn Off Delay 1 µs
10 Mb/s HEARTBEAT TIMING
T2.19.1  CD Heartbeat Delay 10 Mb/s half-duplex mode 1200 ns
T2.19.2  CD Heartbeat Duration 10 Mb/s half-duplex mode 1000 ns
10 Mb/s JABBER TIMING
T2.20.1  Jabber Activation Time 85 ms
T2.20.2  Jabber Deactivation Time 500 ms
10BASE-T NORMAL LINK PULSE TIMING(18)
T2.21.1  Pulse Width 100 ns
T2.21.2  Pulse Period 16 ms
AUTO-NEGOTIATION FAST LINK PULSE (FLP) TIMING(18)
T2.22.1  Clock, Data Pulse Width 100 ns
T2.22.2  Clock Pulse to Clock Pulse 125 µs
Period
T2.22.3  Clock Pulse to Data Pulse Data = 1 62 µs
Period
T2.22.4  Burst Width 2 ms
T2.22.5  FLP Burst to FLP Burst Period 16 ms
100BASE-TX SIGNAL DETECT TIMING(19)
T2.23.1  SD Internal Turnon Time 1 ms
T2.23.2  SD Internal Turnoff Time 350 µs
100 Mb/s INTERNAL LOOPBACK TIMING
T2.24.1  TX_EN to RX_DV Loopback(21) 100 Mb/s internal loopback mode(20) 240 ns
10 Mb/s INTERNAL LOOPBACK TIMING
T2.25.1  TX_EN to RX_DV Loopback(21) 10 Mb/s internal loopback mode 2 µs
RMII TRANSMIT TIMING
T2.26.1 X1 Clock Period 50 MHz Reference Clock 20 ns
T2.26.2  TXD[1:0], TX_EN, Data Setup to X1 rising 4 ns
T2.26.3 TXD[1:0], TX_EN, Data Hold from X1 rising 2 ns
T2.26.4 X1 Clock to PMD Output Pair Latency From X1 Rising edge to first bit of symbol 17 bits
RMII RECEIVE TIMING
T2.27.1  X1 Clock Period 50 MHz Reference Clock 20 ns
T2.27.2  RXD[1:0], CRS_DV, RX_DV and RX_ER output delay from X1 rising(22)(23)(24) 2 14 ns
T2.27.3  CRS ON delay (100Mb) From JK symbol on PMD Receive Pair to initial assertion of CRS_DV 18.5 bits
T2.27.4  CRS OFF delay (100Mb) From TR symbol on PMD Receive Pair to initial deassertion of CRS_DV 27 bits
T2.27.5  RXD[1:0] and RX_ER latency (100Mb) From symbol on Receive Pair. Elasticity buffer set to default value (01) 38 bits
ISOLATION TIMING
T2.28.1  From software clear of bit 10 in the BMCR register to the transition from Isolate to Normal mode 100 µs
T2.28.2  From Deassertion of S/W or H/W Reset to transition from Isolate to Normal mode 500 µs
25 MHz_OUT TIMING
T2.29.1  25 MHz_OUT High/Low Time(25) MII mode 20 ns
RMII mode 10 ns
T2.29.2  25 MHz_OUT propagation delay(25) Relative to X1 8 ns
100 Mb/s X1 TO TX_CLK TIMING
T2.30.1  X1 to TX_CLK delay(26) 100 Mb/s Normal mode 0 5 ns
(1) In RMII Mode, the minimum Post Power-up Stabilization and Hardware Configuration Latch-in times are 84ms.
(2) It is important to choose pullup and/or pulldown resistors for each of the hardware configuration pins that provide fast RC time constants in order to latch-in the proper value prior to the pin transitioning to an output driver.
(3) RX_CLK may be held low or high for a longer period of time during transition between reference and recovered clocks. Minimum high and low times will not be violated.
(4) For Normal mode, latency is determined by measuring the time from the first rising edge of TX_CLK occurring after the assertion of TX_EN to the first bit of the “J” code group as output from the PMD Output Pair. 1 bit time = 10 ns in 100 Mb/s mode.
(5) Deassertion is determined by measuring the time from the first rising edge of TX_CLK occurring after the deassertion of TX_EN to the first bit of the “T” code group as output from the PMD Output Pair. 1 bit time = 10 ns in 100 Mb/s mode.
(6) Normal Mismatch is the difference between the maximum and minimum of all rise and fall times
(7) Rise and fall times taken at 10% and 90% of the +1 or -1 amplitude
(8) Carrier Sense On Delay is determined by measuring the time from the first bit of the “J” code group to the assertion of Carrier Sense.
(9) 1 bit time = 10 ns in 100 Mb/s mode.
(10) PMD Input Pair voltage amplitude is greater than the Signal Detect Turnon Threshold Value.
(11) Carrier Sense Off Delay is determined by measuring the time from the first bit of the “T” code group to the deassertion of Carrier Sense.
(12) An attached Mac should drive the transmit signals using the positive edge of TX_CLK. As shown above, the MII signals are sampled on the falling edge of TX_CLK.
(13) RX_CLK may be held low for a longer period of time during transition between reference and recovered clocks. Minimum high and low times will not be violated.
(14) RX_CLK may be held high for a longer period of time during transition between reference and recovered clocks. Minimum high and low times will not be violated.
(15) 1 bit time = 100 ns in 10 Mb/s.
(16) 10BASE-T RX_DV Latency is measured from first bit of preamble on the wire to the assertion of RX_DV
(17) 1 bit time = 100 ns in 10 Mb/s mode.
(18) These specifications represent transmit timings.
(19) The signal amplitude on PMD Input Pair must be TP-PMD compliant.
(20) Due to the nature of the descrambler function, all 100BASE-TX Loopback modes will cause an initial “dead-time” of up to 550 µs during which time no data will be present at the receive MII outputs. The 100BASE-TX timing specified is based on device delays after the initial 550µs “dead-time”.
(21) Measurement is made from the first rising edge of TX_CLK after assertion of TX_EN.
(22) Per the RMII Specification, output delays assume a 25pF load.
(23) CRS_DV is asserted asynchronously in order to minimize latency of control signals through the Phy. CRS_DV may toggle synchronously at the end of the packet to indicate CRS deassertion.
(24) RX_DV is synchronous to X1. While not part of the RMII specification, this signal is provided to simplify recovery of receive data.
(25) 25 MHz_OUT characteristics are dependent upon the X1 input characteristics.
(26) X1 to TX_CLK timing is provided to support devices that use X1 instead of TX_CLK as the reference for transmit Mll data.
DP83848C DP83848I DP83848VYB DP83848YB 30011720.pngFigure 5-1 Power-Up Timing
DP83848C DP83848I DP83848VYB DP83848YB 30011721.pngFigure 5-2 Reset Timing
DP83848C DP83848I DP83848VYB DP83848YB 30011722.pngFigure 5-3 MII Serial Management Timing
DP83848C DP83848I DP83848VYB DP83848YB 30011723.pngFigure 5-4 100 Mb/s MII Transmit Timing
DP83848C DP83848I DP83848VYB DP83848YB 30011724.pngFigure 5-5 100 Mb/s MII Receive Timing
DP83848C DP83848I DP83848VYB DP83848YB 30011725.pngFigure 5-6 100BASE-TX MII Transmit Packet Latency Timing
DP83848C DP83848I DP83848VYB DP83848YB 30011726.pngFigure 5-7 100BASE-TX Transmit Packet Deassertion Timing
DP83848C DP83848I DP83848VYB DP83848YB 30011727.pngFigure 5-8 100BASE-TX Transmit Timing (tR/F and Jitter)
DP83848C DP83848I DP83848VYB DP83848YB 30011728.pngFigure 5-9 100BASE-TX Receive Packet Latency Timing
DP83848C DP83848I DP83848VYB DP83848YB 30011729.pngFigure 5-10 100BASE-TX Receive Packet Deassertion Timing
DP83848C DP83848I DP83848VYB DP83848YB 30011730.pngFigure 5-11 10 Mb/s MII Transmit Timing
DP83848C DP83848I DP83848VYB DP83848YB 30011731.pngFigure 5-12 10 Mb/s MII Receive Timing
DP83848C DP83848I DP83848VYB DP83848YB 30011732.pngFigure 5-13 10 Mb/s Serial Mode (SNI) Transmit Timing
DP83848C DP83848I DP83848VYB DP83848YB 30011733.pngFigure 5-14 10 Mb/s Serial Mode (SNI) Receive Timing
DP83848C DP83848I DP83848VYB DP83848YB 30011734.gifFigure 5-15 10BASE-T Transmit Timing (Start of Packet)
DP83848C DP83848I DP83848VYB DP83848YB 30011735.pngFigure 5-16 10BASE-T Transmit Timing (End of Packet)
DP83848C DP83848I DP83848VYB DP83848YB 30011736.gifFigure 5-17 10BASE-T Receive Timing (Start of Packet)
DP83848C DP83848I DP83848VYB DP83848YB 30011737.pngFigure 5-18 10BASE-T Receive Timing (End of Packet)
DP83848C DP83848I DP83848VYB DP83848YB 30011738.pngFigure 5-19 10 Mb/s Heartbeat Timing
DP83848C DP83848I DP83848VYB DP83848YB 30011739.pngFigure 5-20 10 Mb/s Jabber Timing
DP83848C DP83848I DP83848VYB DP83848YB 30011740.pngFigure 5-21 10BASE-T Normal Link Pulse Timing
DP83848C DP83848I DP83848VYB DP83848YB 30011741.pngFigure 5-22 Auto-Negotiation Fast Link Pulse (FLP) Timing
DP83848C DP83848I DP83848VYB DP83848YB 30011742.pngFigure 5-23 100BASE-TX Signal Detect Timing
DP83848C DP83848I DP83848VYB DP83848YB 30011743.pngFigure 5-24 100 Mb/s Internal Loopback Timing
DP83848C DP83848I DP83848VYB DP83848YB 30011744.pngFigure 5-25 10 Mb/s Internal Loopback Timing
DP83848C DP83848I DP83848VYB DP83848YB 30011745.pngFigure 5-26 RMII Transmit Timing
DP83848C DP83848I DP83848VYB DP83848YB 30011746.pngFigure 5-27 RMII Receive Timing
DP83848C DP83848I DP83848VYB DP83848YB 30011749.pngFigure 5-28 Isolation Timing
DP83848C DP83848I DP83848VYB DP83848YB 30011750.pngFigure 5-29 25 MHz_OUT Timing
DP83848C DP83848I DP83848VYB DP83848YB 30011752.pngFigure 5-30 100 Mb/s X1 to TX_CLK Timing