JAJSGX8C April   2002  – February 2019 SN65LVDT14 , SN65LVDT41

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
  3. 概要
    1.     Device Images
      1.      SN65LVDT41 の機能図
      2.      SN65LVDT14 の機能図
  4. 改訂履歴
  5. 概要(続き)
  6. Pin Configuration and Functions
    1.     SN65LVDT41 Pin Functions
    2.     SN65LVDT14 Pin Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Receiver Electrical Characteristics
    6. 7.6  Driver Electrical Characteristics
    7. 7.7  Device Electrical Characteristics
    8. 7.8  Receiver Switching Characteristics
    9. 7.9  Driver Switching Characteristics
    10. 7.10 Typical Characteristics
      1. 7.10.1 Receiver
      2. 7.10.2 Driver
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 SN65LVDTxx Driver and Receiver Functionality
      2. 9.3.2 Integrated Termination
      3. 9.3.3 SN65LVDTxx Equivalent Circuits
    4. 9.4 Device Functional Modes
  10. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 Extending a Serial Peripheral Interface Using LVDS Signaling Over Differential Transmission Cables
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 SPI Propagation Delay Limitations
        2. 10.2.2.2 Interconnecting Media
        3. 10.2.2.3 Input Fail-Safe Biasing
        4. 10.2.2.4 Power Decoupling Recommendations
        5. 10.2.2.5 PCB Transmission Lines
        6. 10.2.2.6 Probing LVDS Transmission Lines on PCB
      3. 10.2.3 Application Curve
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
      1. 12.1.1 Microstrip vs. Stripline Topologies
      2. 12.1.2 Dielectric Type and Board Construction
      3. 12.1.3 Recommended Stack Layout
      4. 12.1.4 Separation Between Traces
      5. 12.1.5 Crosstalk and Ground Bounce Minimization
      6. 12.1.6 Decoupling
    2. 12.2 Layout Examples
  13. 13デバイスおよびドキュメントのサポート
    1. 13.1 関連資料
    2. 13.2 ドキュメントの更新通知を受け取る方法
    3. 13.3 関連リンク
    4. 13.4 コミュニティ・リソース
    5. 13.5 商標
    6. 13.6 静電気放電に関する注意事項
    7. 13.7 Glossary
  14. 14メカニカル、パッケージ、および注文情報

パッケージ・オプション

デバイスごとのパッケージ図は、PDF版データシートをご参照ください。

メカニカル・データ(パッケージ|ピン)
  • PW|20
サーマルパッド・メカニカル・データ
発注情報

PCB Transmission Lines

As per the LVDS owner's manual design guide, 4th edition (SNLA187), Figure 21 depicts several transmission line structures commonly used in printed-circuit boards (PCBs). Each structure consists of a signal line and return path with a uniform cross section along its length. A microstrip is a signal trace on the top (or bottom) layer, separated by a dielectric layer from its return path in a ground or power plane. A stripline is a signal trace in the inner layer, with a dielectric layer in between a ground plane above and below the signal trace. The dimensions of the structure along with the dielectric material properties determine the characteristic impedance of the transmission line (also called controlled-impedance transmission line).

When two signal lines are placed close by, they form a pair of coupled transmission lines. Figure 21 shows examples of edge-coupled microstrip lines, and edge-coupled or broad-side-coupled striplines. When excited by differential signals, the coupled transmission line is referred to as a differential pair. The characteristic impedance of each line is called odd-mode impedance. The sum of the odd-mode impedances of each line is the differential impedance of the differential pair. In addition to the trace dimensions and dielectric material properties, the spacing between the two traces determines the mutual coupling and impacts the differential impedance. When the two lines are immediately adjacent (like if S is less than 2 W, for example), the differential pair is called a tightly-coupled differential pair. To maintain constant differential impedance along the length, it is important to keep the trace width and spacing uniform along the length, as well as maintain good symmetry between the two lines.

SN65LVDT14 SN65LVDT41 citl_slls373.gifFigure 21. Controlled-Impedance Transmission Lines