
Topic 6

Software Design for Digital Power –
Programming 101 for Analog Designers

 6-1

Software Design for Digital Power
Programming 101 for Analog Designers

David Figoli, Texas Instruments
ABSTRACT

Unlike their analog counterparts, digital power supply controllers can benefit from a technique known
as Time Division Multiplexing (TDM) to perform more tasks with less resources. TDM permits a single
processor or “executable” resource to be shared amongst several independent and often unrelated
tasks, e.g. software control loops, diagnostics, fault monitoring, etc. In the analog domain, adding
additional functions or tasks requires adding additional components. Resource sharing via TDM is
possible because digital power supply controllers operate as time sampled systems. Designing software
to take advantage of TDM for a fully digital controlled power supply can be a challenge, but by
understanding some key principles and following appropriate guidelines this job can be greatly
simplified. In this power seminar module we will examine how to structure software code to take
advantage of a class of low cost digital controllers which offer the right performance to get the job
done.

I. TIME SAMPLED SYSTEMS
Digital control of power supplies is part of

the broader engineering discipline of “Time
Sampled Systems”. Here continuous time signals
are represented as series of data points in time
and manipulated via various mathematical
“functions”, generally know as digital signal
processing.

More specifically closed loop control systems

process incoming data streams (or series) and act
upon it to control or regulate a real process. In its
most basic form a single loop control system
consists of three key blocks,
• Analog-to-digital conversion (A-D)
• Digital signal processing (or mathematical

manipulation of discrete data)
• Digital-to-analog conversion (D-A), the

reconstruction of continuous time signal from
a discrete series

Fig. 1. Key blocks for a digital signal processing system.

 6-2

In addition to closing one or several control
loops, a modern power supply is also required to
have a certain level of “General Intelligence”
(GI), this can come in many forms, like
diagnostics, reporting, start-up, shut-down,
supervisory, fault management, communications,
etc. With the increasing complexity and
performance of modern silicon integration, it
makes sense to integrate the functionality of both
the control portion and GI portion of this
processing into a single high performance digital
controller.

II. TIME DIVISION MULTIPLEXING FOR
SOFTWARE – AN OVERVIEW

Unlike analog control, processing digital or
discrete time data allows for multiple task
execution to be performed from a single resource,
e.g. a digital processor can control multiple loops
from a single processing unit. In the analog case
extra “processing” units need to be added, e.g.
op-amps, comparators and passives to control
multiple loops. The technique or mechanism
which allows a digital system to perform multiple
tasks is called Time Division Multiplexing
(TDM), this concept is a very powerful one, but
requires that the digital resources (CPU, ADC,
PWM, communications, and other peripherals) be
carefully and efficiently managed via well
written and executed software.

A key parameter governing the application of
TDM techniques is the data sampling rate, i.e.
TSAMPLE, the period or time between converted
data points. Once a data point is sampled a digital
processor has only this time to “act” upon this
data before the next sample arrives. Failing to do
so can lead to severe phase lag or even control
loop failure. Fig. 2 shows an example where the
processor is capable of executing a single set of
control code before the next sample. In this
example, a small portion of spare time remains
prior to next sample; this is too small to execute
another control loop but, as will be discussed
later, serves as a good resource for slower
background activities.

If the sample rate is made slower or processor
throughput is increased then TDM can be
effectively utilized. More input signals can be
sampled and independently processed. In Fig. 3,
3 independent data streams or samples are shown
(red, blue, green), each requiring independent
control processing. If the processor of Fig. 2
(yellow above) is utilized, it would need to be
duplicated 3 times to achieve given throughput
requirements. However a single CPU of
sufficient performance, with well structured
software can be utilized to perform all three
control tasks, C1, C2 and C3. Additionally, some
spare time still exists before next sample,
allowing for further TDM with slower loops and
GI code.

Control Code

TSAMPLE

Processor ControlControl Code

y(n)

x(n)

Fig. 2. Sampling interval between converted data points.

 6-3

Control Code (C2)Processor 2 ControlControl Code

y(n)

x(n)

Control Code (C1)Processor 1 ControlControl Code

Control Code (C3)Processor 3 ControlControl Code

Single CPU C1 C2 C3 C1 C2 C3 C1 C2 C3

TSAMPLE

Fig. 3. Three data streams or samples requiring independent control processing.

III. SOFTWARE FRAMEWORK CONSIDERATIONS

FOR A DIGITAL CONTROLLER
Software framework is the term used to

describe the “infrastructure” which supports (like
the frame of a house) the application code. It
defines the overall code flow and task
scheduling, and how the CPU will be shared
amongst the various application tasks. Key
framework considerations are:
• How many ISRs (Interrupt Service Routines)
• Are ISRs synchronous or asynchronous?
• CPU % utilization balance between ISRs and

Background (BG)
• High Level Language (HLL), e.g. “C/C++”

or Assembly (ASM) or a mixture of both.
• Need to employ an operating system?
• Interrupt driven communications?

Although there are no wrong or right

frameworks, certain choices will directly impact
code efficiency/speed, CPU utilization,
complexity, ease of debug and ease of
development. In general a very good guideline to
follow is: use the simplest framework that will
get the job done. Even though modern power
supplies are becoming more intelligent the
embedded software used to run them can employ
quite a simple framework consisting of a single
ISR and BG structure with TDM management via
periodic time slicing techniques.

 6-4

It is good practice in power systems to have
control code execution synchronized with PWM
switching events; this is especially true for multi-
stage power systems in which asynchronous
events can lead to beat frequencies and noise
generation. A single ISR synchronous with the
PWM switching events has multiple advantages,
some of which are:
• Better CPU utilization. An ISR has overhead

(context save and restore), hence multi-ISRs
increase overhead.

• Multi-ISRs which are asynchronous can lead
to non-deterministic code execution. In a time
sampled control system ensuring periodic
code execution within a real-time deadline is
essential.

• With many ISRs triggering, often
simultaneously, code debug and development
can be more complicated.

Fig. 5. Flow for a simple framework with single
ISR and BG.

In this power seminar module we will focus
on the single ISR/BG framework approach. This
approach is also suitable for the hardware
accelerated CPU controller.

In this scheme the ISR has the highest
priority from the CPU and interrupts the BG code
synchronous to the PWM switching events. Here
the BG code executes only when the ISR
relinquishes the CPU, i.e. during ISR idle time.
The ISR consists of base code which executes
every time and time slices (TS1, TS2, etc) which
execute in a round-robin basis. The time-slice
execution rate is the ISR rate divided by the
number of time slices used. Whenever an ISR
executes it carries an overhead, known as context
save and restore, this is essentially wasted CPU
cycles, but need to be accounted for when
estimating CPU bandwidth utilization, discussed
later. When a given code flow, e.g. Background
C code, is interrupted, the context or state of all
key CPU registers and status bits must be
temporarily saved by the ISR such that on return,
the BG code can continue seamlessly from point
of interruption. The amount of ISR overhead
depends mainly on the CPU type, and the amount
of CPU resources the ISR will utilize during
execution. The ISR need only save and restore
the CPU registers that it uses, hence “lean”
overhead ISRs are possible if care is taken. Often
however, to reduce risk and help with software
expansion and maintenance a full context
save/restore is recommended.

Fig. 4. Time sliced ISR synchronized to the PWM switching events.

 6-5

A. Hardware Accelerated Digital Controllers
In cases where the processing requirement is

more extreme, e.g. multiple very high frequency
control loops with PWM frequencies in the 1~2
MHz range, more digital resources can be added
in parallel, for example, hardware accelerators
can be employed to assist the CPU in performing
the compensation, (control law difference
equations), of high speed loops while it handles
low speed loops and GI functions. The industry
trend is for both approaches, and in this seminar
module we will explore software control of both
single CPU based controllers and hardware
assisted (accelerated) CPU based controllers.

Typically single CPU based controllers

employ high performance DSP engines capable
of executing millions of complex math
instructions/operations per second. Hardware
assisted controllers use a balance between a
moderate performance MCU engine coupled with
a very narrowly focused “hardwired” compute
engine which performs a given type of difference
equation (e.g. IIR filter) at very high speeds. The
choice between the controller choices really
depends on the end application and PWM
frequencies to be targeted. In general a hardware
accelerated CPU controller can achieve a greater
throughput and hence greater control bandwidth,
but this at the expense of control loop flexibility
due to a fixed control law i.e. compensation
scheme. For simpler multiple output high
frequency voltage mode buck stages, for
example, this is a great choice. Alternatively with
a single DSP engine controller, a designer has
greater flexibility in the choice of control
strategies chosen, for example taking advantage
of adaptive schemes or average current mode
control with inner/outer loop strategies.
Additionally a high performance DSP compute
engine can push TDM techniques to greater
limits permitting a large number (e.g. 4 ~10) of
“soft loops” to be deployed without additional
resources.

Fig. 6. Example of a non-accelerated (F280x) and H/W accelerated (UCD911x) digital controllers.

 6-6

B. Software Strategy for Hardware Accelerated
Digital Controllers
Whether a single CPU based controller is

used or a hardware accelerated one, well
structured and efficient software is vital in
extracting the most out of a given digital
controller, regardless if it is hardware accelerated
or not. The two cases are outlined below showing
the split between processing tasks. Since the
CLAs are hardwired controllers, software
considerations need only be targeted to the CPU
code execution, and the balance between
Interrupt Service Routine (ISR) code and Back-

Ground (BG) code. In this respect from a CPU
perspective, both cases need to deal with multi
loop ISR code and multi function/loop BG code,
the main difference being that in case 2 the CPU
ISR needs to handle loops up to the “MHz” type
range while in case 1 this range is in the “10s of
kHz”. As has been mentioned previously (and
will be explored more later) this is really only a
function of sampling rate and CPU throughput,
software techniques to extract best performance
are the same.

1. In the hardware accelerated case (e.g. UCD911x):

• 1 × “MHz” loop is possible via a Control Law Accelerator (CLA)
• Several slower (<~10 kHz) loops via CPU ISR
• General intelligence via spare CPU cycles in a BG loop

Fig. 7. Execution flow for hardware accelerated case.

 6-7

2. In the single DSP engine case (e.g. F280x):
• 2~3 × “MHz” loops are possible via CPU ISR
• Several slower (<10~40 kHz) loops via spare CPU cycles in BG
• General intelligence via spare CPU cycles in BG

Fig. 8. Non-accelerated case with time-sliced ISR.

C2 / C3 / BG

t
ISR

Back-
ground

Interrupt

C1 C1 C1 C1 C1

C2 / C3 / BG C2 / C3 / BG C2 / C3 / BG
C2, C3 rate
scheduled
by BG codeTC1

Fig. 9. Non-accelerated case with time-sliced BG loop.

 6-8

IV. ESTIMATING CPU PERFORMANCE NEEDS
FOR A GIVEN APPLICATION

For any given power supply application it is
important to determine if sufficient CPU
performance is available, this will ensure the
code will keep up with the sampled data
throughput. It is useful to examine some concepts
which will help with this determination:
• Available processing time
• MIPS (Millions of Instructions Per Second)
• Effective MIPS (also called “quality of

MIPS”)
• ISR bandwidth utilization
• BG bandwidth (average background code

bandwidth)

A. Available Processing Time
As discussed previously, the available

processing time is determined by the sampled
data rate. The time between samples, TSAMPLE, is
simply calculated as the inverse of the sampling
rate. Often this is the same as the PWM
frequency. The table shows in ns (nano-seconds)
the time available between samples for various
PWM frequencies.

TABLE I. TIME AVAILABLE BETWEEN SAMPLES

Sample Freq (=PWM) Sample Period
(kHz) (ns)
100 10000
300 3333
500 2000
700 1429
1000 1000
1500 667
2000 500

B. MIPS (Millions of Instructions Per Second)
If used properly, this “figure of merit” can be

used to calculate the amount of work (processing)
that can be done between data samples. For most
GP (general purpose) CPU engines:

clock rate ≠ MIPS (1)

This is because instructions are not executed
in a single cycle. Instructions are usually multi-
cycle, and can vary, for example, from 2 ~ 6
instructions depending on the instruction
complexity. To calculate MIPS in this case, a
“de-rating” factor needs to be applied, this can be
as simple as the median of the instruction count
distribution, for example (1) above, this may be
equal to 4 cycles/instruction. Hence the CPU
clock rate needs to be de-rated (divided) by 4, so
a 50-MHz CPU has an equivalent MIPS = 12.5
caution must be paid to multi-cycle multiply
instructions, these are often 16 or more cycles,
and can “average down” considerably the
throughput. Often the most accurate method is to
simply measure the actual number of cycles, i.e.
manually count or use a profiling feature in the
code debug environment to automatically
evaluate this.

DSP based CPU engines on the other hand
execute most (~95%) instructions in a single
cycle and hence a de-rating of 1 can be used, i.e.
clock rate = MIPS. In addition an extra
performance boost can come from a single cycle
multiply/accumulate combination, i.e. product
and previous sum; this is especially useful
because most mathematical processing can be
broken down into “sum of product” type
structures.

 6-9

C. Effective MIPS, Also Called “Quality of
MIPS”
“Not all MIPS are created equal” is a

comment often made by experienced software
designers. Examining and comparing MIPS
quality among different CPUs can be quite
complex, and beyond the scope of this
introductory module, however as an illustration
of the concept, let’s examine data width, i.e. 8-
bit, 16-bit, and 32-bit machines.

“8-bit MIPS” ≠ “16-bit MIPS” ≠ “32-bit MIPS”

Although this may seem obvious, and it may
appear that a 16-bit machine is 2×“8-bit
machine”, this is true for simple data movement,
however if multiplication is heavily used, e.g.
filtering, or compensation where sum of products
are calculated, the effective MIPS of a narrow
data width machine (e.g. 8 bits) may be
drastically reduced. The simple multiply example
below illustrates this.

Let’s assume each digit represents an 8-bit

quantity (mathematically valid for illustration
purposes). A 16×16 instruction (left) executes in
a single cycle resulting in a 32-bit product
(5561). On an 8-bit machine, this operation needs
to be done as 4 separate multiplications and a
summation of 4 terms with correct decimal point
weighting (i.e. shifting). At a minimum and with
appropriate hardware in place it would take 5
cycles, hence a MIPS quality de-rating of 1:5
results, hence a MIPS quality de-rating of 5
results, meaning that the effective MIPS is
reduced by a factor of 5 in a multiply intensive
algorithm.

6 7

8 3

X 6 7

8 3

X

6 15 5
3 7 1X = 2

3 6X = 81

8 7X = 65

8 6X = 84

55 16

Case-1 Case-2

Fig. 10. Reducing MIPS of a narrow data width machine.

 6-10

D. ISR Bandwidth Utilization
Determining the percentage of CPU

bandwidth required to execute the ISR code is
one of the most important considerations in
designing a digitally controlled power supply
system. Calculating this with a good confidence
level will determine if the target control loop
performance can be realized, how much spare
CPU capacity can be allocated to the BG loop,
and finally it indicates how much room for future
software expansion is available. The following
example, based on a voltage mode control loop,
illustrates in some detail the process used to
make this calculation. The control loop
components and synchronous buck power stage
are shown in Fig. 11.

The software control loop in this example

was implemented in assembly language to
achieve the lowest number of CPU cycles. The 2-
pole/2-zero compensation filter is an IIR second
order and is available as a software library
module from TI. The control loop equations
implemented here are shown below. The control
loop equations implemented here are shown in
Fig. 12.

Fig. 11. Synchronous buck power stage with the software control loop.

Fig. 12. Implemented control loop equations.

 6-11

Equation (1) in Fig. 12 is the transfer function
in the Z domain, its difference equation (2) is the
code implemented in the 2-pole/2-zero controller
block. Equation (3) is the error term calculation.
Equation (4) is the scaling required to map the
Q15 fixed point fractional representation of U(n)
to a Q0 integer form based on the PWM period
value used. PrdSF is the scaling factor. The
number of cycles required to execute the above
control equations is very accurately known (from
TI library) and is summarized in Table II. Also
listed in the table are other cycle numbers related
to ISR overhead, namely context save/restore and
ADC servicing and interrupt acknowledge. In this
example the ADC logic causes an interrupt
trigger at End of Conversion (EOC).

Table II also shows total clock cycles for 2
and 3 loops. Note, the context save/restore
overhead remains the same, also interrupt
acknowledge is done only once per interrupt. We
now have all the information we need to
accurately estimate the CPU utilization within the
ISR. Fig. 13 summarizes the sampling and
processing operation in terms of a time-line.
Note, for a given ISR clock cycle count, the
balance between ISR utilization and BG
bandwidth (discussed later) is governed by the
sample period time TSAMPLE (inverse of sampling
rate or frequency FSAMPLE).

TABLE II. KNOWN CYCLES REQUIRED TO EXECUTE CONTROL EQUATIONS

Operation # Clock Cycles # Clock Cycles # Clock Cycles
(1 loop) (2 loops) (3 loops)

Context Save + Int. latency 16 16 16
ADC servicing + Ack 4 5 6

2P/2Z controller 25 47 69
DPWM access 4 8 12

Context Restore + Int. Return 16 16 16

Total 65 92 119

Fig. 13.Time-line summary of sampling and processing operation.

 6-12

The calculation for % ISR utilization is
simple and given by:

%100×
=

SAMPLE

ISR

T
T

nutilizatioISR (2)

Examples of TSAMPLE values for various
PWM frequencies were given earlier, to calculate
TISR, we need to know the CPU clock speed of
the controller used in the application. For the
F280x/UCD9501 this clock speed is 100 MHz,
which gives a clock period of 10 ns. So for the
two control loops example, TISR = 92×10 ns =
920 ns. Assuming the sampling rate = PWM
frequency, then at PWM = 1 MHz, i.e. PWM
period = 1000 ns, then we would have 80 ns
spare and an ISR utilization = 92%. Although the
two control loops would run fine, the BG loop
would not receive much bandwidth, so we need
to make some trade-off, perhaps lowering the
PWM frequency to 800 kHz. For convenience,
Table III gives calculation results (percent of ISR
utilization) for various combinations of PWM
frequencies versus number of control loops, this
is useful in making design trade-offs. Note, red
entries exceed 100% utilization and are not
possible under given assumptions.

E. BG Bandwidth, Average Background Code
Bandwidth
As discussed earlier, the ISR has the highest

CPU priority, this means the BG code or loop has
access to any remaining CPU bandwidth, i.e. BG
BW = 100% - ISR utilization. For example, in the
case of PWM = 600 kHz and 4 loops, ISR
utilization = 88%, hence BG BW = 12%.
Although BG activities are not as time critical, it
is useful however to estimate loop rates of any
slower periodic functions running in the
background. These activities may include slow
voltage loops, current monitoring and balancing,
temperature monitoring, and communications.

Unlike the ISR, the BG loop does not have
precise deterministic timing, it is typically built
around decision (“if then else”) type code and
usually written in high level language such as
C/C++. Even so, it is still possible to estimate an
average or aggregate loop time, i.e. the average
time that it takes for the code to return to the
same point again. It is important to know this
especially if the periodic tasks mentioned
previously need to be performed.

The average BG loop rate is calculated as
follows:

pathlongestinnsInstructio
MIPSBGLRBG

#
)(

= (3)

TABLE III. PERCENT OF ISR UTILIZATION FOR PWM FREQUENCY VS NUMBER OF CONTROL LOOPS

CPU clk = 100 MHz 10 ns

 PWM Number of LOOPS and Number of Cycles
(kHz) (μs) 1 2 3 4 5

65 92 119 146 173
200 5.00 13% 18% 24% 29% 35%
300 3.33 20% 28% 36% 44% 52%
400 2.50 26% 37% 48% 58% 69%
500 2.00 33% 46% 60% 73% 87%
600 1.67 39% 55% 71% 88% 104%
700 1.43 46% 64% 83% 102% 121%
800 1.25 52% 74% 95% 117% 138%
900 1.11 59% 83% 107% 131% 156%
1000 1.00 65% 92% 119% 146% 173%
1100 0.91 72% 101% 131% 161% 190%

 6-13

BG MIPS = BG BW×total CPU MIPS, in this
example BG MIPS = 12%×100 MIPS = 12
MIPS. At this point let’s make an assumption for
the number of instructions in the longest path, is
say 300. Later we will see that by following some
simple guidelines and structuring
recommendations that we can minimize this path
and make it’s timing more accurate. We can now
calculate the loop rate as follows:

kHz,,LRBG 40
300

00000012
== (4)

V. PRACTICAL GUIDELINES TO SOFTWARE
DESIGN

Section III. (Software Framework
Considerations) discussed the benefits of using a
simple single ISR/BG loop combination. This
strategy is very applicable for most digitally
controlled power supplies. Its greatest advantage
is simplicity; the entire software scope is limited
to two main flows or loops. In flow chart form a
software system may look something like the
example below.

A. Do We Use “C” Code, Assembly or a Mix of
Both?
This is a question many software designers

struggle with. As usual there is no wrong or right
answer here, it really depends on the desired
outcome. The following discussion will give
some perspective in making this decision.
Fortunately in the single ISR/BG approach only
two choices need to be made, what to use for the
ISR and what to use for the BG? Let’s start with
the BG, this is a straight forward choice.

The BG loop typically contains more than
90% of the total code, it is what gives the power
supply it’s “personality” i.e. differentiated
features, intelligence, fault management, “smart”
diagnostics, etc. Here C code (or C++) makes the
most sense, it is a powerful language, and has
great flexibility in performing the hundreds of “if
then else” type decisions typical of background
code. However, good coding structure is still very
important in the BG if high loop rates and
minimal latency is required, this will be
discussed in detail in sub section C.

Main

Device level (CPU, PLL,..)
Peripheral level (ADC, PWM...)
System level (GPIO, Comms)

Framework (BG / ISR)
Interrupts

Initialisation

Background loop

ISR

Execute every ISR call
fast Vloop or ILoop

TS1
loop1

TS2
loop2

TS3
filtering

TS4
OVP mgr

Return

400 kHz

100 kHz

Time Slice
manager

Startup / Shutdown / sequencing
Margining

Diagnostics / Reporting / Comms
Fault management
Slow control loops

100 kHz 100 kHz 100 kHz

Fig. 14. Flow chart example of a typical software system.

 6-14

The ISR on the other hand can go either way,
C or ASM. It really depends on how much
performance a designer wants to extract out of a
given CPU. Generally, because C code is so
standardized (meets ANSI standards) it is
somewhat abstracted from the underlying CPU
architecture, i.e. it often does not take advantage
of the various hardware resources sufficiently
well, for example shift registers, multiplying
modes, arithmetic saturation, addressing modes,
etc. Many C compilers (e.g. TI C28xx/UCD95xx
compiler) do however offer Intrinsics, which can
get around this limitation in some cases. ASM
(assembly language) is a custom fit to the CPU
architecture, it has complete control of every
feature, mode and Bit a CPU has to offer, and
hence can extract the best performance possible
from a given architecture. In general if a designer
wants the best performance at a given price point,
i.e. “do more for less”, for example by choosing a
lower MIPS device, or pushing performance on a
given device beyond competitors using the same
device, then investment in ASM coding can pay
off.

The thought of coding in ASM worries many
software designers, they are usually concerned
about:
• Coding complexity (writing large amounts of

hard to understand ASM instructions)
• Maintenance of large amounts of ASM code
• What is the tangible benefit from using ASM

code

 6-15

Coding Complexity
Let’s examine this in more detail, to see if we

can alleviate much of this concern to the point
where using ASM code becomes an advantage.
Much of the concern is centered on the amount of
ASM code an application may require. As
mentioned previously, the bulk of the code
resides in the BG loop which is in C, and only a
small portion resides in the ISR. Recall that the
primary reason for using an ISR is to implement
a high priority periodic task which processes time
sampled data. In fact if we examine the time
available between samples in real applications,
we see that it is actually physically impossible to
“fit” (execute) a large number of instructions
within a given sample period. The amount of
code is physically bounded, hence the concern
that code amounts like 5 K, 10 K, or 20 K bytes
need to be developed/written is in reality not true.
To illustrate this let’s examine some figures.
Table IV shows the maximum number of
instructions physically able to execute within a
sample period, assuming straight line coding, i.e.
no loops or branches. For example a 60 MIPS
CPU processing data at 200 KSPS (kHz) can
execute at best 300 instructions (or lines of code).
This implies 100% ISR utilization, more
realistically if we apply the 75%/25% rule (i.e.
25% for BG) and take into account ISR overhead

(this is one time code re-used throughout all
applications) then only ~200 lines of ASM code
is the actual software designer’s burden in this
example. Moreover, if a CPU with multi-cycle
instructions is used the MIPS de-rating factor
reduces the amount of ASM code even further.

Maintenance Considerations for ASM Code
On the question of ASM code maintenance,

two points need be made, first, as discussed in A)
the amount of code is not really large to begin
with and second, the code that generally executes
in an ISR consists predominantly of
mathematical functions and interface to ADC and
PWM peripherals. This code once developed and
debugged seldom changes. It is analogous to
wanting to modify or maintain C library math
functions like sine, cosine, square-root, etc. There
is no need, a designer trusts the functions work
and keeps re-using them. As an example, in
Fig. 15, below, is a 2-Pole/2-Zero compensator
(i.e. IIR filter difference equation) used in many
closed loop systems. Although the ASM code
appears complex it is either obtained as part of an
existing library, example from TI, or coded once
by a knowledgeable ASM designer. This is the
code snippet which implements the difference
equation previously shown as equation (2).

TABLE IV. NUMBER OF INSTRUCTIONS POSSIBLE IN A SAMPLE PERIOD FOR A GIVEN CPU MIPS
RATING

FSAMPLE (=PWM) MIPS
(kHz) 25 60 100
200 125 300 500
250 100 240 400
300 83 200 333
350 71 171 286
400 63 150 250
500 50 120 200

 6-16

;Calculate input (Ref - Fdbk):

 MOV ACC, *XAR0++<<11 ; ACC = Ref1 (Q15 to Q26)

 SUB ACC, *XAR1++<<14 ; ACC = Ref1 - Fdbk1 (Q12 to Q26)

 MOVL @CNTL_2P2Z_DBUFF1+4, ACC ; e(n) = ACC = error (Q26)

;Calculate 2p-2z filter: Note: based on Q25 coefficients

 MOVL XT, @CNTL_2P2Z_DBUFF1+8 ; XT = e(n-2)

 QMPYL P, XT, *XAR3++ ; P = e(n-2)*B2 (Q20 = Q26*Q26)

 MOVB ACC, #0 ; ACC = 0

 MOVDL XT, @CNTL_2P2Z_DBUFF1+6 ; XT = e(n-1), e(n-2) = e(n-1)

 QMPYAL P, XT, *XAR3++ ; P = e(n-2)*B1 (Q20 = Q26*Q26)

 MOVDL XT, @CNTL_2P2Z_DBUFF1+4 ; XT = e(n), e(n-1) = e(n)

 QMPYAL P, XT, *XAR3++ ; P = e(n)*B0 (Q20 = Q26*Q26)

 MOVL XT, @CNTL_2P2Z_DBUFF1+2 ; XT = u(n-2)

 QMPYAL P, XT, *XAR3++ ; P = u(n-2)*A2 (Q20 = Q26*Q26)

 MOVDL XT, @CNTL_2P2Z_DBUFF1+0 ; XT = u(n-1), u(n-2) = u(n-1)

 QMPYAL P, XT, *XAR3++ ; P = Y1*A1 (Q20 = Q26*Q26)

 ADDL ACC, @P ; ACC = u(n-1)*A1+u(n-2)*A2+

 ; e(n)*B0+e(n-1)*B1+e(n-2)*B2 (Q20)

; Scale u(n) Q20 to Q26, and save it

 LSL ACC, #6 ; ACC = Q26, based on Q26 coef & e(n)

 MOVL @CNTL_2P2Z_DBUFF1, ACC ; u(n-1) = u(n) = ACC (Q26)

; Saturate the result [0,1] & move to Uout as a Q15

 MINL ACC, *XAR3++ ; Saturate to < 0.999999.. in (Q26)

 MAXL ACC, *XAR3++ ; Saturate to > 0.000000.. in (Q26)

 LSL ACC, #5 ; Convert from Q26 to Q31 (Duty in Q31)

; output Uout

 MOV *XAR4++, AH ; Output Duty (Q15) to terminal net

Fig. 15. An ASM code sample for a 2-pole/2-zero filter function.

 6-17

Benefits of ASM Code
How much benefit will going to assembly

language bring? The best way to gauge this is to
get some perspective on the code performance
boost obtained. This can be readily seen from the
ISR utilization factor, and the impact that saving
some instructions have on this value. For
example if an application is estimated to have an
ISR utilization factor of say 10% if coded in C,
then coding the ISR in ASM has little to no
impact, since the BG loop gets 90% BW and
plenty of margin for overhead exists. On the
other hand if performance is critical (high
sampling rates) and code execution is tight, then
saving a few cycles can make all the difference.
A useful way to look at this is in Table V. This
shows (in red) the percent of impact that 10
instructions can make on ISR utilization for
various sample rates and CPU MIPS. For
example, at an ISR loop rate of 400 kHz, while
running a 60 MIPS CPU, saving 10 instructions
can reduce the ISR utilization by 5%. In practice
usually more than 10 instructions can be saved by
adopting an ASM based ISR, and hence 10~30%
reduction in utilization can often be realized.

Another equally important way to look at this

is to see the impact on the BG loop rate. The BG
loop often has slower tasks running but which
still must maintain a certain periodicity, i.e.
execution rate, for example an over-voltage or
over current manager, or simply a slower control
loop which must rely on a given sample
processing rate to be valid.

Recall the example where:

kHz,,LRBG 40
300

00000012
== (5)

This was achieved based on an ISR utilization
of 88%, i.e. BG BW = 12%. Now let’s assume a
saving of 9% is achieved by saving 15
instructions (15 inst = 10+5 =6%+3%, see table,
600 KHz and 100 MIPS), hence the ISR
Utilization is now 79% and BG BW = 21%.
Recalculating the BG loop rate and assuming the
same BG code length, this gives:

kHz,,LRBG 70
300

00000021
== (6)

This is a significant boost in execution rate.
Note a 9% saving (with just 15 instructions) in
the ISR, has resulted in a 75% boost in BG loop
rate. Note, the closer to the “edge” (i.e. ISR
~100%) the more dramatic this boost will be.

TABLE V. PERCENT OF IMPACT OF 10 INSTRUCTIONS ON ISR UTILIZATION
FOR PWM FREQUENCY VS CPU MIPS

FSAMPLE (=PWM) MIPS
(kHz) 25 60 100
200 8.0% 3.3% 2.0%
250 10.0% 4.2% 2.5%
300 12.0% 5.0% 3.0%
350 14.0% 5.8% 3.5%
400 16.0% 6.7% 4.0%
600 24.0% 10.0% 6.0%

 6-18

B. ISR Structure Details – Using Time Slicing
A single ISR for the control loop makes a lot

of sense, it incurs the context save/restore
overhead only once, and being the only ISR
means it has the highest CPU priority and hence
its execution is precisely periodic and
deterministic. The price we pay for this is
somewhat less flexibility when implementing
multi-loop/multi-stage systems. In these cases we
do not have the flexibility of choosing arbitrary
combinations of sample rates and PWM
frequencies. Our choices must be limited to
frequencies (and sampling rates) having an
integer multiple relationships with each other or
to a fundamental frequency. Actually in power
systems this restriction to integer multiple
frequencies turns out to be a requirement rather
than a limitation, since it is undesirable to have
mismatched frequencies due to beating effects
and non deterministic switching noise, making it
very difficult to schedule ADC start of
conversion triggers during non-switching time
windows.

Implementing a time slice manager within an

ISR is quite simple and very efficient on cycles.
Any number of time slices can be chosen,
whereby effectively dividing the ISR frequency
by the chosen number. Below is a simple
example of an 8-slot time-slicer.

Here four separate cases are shown, where
the code module C1 is shown to execute at
different rates, depending on which Time Slice
(TS) it occupies. Four choices are possible, same
frequency as the ISR, 1/2 rate, 1/4 rate and 1/8
rate.

Fig. 16. 8-slot time-slicer.

 6-19

To show how the time slice technique is used
in practice, below are two examples of multi-
stage/multi-output power systems, requiring
multiple independent control loops all executed
from a single CPU and ISR. The first example is
control of multiple DC/DC bucks which might be
used in a POL application. Two single phase
bucks (independent outputs) are running at full
ISR speed, i.e. 600 kHz, while three independent
multi-phase interleaved bucks are running at
150 kHz and are run during only one time-slot,
where by reducing the execution rate to 1/4 of the
ISR rate.

Note, the PWM frequency of bucks 3, 4 and 5
is 300 kHz in this example, it could have been
made 150 kHz, or 600 kHz, depending on
magnetics. It does not need to be the same as the
code execution rate, only in integer multiple of it.

TABLE VI. SUMMARY OF FREQUENCIES FOR EACH BUCK STAGE

Fig. 17. Time-slice timing for the 5-buck system.

Code Function PWM rate (kHz) Code execution rate (kHz) Identifier
Buck 1 - single phase V Loop 600 600 B1
Buck 2 - single phase V Loop 600 600 B2
Buck 3 - 4-phase IL V Loop 300/phase (90o apart) 150 B3
Buck 4 - 3-phase IL V Loop 300/phase (120o apart) 150 B4
Buck 5 - 3-phase IL V Loop 300/phase (120o apart) 150 B5

 6-20

The second example is for an AC/DC rectifier
implementation. This particular rectifier has two
DC/DC outputs and in addition to PFC and
Boost, has many code modules running. Here
also it is convenient to choose a four time-slice
ISR approach. Table VII summarizes the multiple
code activities that need to execute and at what
rate.

Some points to consider:
• The PFC voltage loop is typically a very slow

loop (a few kHz) and can be run in the BG
loop, providing a periodic execution rate, (say
1 kHz) can be implemented. More details on
this later in the BG structure discussion.

• Not all the software tasks shown need to run
at an execution rate of 50 kHz or greater,
some can run just fine at 25 kHz or even 12.5
kHz, for example the current balancing loop
(IBAL), however it may be more convenient to
just allow it to run at the time-slot rate
especially if enough CPU bandwidth exists. If
cycles are getting tight, a given time-slice can
be further subdivided if necessary, for
example in TS4, execution of ICMD and RA
could be done on a interleaved basis, i.e. run
each one every other time, this effectively
reduces the rate to 25 kHz and opens up more
cycles for other processing if required.

TABLE VII. – SUMMARY OF TASKS AND FREQUENCIES FOR THE AC/DC RECTIFIER SYSTEM

Fig. 18. Time-slice timing for the AC/DC rectifier.

Code Function PWM rate (kHz) Code execution rate (kHz) Identifier
DC/DC-1 V Loop 200 200 V1
DC/DC-1 I Loop 200 200 I1
DC/DC-2 V Loop 200 100 V2
DC/DC-2 I Loop 200 100 I2

PFC I loop 50 IPfc
PFC V loop (done in BG) 50 VPfc

PFC 1/X2 (X=Vac Rect & Avg) 50 1/X2
PFC I-cmd (V1*V2*V3) 50 Icmd

PFC Vac Rect. and Average 50 RA
PFC I-balance

100

50 Ibal

 6-21

Sample code (in assembly) showing a practical implementation of a 4 slot time-slicer.

;==

_ISR_Entry: CONTEXT_SAVE ; call save macro

;%%

; Code executed every Interrupt

;%%

 User code....

 User code....

 User code....

;%%

; Time Slice Manager (1:4)

;%%

 MOVW DP,#tsPtr

 MOVL XAR7,@tsPtr ; fetch current TS address

 LB *XAR7 ; Jump there (indirectly)

;==

; TIME SLICE 1 - Code executed only on TS1

;==

TS1: MOVL XAR7,#TS2 ; Load TS2 address for

 MOVL @tsPtr,XAR7 ; next time through

;==

 User code....

 User code....

 User code....

 LB EXIT_ISR ; Branch to ISR exit

;==

; TIME SLICE 2 - Code executed only on TS2

;==

TS2: MOVL XAR7,#TS3 ; Load TS3 address for

 MOVL @tsPtr,XAR7 ; next time through

;==

 User code....

 User code....

 User code....

 LB EXIT_ISR ; Branch to ISR exit

;==

; TIME SLICE 3 - Code executed only on TS3

;==

TS3: MOVL XAR7,#TS4 ; Load TS4 address for

 MOVL @tsPtr,XAR7 ; next time through

;==

 6-22

 User code....

 User code....

 User code....

 LB EXIT_ISR ; Branch to ISR exit

;==

; TIME SLICE 4 - Code executed only on TS4

;==

TS4: MOVL XAR7,#TS1 ; Load TS1 address to

 MOVL @tsPtr,XAR7 ; start over again

;==

 User code....

 User code....

 User code....

;==

EXIT_ISR CONTEXT_REST ; Restore context & return

 IRET

;==

Fig. 19. Practical time-slicer implementation using C28xx assembly.

 6-23

C. BG Structure Details Using State-Machine
Techniques
The BG loop (BGL) is responsible for many

tasks (as many as 50~100 in some cases) and
typically contains more than 90% of an
applications software. As already discussed the
best choice for the BGL is high level language
such as C or C++.

The BGL needs to manage two main
categories of tasks or functions:
• Local decision based/request (e.g.

communications) based execution
• Periodic based execution

It is critical to run all tasks in a well
structured and timely manner so the BGL rate is
maximized and the periodic functions can
execute at rates required by the application. This
can be achieved in several ways, including the
use of an operating system. In keeping with the
“keep it simple” approach, an approach using
state-machine based task scheduling will be used.
With this approach tasks can execute on a time
schedule (i.e. periodic) or based on decisions.

Decision Based Execution

One of the key concepts of this approach is to
totally avoid using any type of “closed loop
constructs”, i.e. code that loops on itself waiting
for a condition or state to be true before
executing a task and the passing control to other
tasks. Fig. 20 shows a flow chart and equivalent
C example of what needs to be avoided.

Avoiding this is critical because of two main
reasons:
• It is very wasteful on cycles.
• It can be very difficult or almost impossible

to put a measure on the time of such a “wait”
loop. Worst case, the condition may never
happen, hence wait is “infinite”
The key in a TDM system is to continually

share the CPU cycles amongst all tasks as often
as possible, this cannot be guaranteed using the
above coding. A better approach is to check for
the condition once every BGL time, if the
condition is not true then control must pass over
to next task/s. If all tasks or functions are
designed to execute in this manner, then the BGL
rate is maximized. The recommended approach is
shown in Fig. 21 below.

Fig. 20. Avoiding closed loop constructs.

Fig. 21. Recommended approach for decision based software.

 6-24

Often a task consists of multiple subtasks (or
components) which can them selves be decision
based or simply just “go execute”. Keeping track
of which subtask to execute and in what order,
can get quite complex, especially if many main
tasks have subtasks at various stages of
completion. One very simple yet powerful
technique to address this is by utilizing state-
machine based execution. As an example let’s
examine the implementation of a soft-start
function using this technique.

Fig. 22. Flow diagram utilizing state-machine based execution.

 6-25

A State Pointer variable (SPtr) keeps track of
the current state to be executed. Once per BG
loop cycle, one of the states (0 – 6) is executed.
The state-machine may keep it’s state pointer set
to one particular state for a long time, waiting for
a certain condition to occur, for example a
ShutDown command. If the required condition is
met, the state pointer is set for the next state.
Note, code always enters the state-machine only
once per BGL, executes only one State and exits
again, it does not loop waiting for any conditions
to occur.

Implementing such state-machine control in
C is very simple; one way is through the “case
statement”. Fig. 23 contains some sample code of
the soft-start example.

//===

void SoftStartFunction(void) // Soft Start via Vref control

//===

{

 switch(StatePtr)

 {

 case 0: // Idle (wait for Start cmd) State

 if(StartUp == 1)

 {

 StatePtr = 1;

 DelayCtr = 0;

 } break;

 case 1: // Delayed Start-up state

 DelayCtr++;

 if(DelayCtr >= DelayUp)

 {

 StatePtr = 2;

 } break;

 case 2: // RampUp State

 Vref = Vref + RampUpRate;

 if(Vref >= VrefTarget)

 {

 Vref = VrefTarget;

 StatePtr = 3;

 } break;

 case 3: // "On" (at Target Voltage) state

 if(StartUp == 0)

 {

 DelayCtr = 0;

 StatePtr = 4;

 }

 6-26

 case 4: // Delayed Shut-Down State

 DelayCtr++;

 if(DelayCtr >= DelayDown)

 {

 StatePtr = 5;

 } break;

 case 5: // Ramp-down state

 Vref = Vref - RampDownRate;

 if(Vref <= 0)

 {

 Vref = 0;

 StatePtr = 0;

 } break;

 }

}

Fig. 23. Sample code of the soft-start example.

For a small number of state-machines and states with each machine, the case statement approach

works fine. A typical power supply application however has a lot more going on in the BGL than just a
single soft start controller.

 6-27

For example a multi-output/multi-phase POL
application may have the following BGL
activities:
• Soft start and shutdown control for multiple

outputs (VOUT1, VOUT2, VOUT3 and VOUT4)
• Phase current measurement scheduling
• Phase current balancing loop (slow 1~5 kHz)
• Temperature monitoring loop for each VOUT

and each phase (in multi-phase case)
• Reporting (VIN, VOUT, Temp, IPHASE, etc) to

host
• Self diagnostics for failure prediction
• Fault management – phase shedding (N N-

1) in case of phase fault/over-current
• Other etc.

Clearly what is needed is a method to support
a multitude of state-machines each with possibly
a large number of sub-states, all managed with
minimal CPU cycles. The weakness with the case
statement is when the number of cases is large,
because every case needs to be evaluated up until
the “true” case is found. If for example, the state-
machine is positioned at a state towards the end,
the number of evaluations can be large, and each
needs to be calculated by the CPU every BGL
time. A better method is to use a pointer to
Function approach, where each function is a state
or sub-state. In this approach the C compiler can
use the indirect addressing capabilities of the
CPU and hence the State function can be
“jumped to” immediately based on a preloaded
function address. In a complex system, this can
help save a large amount of BGL cycles. A flow
diagram of what this may look like is shown
below.

A0 A1 A2 A3 A4

B0 B1 B2 B3 B4

C0 C1 C2 C3 C4

D0 D1 D2 D3 D4

E0 E1 E2 E3 E4

“A”
State-

Machine

“B”
State-

Machine

“C”
State-

Machine

“D”
State-

Machine

“E”
State-

Machine

Code
entry

Code
exit

Fig. 24. Flow diagram for “pointer-to-function” based state-machine.

 6-28

Here as many sub-states (1, 2, 3…) as needed
can be added, each state-machine (A, B, C…) can
have different number of sub-states. The number
of state functions (A0, A1,…B0, B1,…) can be
very large and a system could have a large
amount of code, however, the path of execution
each time round the BGL can be kept quite short.

To illustrate more clearly this method, the
soft-start function has been implemented using a
pointer-to-function based state-machine. In this
case, the SS function could be any one of the 6
state-machines shown previously, i.e. A-tasks, B-
tasks, etc. Here A-tasks have been used.

// State Machine function prototypes declarations

//==

// A task states

void A1(void); //state A1

void A2(void); //state A2

void A3(void); //state A3

void A4(void); //state A4

void A5(void); //state A5

void A6(void); //state A6

// Variable declarations

void (*A_Task_Ptr)(void); // State pointer A tasks

void (*B_Task_Ptr)(void); // State pointer B tasks

//%%

// Soft Start state-machine

//%%

 (*A_Task_Ptr)(); // jump to an A Task (A1,A2,A3,...)

//==

void A1(void) // Idle (wait for Start cmd) - State 1

{

 if(StartUp == 1)

 { A_Task_Ptr = &A2; DelayCtr = 0; }

}

//==

void A2(void) // Delayed Start-up - State 2

{

 DelayCtr++;

 if(DelayCtr >= DelayUp)

 { A_Task_Ptr = &A3; }

}

 6-29

//==

void A3(void) // RampUp - State 3

{

 Vref = Vref + RampUpRate;

 if(Vref >= VrefTarget)

 { Vref = VrefTarget; A_Task_Ptr = &A4; }

}

//==

void A4(void) // "On" (at Target Voltage) - State 4

{

 if(StartUp == 0)

 { DelayCtr = 0; A_Task_Ptr = &A5; }

}

//==

void A5(void) // Delayed Shut-Down - State 5

{

 DelayCtr++;

 if(DelayCtr >= DelayDown)

 { A_Task_Ptr = &A6; }

}

//==

void A6(void) // Ramp-down - State 6

{

 Vref = Vref - RampDownRate;

 if(Vref <= 0)

 { Vref = 0; A_Task_Ptr = &A1; }

}

Fig. 25. Implementation of soft-start using a pointer-to-function based state-machine.

 6-30

Periodic Based Execution in the BGL
In many cases it is very important to execute

tasks periodically, and synchronous to a CPU
time-base. Two examples of this are:
1. Slow control loop, such as a PFC voltage

control. Here the sample rate (loop rate) can
be quite slow, for example 1 kHz. Some
timing jitter can be tolerated, but the
sample/execution rate does need to be
periodic.

2. “Tick time-base” for use in soft start. The
state-machine driven soft-start function
makes an assumption that it is executed at a
fixed time interval, for example every 0.5 ms
(2 kHz), this ensures that the ramp rates or
delayed start-up required by an application
can be accurately timed. For instance if a
converter’s voltage output needs to ramp to
target value of 2.0 V in 20 ms, then the soft-
start function needs to allow for 40 voltage
increments (20 ms/0.5 ms) of VREF
adjustment, i.e. 2 V/40 = 50 mV steps.

Recall that the BG loop rate is an average
value, and is valid only over longer time periods.
An “instantaneous” rate cannot be guaranteed.
However, if a periodic rate of programmable
frequency is required, such as in the two
examples, then it is possible to tie the execution
of tasks (state-machines) to known time-bases.
Anytime asynchronous software (like the BGL)
is tied or synchronized to a fixed time-base, some
jitter will be introduced. Most loops or processes
can tolerate jitter and typically does not present a
problem, however it must be comprehended.

The amount of jitter will be related
approximately to the ratio of BG loop rate and
synchronizing time-base. For instance, in a
previous example, a BGLR of 70 kHz was
calculated. If a 1-kHz time-base synchronized
loop is needed it will show approximately
1/70×100% = 1.4% jitter. For a PFC voltage loop
this should be a non issue. For the soft-start
function this is certainly no problem and in fact a
jitter of 10~15% could be tolerated, as the ramp-
up rates are not critical, for example a ramp time
of 20 ms ± 10% would be an acceptable power
supply specification.

Usually a digital power supply controller (e.g.
UCD911x or F280x/UCD9501) has spare timers
available which can be utilized to provide an
accurate time-base for task synchronization. Note
not all the BGL software needs to be
synchronized, it is possible, and desirable to have
a mix of software tasks, some slaved off a time
base, and others running as fast as the BG loop
rate permits.

 6-31

Implementing timed task execution requires
programming a controller’s timer to set a flag
every time a period match event occurs. The
BGL code then checks this flag every time
through its loop (e.g. at a rate of 70 kHz) if set
then a state-machine function (or several) is
triggered to execute. If enough timer resources
exist, several time bases can be working
concurrently and multi-rate State-machine
execution is possible. On the F280x/UCD9501
controller, three timers are available as part of the
CPU, i.e. in addition to the DPWM and GP PWM
timers.

Below is a flow chart of how BGL software
might be implemented. Here 6 state-machines are
running, three are synchronized to hardware
timers and three are executing at the BG loop
rate. A tasks execute at a period interval set by
timer 1. A and B tasks execute at a period
interval set by timer 2. The code sample given
after the flow chart shows a possible C
implementation of such a scheme using
F280x/UCD9501 CPU timers as the
synchronizing hardware.

BG

N

YTimer1
Period Flg

set ?
Clear Period Flg

A State-machine Tasks

N

YTimer2
Period Flg

set ?

Clear Period Flg
B State-machine Tasks
C State-machine Tasks

D State-machine Tasks
E State-machine Tasks
F State-machine Tasks

Fig. 26. Implementing BGL software.

 6-32

//===

// State Machine Sync timers period initialization

//---

// Timing sync for background loops

CpuTimer0Regs.PRD.all = 40000; // 400 uS (0.400 mS) - A tasks

CpuTimer1Regs.PRD.all = 100000; // 1000 uS (1.000 mS) - B tasks

CpuTimer2Regs.PRD.all = 5000; // 50 uS (0.050 mS) - C tasks

//===

// BG loop – Synchronous and Asynchronous Task execution

//---

 // loop rate synchronizer for A-tasks

 if(CpuTimer1Regs.TCR.bit.TIF == 1)

 {

 CpuTimer1Regs.TCR.bit.TIF = 1; // clear flag

 //===

 (*A_Task_Ptr)(); // jump to an A Task (A1,A2,A3,...)

 //===

 }

 // loop rate synchronizer for B & C -tasks

 if(CpuTimer2Regs.TCR.bit.TIF == 1)

 {

 CpuTimer2Regs.TCR.bit.TIF = 1; // clear flag

 //===

 (*B_Task_Ptr)(); // jump to a B Task (B1,B2,B3,...)

 (*C_Task_Ptr)(); // jump to a C Task (C1,C2,C3,...)

 //===

 }

 // Execute at the BG loop rate

 //===

 (*D_Task_Ptr)(); // jump to a D Task (D1,D2,D3,...)

 (*E_Task_Ptr)(); // jump to a E Task (E1,E2,E3,...)

 (*F_Task_Ptr)(); // jump to a F Task (F1,F2,F3,...)

 //===

Fig. 27. Timer synchronized implementation of BG loop software.

