SPRS614F March   2011  – March 2015 TMS320DM8165 , TMS320DM8167 , TMS320DM8168

PRODUCTION DATA.  

  1. Device Overview
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Functional Block Diagram
  2. Revision History
  3. Device Comparison
    1. 3.1 Device Characteristics
    2. 3.2 ARM Subsystem
      1. 3.2.1 ARM Cortex-A8 RISC Processor
      2. 3.2.2 Embedded Trace Module (ETM)
      3. 3.2.3 ARM Cortex-A8 Interrupt Controller (AINTC)
      4. 3.2.4 System Interconnect
    3. 3.3 DSP Subsystem
      1. 3.3.1 C674x DSP CPU Description
      2. 3.3.2 System Memory Management Unit (System MMU)
        1. 3.3.2.1 System MMU Registers
    4. 3.4 Media Controller
    5. 3.5 High-Definition Video Image Coprocessor 2 (HDVICP2)
    6. 3.6 Inter-Processor Communication
      1. 3.6.1 Mailbox Module
        1. 3.6.1.1 Mailbox Registers
      2. 3.6.2 Spinlock Module
        1. 3.6.2.1 Spinlock Registers
    7. 3.7 Power, Reset and Clock Management (PRCM) Module
    8. 3.8 SGX530 (DM8168 only)
    9. 3.9 Memory Map Summary
      1. 3.9.1 L3 Memory Map
      2. 3.9.2 L4 Memory Map
        1. 3.9.2.1 L4 Standard Peripheral
        2. 3.9.2.2 L4 High-Speed Peripheral
      3. 3.9.3 TILER Extended Addressing Map
      4. 3.9.4 Cortex™-A8 Memory Map
      5. 3.9.5 C674x Memory Map
  4. Terminal Configuration and Functions
    1. 4.1 Pin Assignments
      1. 4.1.1 Pin Map (Bottom View)
    2. 4.2 Terminal Functions
      1. 4.2.1  Boot Configuration
      2. 4.2.2  DDR2 and DDR3 Memory Controller Signals
      3. 4.2.3  Ethernet Media Access Controller (EMAC) Signals
      4. 4.2.4  General-Purpose Input/Output (GPIO) Signals
      5. 4.2.5  General-Purpose Memory Controller (GPMC) Signals
      6. 4.2.6  High-Definition Multimedia Interface (HDMI) Signals
      7. 4.2.7  Inter-Integrated Circuit (I2C) Signals
      8. 4.2.8  Multichannel Audio Serial Port Signals
      9. 4.2.9  Multichannel Buffered Serial Port Signals
      10. 4.2.10 Oscillator/Phase-Locked Loop (PLL) Signals
      11. 4.2.11 Peripheral Component Interconnect Express (PCIe) Signals
      12. 4.2.12 Reset, Interrupts, and JTAG Interface Signals
      13. 4.2.13 Secure Digital/Secure Digital Input Output (SD/SDIO) Signals
      14. 4.2.14 Serial ATA Signals
      15. 4.2.15 Serial Peripheral Digital Interconnect Format (SPI) Signals
      16. 4.2.16 Timer Signals
      17. 4.2.17 Universal Asynchronous Receiver/Transmitter (UART) Signals
      18. 4.2.18 Universal Serial Bus (USB) Signals
      19. 4.2.19 Video Input Signals
      20. 4.2.20 Digital Video Output Signals
      21. 4.2.21 Analog Video Output Signals
      22. 4.2.22 Reserved Pins
      23. 4.2.23 Supply Voltages
      24. 4.2.24 Ground Pins (VSS)
  5. Specifications
    1. 5.1 Absolute Maximum Ratings (Unless Otherwise Noted)
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Resistance Characteristics
  6. Device Configurations
    1. 6.1 Control Module
    2. 6.2 Revision Identification
    3. 6.3 Debugging Considerations
      1. 6.3.1 Pullup and Pulldown Resistors
    4. 6.4 Boot Sequence
      1. 6.4.1 Boot Mode Registers
    5. 6.5 Pin Multiplexing Control
      1. 6.5.1 PINCTRLx Register Descriptions
    6. 6.6 How to Handle Unused Pins
  7. System Interconnect
    1. 7.1 L3 Interconnect
    2. 7.2 L4 Interconnect
  8. Power, Reset, Clocking, and Interrupts
    1. 8.1 Power Supplies
      1. 8.1.1 Voltage and Power Domains
      2. 8.1.2 Power Domains
      3. 8.1.3 1-V AVS and 1-V Constant Power Domains
      4. 8.1.4 SmartReflex™
      5. 8.1.5 Memory Power Management
      6. 8.1.6 IO Power-Down Modes
      7. 8.1.7 Supply Sequencing
      8. 8.1.8 Power-Supply Decoupling
    2. 8.2 Reset
      1. 8.2.1  System-Level Reset Sources
      2. 8.2.2  Power-On Reset (POR pin)
      3. 8.2.3  External Warm Reset (RESET pin)
      4. 8.2.4  Emulation Warm Reset
      5. 8.2.5  Watchdog Reset
      6. 8.2.6  Software Global Cold Reset
      7. 8.2.7  Software Global Warm Reset
      8. 8.2.8  Test Reset (TRST pin)
      9. 8.2.9  Local Reset
      10. 8.2.10 Reset Priority
      11. 8.2.11 Reset Status Register
      12. 8.2.12 PCIe Reset Isolation
      13. 8.2.13 RSTOUT
      14. 8.2.14 Effect of Reset on Emulation and Trace
      15. 8.2.15 Reset During Power Domain Switching
      16. 8.2.16 Pin Behaviors at Reset
      17. 8.2.17 Reset Electrical Data and Timing
    3. 8.3 Clocking
      1. 8.3.1 Device Clock Inputs
        1. 8.3.1.1 Using the Internal Oscillators
      2. 8.3.2 SERDES_CLKN and SERDES_CLKP Input Clock
      3. 8.3.3 CLKIN32 Input Clock
      4. 8.3.4 PLLs
        1. 8.3.4.1 PLL Programming Limits
        2. 8.3.4.2 PLL Power Supply Filtering
        3. 8.3.4.3 PLL Locking Sequence
        4. 8.3.4.4 PLL Registers
      5. 8.3.5 SYSCLKs
      6. 8.3.6 Module Clocks
      7. 8.3.7 Output Clock Select Logic
    4. 8.4 Interrupts
      1. 8.4.1 Interrupt Summary List
      2. 8.4.2 Cortex™-A8 Interrupts
      3. 8.4.3 C674x Interrupts
  9. Peripheral Information and Timings
    1. 9.1  Parameter Information
      1. 9.1.1 1.8-V and 3.3-V Signal Transition Levels
      2. 9.1.2 3.3-V Signal Transition Rates
      3. 9.1.3 Timing Parameters and Board Routing Analysis
    2. 9.2  Recommended Clock and Control Signal Transition Behavior
    3. 9.3  DDR2 and DDR3 Memory Controller
      1. 9.3.1 DDR2 Routing Specifications
        1. 9.3.1.1 Board Designs
        2. 9.3.1.2 DDR2 Interface
          1. 9.3.1.2.1  DDR2 Interface Schematic
          2. 9.3.1.2.2  Compatible JEDEC DDR2 Devices
          3. 9.3.1.2.3  PCB Stackup
          4. 9.3.1.2.4  Placement
          5. 9.3.1.2.5  DDR2 Keepout Region
          6. 9.3.1.2.6  Bulk Bypass Capacitors
          7. 9.3.1.2.7  High-Speed Bypass Capacitors
          8. 9.3.1.2.8  Net Classes
          9. 9.3.1.2.9  DDR2 Signal Termination
          10. 9.3.1.2.10 VREFSSTL_DDR Routing
        3. 9.3.1.3 DDR2 CK and ADDR_CTRL Routing
      2. 9.3.2 DDR3 Routing Specifications
        1. 9.3.2.1  Board Designs
          1. 9.3.2.1.1 DDR3 versus DDR2
        2. 9.3.2.2  DDR3 Device Combinations
          1. 9.3.2.2.1 DDR3 EMIFs
        3. 9.3.2.3  DDR3 Interface Schematic
          1. 9.3.2.3.1 32-Bit DDR3 Interface
          2. 9.3.2.3.2 16-Bit DDR3 Interface
        4. 9.3.2.4  Compatible JEDEC DDR3 Devices
        5. 9.3.2.5  PCB Stackup
        6. 9.3.2.6  Placement
        7. 9.3.2.7  DDR3 Keepout Region
        8. 9.3.2.8  Bulk Bypass Capacitors
        9. 9.3.2.9  High-Speed Bypass Capacitors
          1. 9.3.2.9.1 Return Current Bypass Capacitors
        10. 9.3.2.10 Net Classes
        11. 9.3.2.11 DDR3 Signal Termination
        12. 9.3.2.12 VREFSSTL_DDR Routing
        13. 9.3.2.13 VTT
        14. 9.3.2.14 CK and ADDR_CTRL Topologies and Routing Definition
          1. 9.3.2.14.1 Four DDR3 Devices
            1. 9.3.2.14.1.1 CK and ADDR_CTRL Topologies, Four DDR3 Devices
            2. 9.3.2.14.1.2 CK and ADDR_CTRL Routing, Four DDR3 Devices
          2. 9.3.2.14.2 Two DDR3 Devices
            1. 9.3.2.14.2.1 CK and ADDR_CTRL Topologies, Two DDR3 Devices
            2. 9.3.2.14.2.2 CK and ADDR_CTRL Routing, Two DDR3 Devices
          3. 9.3.2.14.3 One DDR3 Device
            1. 9.3.2.14.3.1 CK and ADDR_CTRL Topologies, One DDR3 Device
            2. 9.3.2.14.3.2 CK and ADDR_CTRL Routing, One DDR3 Device
        15. 9.3.2.15 Data Topologies and Routing Definition
          1. 9.3.2.15.1 DQS, DQ and DM Topologies, Any Number of Allowed DDR3 Devices
          2. 9.3.2.15.2 DQS, DQ and DM Routing, Any Number of Allowed DDR3 Devices
        16. 9.3.2.16 Routing Specification
          1. 9.3.2.16.1 CK and ADDR_CTRL Routing Specification
          2. 9.3.2.16.2 DQS and DQ Routing Specification
      3. 9.3.3 DDR2 and DDR3 Memory Controller Register Descriptions
      4. 9.3.4 DDR2 and DDR3 PHY Register Descriptions
      5. 9.3.5 DDR2 and DDR3 Memory Controller Electrical Data and Timing
    4. 9.4  Emulation Features and Capability
      1. 9.4.1 Advanced Event Triggering (AET)
      2. 9.4.2 Trace
      3. 9.4.3 IEEE 1149.1 JTAG
        1. 9.4.3.1 JTAG ID (JTAGID) Register Description
        2. 9.4.3.2 JTAG Electrical Data and Timing
      4. 9.4.4 IEEE 1149.7 cJTAG
    5. 9.5  Enhanced Direct Memory Access (EDMA) Controller
      1. 9.5.1 EDMA Channel Synchronization Events
      2. 9.5.2 EDMA Peripheral Register Descriptions
    6. 9.6  Ethernet Media Access Controller (EMAC)
      1. 9.6.1 EMAC Peripheral Register Descriptions
      2. 9.6.2 EMAC Electrical Data and Timing
      3. 9.6.3 Management Data Input and Output (MDIO)
        1. 9.6.3.1 MDIO Peripheral Register Descriptions
        2. 9.6.3.2 MDIO Electrical Data and Timing
    7. 9.7  General-Purpose Input and Output (GPIO)
      1. 9.7.1 GPIO Peripheral Register Descriptions
      2. 9.7.2 GPIO Electrical Data and Timing
    8. 9.8  General-Purpose Memory Controller (GPMC) and Error Locator Module (ELM)
      1. 9.8.1 GPMC and ELM Peripheral Register Descriptions
      2. 9.8.2 GPMC Electrical Data and Timing
        1. 9.8.2.1 GPMC and NOR Flash Interface Synchronous Mode Timing
        2. 9.8.2.2 GPMC and NOR Flash Interface Asynchronous Mode Timing
        3. 9.8.2.3 GPMC and NAND Flash Interface Asynchronous Mode Timing
    9. 9.9  High-Definition Multimedia Interface (HDMI)
      1. 9.9.1 HDMI Interface Design Specifications
        1. 9.9.1.1 HDMI Interface Schematic
        2. 9.9.1.2 TMDS Routing
        3. 9.9.1.3 DDC Signals
        4. 9.9.1.4 HDMI ESD Protection Device (Required)
        5. 9.9.1.5 PCB Stackup Specifications
        6. 9.9.1.6 Grounding
      2. 9.9.2 HDMI Peripheral Register Descriptions
    10. 9.10 High-Definition Video Processing Subsystem (HDVPSS)
      1. 9.10.1 HDVPSS Electrical Data and Timing
      2. 9.10.2 Video DAC Guidelines and Electrical Data and Timing
    11. 9.11 Inter-Integrated Circuit (I2C)
      1. 9.11.1 I2C Peripheral Register Descriptions
      2. 9.11.2 I2C Electrical Data and Timing
    12. 9.12 Multichannel Audio Serial Port (McASP)
      1. 9.12.1 McASP Device-Specific Information
      2. 9.12.2 McASP0, McASP1, and McASP2 Peripheral Register Descriptions
      3. 9.12.3 McASP Electrical Data and Timing
    13. 9.13 Multichannel Buffered Serial Port (McBSP)
      1. 9.13.1 McBSP Peripheral Registers
      2. 9.13.2 McBSP Electrical Data and Timing
    14. 9.14 Peripheral Component Interconnect Express (PCIe)
      1. 9.14.1 PCIe Design and Layout Specifications
        1. 9.14.1.1 Clock Source
        2. 9.14.1.2 PCIe Connections and Interface Compliance
          1. 9.14.1.2.1 Coupling Capacitors
          2. 9.14.1.2.2 Polarity Inversion
          3. 9.14.1.2.3 Lane Reversal
        3. 9.14.1.3 Non-Standard PCIe Connections
          1. 9.14.1.3.1 PCB Stackup Specifications
          2. 9.14.1.3.2 Routing Specifications
      2. 9.14.2 PCIe Peripheral Register Descriptions
      3. 9.14.3 PCIe Electrical Data and Timing
    15. 9.15 Real-Time Clock (RTC)
      1. 9.15.1 RTC Register Descriptions
    16. 9.16 Secure Digital and Secure Digital Input Output (SD and SDIO)
      1. 9.16.1 SD and SDIO Peripheral Register Descriptions
      2. 9.16.2 SD and SDIO Electrical Data and Timing
        1. 9.16.2.1 SD Identification and Standard SD Mode
        2. 9.16.2.2 High-Speed SD Mode
    17. 9.17 Serial ATA Controller (SATA)
      1. 9.17.1 SATA Interface Design Specifications
        1. 9.17.1.1 SATA Interface Schematic
        2. 9.17.1.2 Compatible SATA Components and Modes
        3. 9.17.1.3 PCB Stackup Specifications
        4. 9.17.1.4 Routing Specifications
        5. 9.17.1.5 Coupling Capacitors
      2. 9.17.2 SATA Peripheral Register Descriptions
    18. 9.18 Serial Peripheral Interface (SPI)
      1. 9.18.1 SPI Peripheral Register Descriptions
      2. 9.18.2 SPI Electrical Data and Timing
    19. 9.19 Timers
      1. 9.19.1 Timer Peripheral Register Descriptions
      2. 9.19.2 Timer Electrical Data and Timing
    20. 9.20 Universal Asynchronous Receiver and Transmitter (UART)
      1. 9.20.1 UART Peripheral Register Descriptions
      2. 9.20.2 UART Electrical Data and Timing
    21. 9.21 Universal Serial Bus (USB2.0)
      1. 9.21.1 USB2.0 Peripheral Register Descriptions
      2. 9.21.2 USB2.0 Electrical Data and Timing
  10. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Development Support
      2. 10.1.2 Device Speed Range Overview
    2. 10.2 Documentation Support
    3. 10.3 Related Links
    4. 10.4 Community Resources
    5. 10.5 Trademarks
    6. 10.6 Electrostatic Discharge Caution
    7. 10.7 Glossary
  11. 11Mechanical Packaging and Orderable Information
    1. 11.1 Packaging Information

パッケージ・オプション

デバイスごとのパッケージ図は、PDF版データシートをご参照ください。

メカニカル・データ(パッケージ|ピン)
  • CYG|1031
サーマルパッド・メカニカル・データ
発注情報

1 Device Overview

1.1 Features

  • High-Performance DaVinci Digital Media Processors
    • ARM®Cortex™-A8 RISC Processor
      • Up to 1.20 GHz
    • C674x™ VLIW DSP
      • Up to 1 GHz
      • Up to 8000 MIPS and 6000 MFLOPS
      • Fully Software-Compatible with C67x+ and C64x+™
  • ARM Cortex-A8 Core
    • ARMv7 Architecture
      • In-Order, Dual-Issue, Superscalar Processor Core
      • NEON™ Multimedia Architecture
    • Supports Integer and Floating Point (VFPv3-IEEE754 Compliant)
      • Jazelle® RCT Execution Environment
  • ARM Cortex-A8 Memory Architecture
    • 32-KB Instruction and Data Caches
    • 256-KB L2 Cache
    • 64-KB RAM, 48-KB of Boot ROM
  • TMS320C674x Floating-Point VLIW DSP
    • 64 General-Purpose Registers (32-Bit)
    • Six ALU (32-Bit and 40-Bit) Functional Units
      • Supports 32-Bit Integer, SP (IEEE Single Precision, 32-Bit) and DP (IEEE Double Precision, 64-Bit) Floating Point
      • Supports up to Four SP Adds Per Clock and Four DP Adds Every Two Clocks
      • Supports up to Two Floating-Point (SP or DP) Approximate Reciprocal or Square Root Operations Per Cycle
    • Two Multiply Functional Units
      • Mixed-Precision IEEE Floating-Point Multiply Supported up to:
        • 2 SP x SP → SP Per Clock
        • 2 SP x SP → DP Every Two Clocks
        • 2 SP x DP → DP Every Three Clocks
        • 2 DP x DP → DP Every Four Clocks
      • Fixed-Point Multiply Supports Two 32 x 32 Multiplies, Four 16 x 16-Bit Multiplies Including Complex Multiplies, or Eight 8 x 8-Bit Multiplies per Clock Cycle
  • C674x Two-Level Memory Architecture
    • 32-KB L1P and L1D RAM and Cache
    • 256-KB L2 Unified Mapped RAM and Caches
  • System Memory Management Unit (System MMU)
    • Maps C674x DSP and EMDA TCB Memory Accesses to System Addresses
  • 512KB of On-Chip Memory Controller (OCMC) RAM
  • Media Controller
    • Manages HDVPSS and HDVICP2 Modules
  • Up to Three Programmable High-Definition Video Image Coprocessing (HDVICP2) Engines
    • Encode, Decode, Transcode Operations
    • H.264, MPEG-2, VC-1, MPEG-4 SP and ASP
  • SGX530 3D Graphics Engine (Available Only on the DM8168 Device)
    • Delivers up to 30 MTriangles per Second
    • Universal Scalable Shader Engine
    • Direct3D® Mobile, OpenGL® ES 1.1 and 2.0, OpenVG™ 1.1, OpenMax™ API Support
    • Advanced Geometry DMA Driven Operation
    • Programmable HQ Image Anti-Aliasing
  • Endianness
    • ARM, DSP Instructions and Data – Little Endian
  • HD Video Processing Subsystem (HDVPSS)
    • Two 165-MHz HD Video Capture Channels
      • One 16-Bit or 24-Bit and One 16-Bit Channel
      • Each Channel Splittable Into Dual 8-Bit Capture Channels
    • Two 165-MHz HD Video Display Channels
      • One 16-Bit, 24-Bit, 30-Bit Channel and One 16-Bit Channel
    • Simultaneous SD and HD Analog Output
    • Digital HDMI 1.3 Transmitter with PHY with HDCP up to 165-MHz Pixel Clock
    • Three Graphics Layers
  • Dual 32-Bit DDR2 and DDR3 SDRAM Interfaces
    • Supports up to DDR2-800 and DDR3-1600
    • Up to Eight x8 Devices Total
    • 2GB of Total Address Space
    • Dynamic Memory Manager (DMM)
      • Programmable Multi-Zone Memory Mapping and Interleaving
      • Enables Efficient 2D Block Accesses
      • Supports Tiled Objects in 0°, 90°, 180°, or 270° Orientation and Mirroring
      • Optimizes Interlaced Accesses
  • One PCI Express® (PCIe) 2.0 Port with Integrated PHY
    • Single Port with 1 or 2 Lanes at 5.0 GT per Second
    • Configurable as Root Complex or Endpoint
  • Serial ATA (SATA) 3.0 Gbps Controller with Integrated PHYs
    • Direct Interface for Two Hard Disk Drives
    • Hardware-Assisted Native Command Queuing (NCQ) from up to 32 Entries
    • Supports Port Multiplier and Command-Based Switching
  • Two 10 Mbps, 100 Mbps, and 1000 Mbps Ethernet MACs (EMAC)
    • IEEE 802.3 Compliant (3.3-V I/O Only)
    • MII and GMII Media Independent Interfaces
    • Management Data I/O (MDIO) Module
  • Dual USB 2.0 Ports with Integrated PHYs
    • USB 2.0 High-Speed and Full-Speed Client
    • USB 2.0 High-Speed, Full-Speed, and Low-Speed Host
    • Supports Endpoints 0-15
  • General-Purpose Memory Controller (GPMC)
    • 8-Bit and 16-Bit Multiplexed Address and Data Bus
    • Up to 6 Chip Selects with up to 256-MB Address Space per Chip Select Pin
    • Glueless Interface to NOR Flash, NAND Flash (with BCH and Hamming Error Code Detection), SRAM and Pseudo-SRAM
    • Error Locator Module (ELM) Outside of GPMC to Provide up to 16-Bit and 512-Byte Hardware ECC for NAND
    • Flexible Asynchronous Protocol Control for Interface to FPGA, CPLD, ASICs
  • Enhanced Direct-Memory-Access (EDMA) Controller
    • Four Transfer Controllers
    • 64 Independent DMA Channels and 8 Quick DMA (QDMA) Channels
  • Seven 32-Bit General-Purpose Timers
  • One System Watchdog Timer
  • Three Configurable UART, IrDA, and CIR Modules
    • UART0 with Modem Control Signals
    • Supports up to 3.6864 Mbps UART
    • SIR, MIR, FIR (4.0 MBAUD), and CIR
  • One 40-MHz Serial Peripheral Interface (SPI) with Four Chip Selects
  • SD and SDIO Serial Interface (1-Bit and 4-Bit)
  • Dual Inter-Integrated Circuit (I2C bus®) Ports
  • Three Multichannel Audio Serial Ports (McASPs)
    • One Six-Serializer Transmit and Receive Port
    • Two Dual-Serializer Transmit and Receive Ports
    • DIT-Capable For SDIF and PDIF (All Ports)
  • Multichannel Buffered Serial Port (McBSP)
    • Transmit and Receive Clocks up to 48 MHz
    • Two Clock Zones and Two Serial Data Pins
    • Supports TDM, I2S, and Similar Formats
  • Real-Time Clock (RTC)
    • One-Time or Periodic Interrupt Generation
  • Up to 64 General-Purpose I/O (GPIO) Pins
  • On-Chip ARM ROM Bootloader (RBL)
  • Power, Reset, and Clock Management
    • SmartReflex™ Technology (Level 2)
    • Seven Independent Core Power Domains
    • Clock Enable and Disable Control For Subsystems and Peripherals
  • IEEE 1149.1 (JTAG) and IEEE 1149.7 (cJTAG) Compatible
  • Via Channel™ Technology Enables use of
    0.8-mm Design Rules
  • 40-nm CMOS Technology
  • 3.3-V Single-Ended LVCMOS I/Os (Except for DDR3 at 1.5 V, DDR2 at 1.8 V, and DEV_CLKIN at 1.8 V)

1.2 Applications

  • Video Encode, Decode, Transcode, and Transrate
  • Video Security
  • Video Conferencing
  • Video Infrastructure
  • Media Server
  • Digital Signage

1.3 Description

The DM816x DaVinci video processors are a highly integrated, programmable platform that leverages TI's DaVinci technology to meet the processing needs of the following applications: video encode, decode, transcode, and transrate; video security; video conferencing; video infrastructure; media server; and digital signage.

The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device combines programmable video and audio processing with a highly integrated peripheral set.

Key to the device are up to three high-definition video and imaging coprocessors (HDVICP2). Each coprocessor can perform a single 1080p60 H.264 encode or decode or multiple lower resolution or frame rate encodes and decodes. Multichannel HD-to-HD or HD-to-SD transcoding and multicoding are also possible. With the ability to simultaneously process 1080p60 streams, the TMS320DM816x device is a powerful solution for today's demanding HD video application requirements.

Programmability is provided by an ARM Cortex-A8 RISC CPU with NEON extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM processor lets developers keep control functions separate from audio and video algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-bit RISC processor with NEON floating-point extension includes: 32KB of instruction cache; 32KB of data cache; 256KB of L2 cache; 48KB of public ROM, and 64KB of RAM.

The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD video processing subsystem (HDVPSS), which provides output of simultaneous HD and SD analog video and dual HD video inputs; up to two Gigabit Ethernet MACs (10 Mbps,100, Mbps, 1000 Mbps) with GMII and MDIO interface; two USB ports with integrated 2.0 PHY; PCIe port x2 lanes GEN2 compliant interface, which allows the device to act as a PCIe root complex or device endpoint; one 6-channel McASP audio serial port (with DIT mode); two dual-channel McASP audio serial ports (with DIT mode); one McBSP multichannel buffered serial port; three UARTs with IrDA and CIR support; SPI serial interface; SD and SDIO serial interface; two I2C master and slave interfaces; up to 64 GPIO pins; seven 32-bit timers; system watchdog timer; dual DDR2 and DDR3 SDRAM interface; flexible 8-bit and 16-bit asynchronous memory interface; and up to two SATA interfaces for external storage on two disk drives or more with the use of a port multiplier.

The device also includes an SGX530 3D graphics engine (available only on the TMS320DM8168 device) to enable sophisticated GUIs and compelling user interfaces and interactions. Additionally, the device has a complete set of development tools for both the ARM and DSP, including C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft®Windows® debugger interface for visibility into source code execution.

The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000™ DSP platform. The C674x floating-point DSP processor uses 32KB of L1 program memory and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through a system MMU.

The device package has been specially engineered with Via Channel technology. This technology allows use of 0.8-mm pitch PCB feature sizes in this 0.65-mm pitch package, and substantially reduces PCB costs. Via Channel technology also allows PCB routing in only two signal layers due to the increased layer efficiency of the Via Channel BGA technology.

Device Information

PART NUMBER PACKAGE BODY SIZE
TMS320DM8168CYG FCBGA (1031) 25.0 mm x 25.0 mm
TMS320DM8167CYG FCBGA (1031) 25.0 mm x 25.0 mm
TMS320DM8165CYG FCBGA (1031) 25.0 mm x 25.0 mm

1.4 Functional Block Diagram

Figure 1-1 shows the functional block diagram of the device.

TMS320DM8168 TMS320DM8167 TMS320DM8165 dm816x_fbd_prs614.gifFigure 1-1 TMS320DM816x Device Functional Block Diagram