
Topic 6

Software Design for Digital Power – 
Programming 101 for Analog Designers



 



 6-1

Software Design for Digital Power 
Programming 101 for Analog Designers 

David Figoli, Texas Instruments 
ABSTRACT 

Unlike their analog counterparts, digital power supply controllers can benefit from a technique known 
as Time Division Multiplexing (TDM) to perform more tasks with less resources. TDM permits a single 
processor or “executable” resource to be shared amongst several independent and often unrelated 
tasks, e.g. software control loops, diagnostics, fault monitoring, etc. In the analog domain, adding 
additional functions or tasks requires adding additional components. Resource sharing via TDM is 
possible because digital power supply controllers operate as time sampled systems. Designing software 
to take advantage of TDM for a fully digital controlled power supply can be a challenge, but by 
understanding some key principles and following appropriate guidelines this job can be greatly 
simplified. In this power seminar module we will examine how to structure software code to take 
advantage of a class of low cost digital controllers which offer the right performance to get the job 
done. 

I. TIME SAMPLED SYSTEMS 
Digital control of power supplies is part of 

the broader engineering discipline of “Time 
Sampled Systems”. Here continuous time signals 
are represented as series of data points in time 
and manipulated via various mathematical 
“functions”, generally know as digital signal 
processing. 

 
More specifically closed loop control systems 

process incoming data streams (or series) and act 
upon it to control or regulate a real process. In its 
most basic form a single loop control system 
consists of three key blocks,  
• Analog-to-digital conversion (A-D) 
• Digital signal processing (or mathematical 

manipulation of discrete data) 
• Digital-to-analog conversion (D-A), the 

reconstruction of continuous time signal from 
a discrete series 

 
Fig. 1. Key blocks for a digital signal processing system. 
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In addition to closing one or several control 
loops, a modern power supply is also required to 
have a certain level of “General Intelligence” 
(GI), this can come in many forms, like 
diagnostics, reporting, start-up, shut-down, 
supervisory, fault management, communications, 
etc. With the increasing complexity and 
performance of modern silicon integration, it 
makes sense to integrate the functionality of both 
the control portion and GI portion of this 
processing into a single high performance digital 
controller.  

II. TIME DIVISION MULTIPLEXING FOR 
SOFTWARE – AN OVERVIEW 

Unlike analog control, processing digital or 
discrete time data allows for multiple task 
execution to be performed from a single resource, 
e.g. a digital processor can control multiple loops 
from a single processing unit. In the analog case 
extra “processing” units need to be added, e.g. 
op-amps, comparators and passives to control 
multiple loops. The technique or mechanism 
which allows a digital system to perform multiple 
tasks is called Time Division Multiplexing 
(TDM), this concept is a very powerful one, but 
requires that the digital resources (CPU, ADC, 
PWM, communications, and other peripherals) be 
carefully and efficiently managed via well 
written and executed software. 

A key parameter governing the application of 
TDM techniques is the data sampling rate, i.e. 
TSAMPLE, the period or time between converted 
data points. Once a data point is sampled a digital 
processor has only this time to “act” upon this 
data before the next sample arrives. Failing to do 
so can lead to severe phase lag or even control 
loop failure. Fig. 2 shows an example where the 
processor is capable of executing a single set of 
control code before the next sample. In this 
example, a small portion of spare time remains 
prior to next sample; this is too small to execute 
another control loop but, as will be discussed 
later, serves as a good resource for slower 
background activities. 

If the sample rate is made slower or processor 
throughput is increased then TDM can be 
effectively utilized. More input signals can be 
sampled and independently processed. In Fig. 3, 
3 independent data streams or samples are shown 
(red, blue, green), each requiring independent 
control processing. If the processor of Fig. 2 
(yellow above) is utilized, it would need to be 
duplicated 3 times to achieve given throughput 
requirements. However a single CPU of 
sufficient performance, with well structured 
software can be utilized to perform all three 
control tasks, C1, C2 and C3. Additionally, some 
spare time still exists before next sample, 
allowing for further TDM with slower loops and 
GI code. 

 

Control Code

TSAMPLE

Processor ControlControl Code

y(n)

x(n)

 
Fig. 2. Sampling interval between converted data points. 
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Control Code (C2)Processor 2 ControlControl Code

y(n)

x(n)

Control Code (C1)Processor 1 ControlControl Code

Control Code (C3)Processor 3 ControlControl Code

Single CPU C1 C2 C3 C1 C2 C3 C1 C2 C3

TSAMPLE

 
Fig. 3. Three data streams or samples requiring independent control processing. 

 
III. SOFTWARE FRAMEWORK CONSIDERATIONS 

FOR A DIGITAL CONTROLLER 
Software framework is the term used to 

describe the “infrastructure” which supports (like 
the frame of a house) the application code. It 
defines the overall code flow and task 
scheduling, and how the CPU will be shared 
amongst the various application tasks. Key 
framework considerations are: 
• How many ISRs (Interrupt Service Routines) 
• Are ISRs synchronous or asynchronous? 
• CPU % utilization balance between ISRs and 

Background (BG) 
• High Level Language (HLL), e.g. “C/C++” 

or Assembly (ASM) or a mixture of both. 
• Need to employ an operating system? 
• Interrupt driven communications? 

 
Although there are no wrong or right 

frameworks, certain choices will directly impact 
code efficiency/speed, CPU utilization, 
complexity, ease of debug and ease of 
development. In general a very good guideline to 
follow is: use the simplest framework that will 
get the job done. Even though modern power 
supplies are becoming more intelligent the 
embedded software used to run them can employ 
quite a simple framework consisting of a single 
ISR and BG structure with TDM management via 
periodic time slicing techniques. 
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It is good practice in power systems to have 
control code execution synchronized with PWM 
switching events; this is especially true for multi-
stage power systems in which asynchronous 
events can lead to beat frequencies and noise 
generation. A single ISR synchronous with the 
PWM switching events has multiple advantages, 
some of which are: 
• Better CPU utilization. An ISR has overhead 

(context save and restore), hence multi-ISRs 
increase overhead. 

• Multi-ISRs which are asynchronous can lead 
to non-deterministic code execution. In a time 
sampled control system ensuring periodic 
code execution within a real-time deadline is 
essential. 

• With many ISRs triggering, often 
simultaneously, code debug and development 
can be more complicated. 

 

Fig. 5. Flow for a simple framework with single 
ISR and BG. 

In this power seminar module we will focus 
on the single ISR/BG framework approach. This 
approach is also suitable for the hardware 
accelerated CPU controller. 

In this scheme the ISR has the highest 
priority from the CPU and interrupts the BG code 
synchronous to the PWM switching events. Here 
the BG code executes only when the ISR 
relinquishes the CPU, i.e. during ISR idle time. 
The ISR consists of base code which executes 
every time and time slices (TS1, TS2, etc) which 
execute in a round-robin basis. The time-slice 
execution rate is the ISR rate divided by the 
number of time slices used. Whenever an ISR 
executes it carries an overhead, known as context 
save and restore, this is essentially wasted CPU 
cycles, but need to be accounted for when 
estimating CPU bandwidth utilization, discussed 
later. When a given code flow, e.g. Background 
C code, is interrupted, the context or state of all 
key CPU registers and status bits must be 
temporarily saved by the ISR such that on return, 
the BG code can continue seamlessly from point 
of interruption. The amount of ISR overhead 
depends mainly on the CPU type, and the amount 
of CPU resources the ISR will utilize during 
execution. The ISR need only save and restore 
the CPU registers that it uses, hence “lean” 
overhead ISRs are possible if care is taken. Often 
however, to reduce risk and help with software 
expansion and maintenance a full context 
save/restore is recommended. 

 
 
 
 
 
 

 

Fig. 4. Time sliced ISR synchronized to the PWM switching events. 
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A. Hardware Accelerated Digital Controllers 
In cases where the processing requirement is 

more extreme, e.g. multiple very high frequency 
control loops with PWM frequencies in the 1~2 
MHz range, more digital resources can be added 
in parallel, for example, hardware accelerators 
can be employed to assist the CPU in performing 
the compensation, (control law difference 
equations), of high speed loops while it handles 
low speed loops and GI functions. The industry 
trend is for both approaches, and in this seminar 
module we will explore software control of both 
single CPU based controllers and hardware 
assisted (accelerated) CPU based controllers. 

 
Typically single CPU based controllers 

employ high performance DSP engines capable 
of executing millions of complex math 
instructions/operations per second. Hardware 
assisted controllers use a balance between a 
moderate performance MCU engine coupled with 
a very narrowly focused “hardwired” compute 
engine which performs a given type of difference 
equation (e.g. IIR filter) at very high speeds. The 
choice between the controller choices really 
depends on the end application and PWM 
frequencies to be targeted. In general a hardware 
accelerated CPU controller can achieve a greater 
throughput and hence greater control bandwidth, 
but this at the expense of control loop flexibility 
due to a fixed control law i.e. compensation 
scheme. For simpler multiple output high 
frequency voltage mode buck stages, for 
example, this is a great choice. Alternatively with 
a single DSP engine controller, a designer has 
greater flexibility in the choice of control 
strategies chosen, for example taking advantage 
of adaptive schemes or average current mode 
control with inner/outer loop strategies. 
Additionally a high performance DSP compute 
engine can push TDM techniques to greater 
limits permitting a large number (e.g. 4 ~10) of 
“soft loops” to be deployed without additional 
resources. 

 

Fig. 6. Example of a non-accelerated (F280x) and H/W accelerated  (UCD911x) digital controllers. 
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B. Software Strategy for Hardware Accelerated 
Digital Controllers 
Whether a single CPU based controller is 

used or a hardware accelerated one, well 
structured and efficient software is vital in 
extracting the most out of a given digital 
controller, regardless if it is hardware accelerated 
or not. The two cases are outlined below showing 
the split between processing tasks. Since the 
CLAs are hardwired controllers, software 
considerations need only be targeted to the CPU 
code execution, and the balance between 
Interrupt Service Routine (ISR) code and Back- 

 
Ground (BG) code. In this respect from a CPU 
perspective, both cases need to deal with multi 
loop ISR code and multi function/loop BG code, 
the main difference being that in case 2 the CPU 
ISR needs to handle loops up to the “MHz” type 
range while in case 1 this range is in the “10s of 
kHz”. As has been mentioned previously (and 
will be explored more later) this is really only a 
function of sampling rate and CPU throughput, 
software techniques to extract best performance 
are the same. 

 

 
1. In the hardware accelerated case (e.g. UCD911x): 

• 1 × “MHz” loop is possible via a Control Law Accelerator (CLA) 
• Several slower (<~10 kHz) loops via CPU ISR 
• General intelligence via spare CPU cycles in a BG loop 

 
Fig. 7. Execution flow for hardware accelerated case. 
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2. In the single DSP engine case (e.g. F280x): 
• 2~3 × “MHz” loops are possible via CPU ISR 
• Several slower (<10~40 kHz) loops via spare CPU cycles in BG 
• General intelligence via spare CPU cycles in BG 

 
Fig. 8. Non-accelerated case with time-sliced ISR. 

C2 / C3 / BG

t
ISR

Back-
ground

Interrupt

C1 C1 C1 C1 C1

C2 / C3 / BG C2 / C3 / BG C2 / C3 / BG
C2, C3 rate 
scheduled 
by BG codeTC1

 
Fig. 9. Non-accelerated case with time-sliced BG loop. 
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IV. ESTIMATING CPU PERFORMANCE NEEDS 
FOR A GIVEN APPLICATION 

For any given power supply application it is 
important to determine if sufficient CPU 
performance is available, this will ensure the 
code will keep up with the sampled data 
throughput. It is useful to examine some concepts 
which will help with this determination: 
• Available processing time 
• MIPS (Millions of Instructions Per Second) 
• Effective MIPS (also called “quality of 

MIPS”) 
• ISR bandwidth utilization 
• BG bandwidth (average background code 

bandwidth) 

A. Available Processing Time 
As discussed previously, the available 

processing time is determined by the sampled 
data rate. The time between samples, TSAMPLE, is 
simply calculated as the inverse of the sampling 
rate. Often this is the same as the PWM 
frequency. The table shows in ns (nano-seconds) 
the time available between samples for various 
PWM frequencies. 

TABLE I. TIME AVAILABLE BETWEEN SAMPLES 

Sample Freq (=PWM) Sample Period
(kHz) (ns)
100 10000
300 3333
500 2000
700 1429
1000 1000
1500 667
2000 500

 

B. MIPS (Millions of Instructions Per Second) 
If used properly, this “figure of merit” can be 

used to calculate the amount of work (processing) 
that can be done between data samples. For most 
GP (general purpose) CPU engines: 

clock rate ≠ MIPS (1) 

This is because instructions are not executed 
in a single cycle. Instructions are usually multi-
cycle, and can vary, for example, from 2 ~ 6 
instructions depending on the instruction 
complexity. To calculate MIPS in this case, a 
“de-rating” factor needs to be applied, this can be 
as simple as the median of the instruction count 
distribution, for example (1) above, this may be 
equal to 4 cycles/instruction. Hence the CPU 
clock rate needs to be de-rated (divided) by 4, so 
a 50-MHz CPU has an equivalent MIPS = 12.5 
caution must be paid to multi-cycle multiply 
instructions, these are often 16 or more cycles, 
and can “average down” considerably the 
throughput. Often the most accurate method is to 
simply measure the actual number of cycles, i.e. 
manually count or use a profiling feature in the 
code debug environment to automatically 
evaluate this. 

DSP based CPU engines on the other hand 
execute most (~95%) instructions in a single 
cycle and hence a de-rating of 1 can be used, i.e. 
clock rate = MIPS. In addition an extra 
performance boost can come from a single cycle 
multiply/accumulate combination, i.e. product 
and previous sum; this is especially useful 
because most mathematical processing can be 
broken down into “sum of product” type 
structures. 
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C. Effective MIPS, Also Called “Quality of 
MIPS” 
“Not all MIPS are created equal” is a 

comment often made by experienced software 
designers. Examining and comparing MIPS 
quality among different CPUs can be quite 
complex, and beyond the scope of this 
introductory module, however as an illustration 
of the concept, let’s examine data width, i.e. 8-
bit, 16-bit, and 32-bit machines. 

“8-bit MIPS” ≠ “16-bit MIPS” ≠ “32-bit MIPS” 

Although this may seem obvious, and it may 
appear that a 16-bit machine is 2×“8-bit 
machine”, this is true for simple data movement, 
however if multiplication is heavily used, e.g. 
filtering, or compensation where sum of products 
are calculated, the effective MIPS of a narrow 
data width machine (e.g. 8 bits) may be 
drastically reduced. The simple multiply example 
below illustrates this. 

 
Let’s assume each digit represents an 8-bit 

quantity (mathematically valid for illustration 
purposes). A 16×16 instruction (left) executes in 
a single cycle resulting in a 32-bit product 
(5561). On an 8-bit machine, this operation needs 
to be done as 4 separate multiplications and a 
summation of 4 terms with correct decimal point 
weighting (i.e. shifting). At a minimum and with 
appropriate hardware in place it would take 5 
cycles, hence a MIPS quality de-rating of 1:5 
results, hence a MIPS quality de-rating of 5 
results, meaning that the effective MIPS is 
reduced by a factor of 5 in a multiply intensive 
algorithm. 

 

 

6   7

8   3

X 6 7

8 3

X

6   15   5
3 7 1X = 2

3 6X = 81

8 7X = 65

8 6X = 84

55 16

Case-1 Case-2

 

Fig. 10. Reducing MIPS of a narrow data width machine. 
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D. ISR Bandwidth Utilization 
Determining the percentage of CPU 

bandwidth required to execute the ISR code is 
one of the most important considerations in 
designing a digitally controlled power supply 
system. Calculating this with a good confidence 
level will determine if the target control loop 
performance can be realized, how much spare 
CPU capacity can be allocated to the BG loop, 
and finally it indicates how much room for future 
software expansion is available. The following 
example, based on a voltage mode control loop, 
illustrates in some detail the process used to 
make this calculation. The control loop 
components and synchronous buck power stage 
are shown in Fig. 11. 

 

 
The software control loop in this example 

was implemented in assembly language to 
achieve the lowest number of CPU cycles. The 2-
pole/2-zero compensation filter is an IIR second 
order and is available as a software library 
module from TI. The control loop equations 
implemented here are shown below. The control 
loop equations implemented here are shown in 
Fig. 12. 

 

 

Fig. 11. Synchronous buck power stage with the software control loop. 

 

Fig. 12. Implemented control loop equations. 
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Equation (1) in Fig. 12 is the transfer function 
in the Z domain, its difference equation (2) is the 
code implemented in the 2-pole/2-zero controller 
block. Equation (3) is the error term calculation. 
Equation (4) is the scaling required to map the 
Q15 fixed point fractional representation of U(n) 
to a Q0 integer form based on the PWM period 
value used. PrdSF is the scaling factor. The 
number of cycles required to execute the above 
control equations is very accurately known (from 
TI library) and is summarized in Table II. Also 
listed in the table are other cycle numbers related 
to ISR overhead, namely context save/restore and 
ADC servicing and interrupt acknowledge. In this 
example the ADC logic causes an interrupt 
trigger at End of Conversion (EOC). 

 

Table II also shows total clock cycles for 2 
and 3 loops. Note, the context save/restore 
overhead remains the same, also interrupt 
acknowledge is done only once per interrupt. We 
now have all the information we need to 
accurately estimate the CPU utilization within the 
ISR. Fig. 13 summarizes the sampling and 
processing operation in terms of a time-line. 
Note, for a given ISR clock cycle count, the 
balance between ISR utilization and BG 
bandwidth (discussed later) is governed by the 
sample period time TSAMPLE (inverse of sampling 
rate or frequency FSAMPLE). 

TABLE II. KNOWN CYCLES REQUIRED TO EXECUTE CONTROL EQUATIONS 

Operation # Clock Cycles # Clock Cycles # Clock Cycles
(1 loop) (2 loops) (3 loops)

Context Save + Int. latency 16 16 16
ADC servicing + Ack 4 5 6

2P/2Z controller 25 47 69
DPWM access 4 8 12

Context Restore + Int. Return 16 16 16

Total 65 92 119  

 

Fig. 13.Time-line summary of sampling and processing operation. 
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The calculation for % ISR utilization is 
simple and given by: 

%100×
=

SAMPLE

ISR

T
T

nutilizatioISR  (2) 

Examples of TSAMPLE values for various 
PWM frequencies were given earlier, to calculate 
TISR, we need to know the CPU clock speed of 
the controller used in the application. For the 
F280x/UCD9501 this clock speed is 100 MHz, 
which gives a clock period of 10 ns. So for the 
two control loops example, TISR = 92×10 ns = 
920 ns. Assuming the sampling rate = PWM 
frequency, then at PWM = 1 MHz, i.e. PWM 
period = 1000 ns, then we would have 80 ns 
spare and an ISR utilization = 92%. Although the 
two control loops would run fine, the BG loop 
would not receive much bandwidth, so we need 
to make some trade-off, perhaps lowering the 
PWM frequency to 800 kHz. For convenience, 
Table III gives calculation results (percent of ISR 
utilization) for various combinations of PWM 
frequencies versus number of control loops, this 
is useful in making design trade-offs. Note, red 
entries exceed 100% utilization and are not 
possible under given assumptions. 

E. BG Bandwidth, Average Background Code 
Bandwidth 
As discussed earlier, the ISR has the highest 

CPU priority, this means the BG code or loop has 
access to any remaining CPU bandwidth, i.e. BG 
BW = 100% - ISR utilization. For example, in the 
case of PWM = 600 kHz and 4 loops, ISR 
utilization = 88%, hence BG BW = 12%. 
Although BG activities are not as time critical, it 
is useful however to estimate loop rates of any 
slower periodic functions running in the 
background. These activities may include slow 
voltage loops, current monitoring and balancing, 
temperature monitoring, and communications. 

Unlike the ISR, the BG loop does not have 
precise deterministic timing, it is typically built 
around decision (“if then else”) type code and 
usually written in high level language such as 
C/C++. Even so, it is still possible to estimate an 
average or aggregate loop time, i.e. the average 
time that it takes for the code to return to the 
same point again. It is important to know this 
especially if the periodic tasks mentioned 
previously need to be performed. 

The average BG loop rate is calculated as 
follows: 

pathlongestinnsInstructio
MIPSBGLRBG

#
)(

=  (3) 

 

TABLE III. PERCENT OF ISR UTILIZATION FOR PWM FREQUENCY VS NUMBER OF CONTROL LOOPS 

CPU clk  = 100 MHz 10 ns

           PWM Number of LOOPS and Number of Cycles
(kHz) (μs) 1 2 3 4 5

65 92 119 146 173
200 5.00 13% 18% 24% 29% 35%
300 3.33 20% 28% 36% 44% 52%
400 2.50 26% 37% 48% 58% 69%
500 2.00 33% 46% 60% 73% 87%
600 1.67 39% 55% 71% 88% 104%
700 1.43 46% 64% 83% 102% 121%
800 1.25 52% 74% 95% 117% 138%
900 1.11 59% 83% 107% 131% 156%
1000 1.00 65% 92% 119% 146% 173%
1100 0.91 72% 101% 131% 161% 190%  
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BG MIPS = BG BW×total CPU MIPS, in this 
example BG MIPS = 12%×100 MIPS = 12 
MIPS. At this point let’s make an assumption for 
the number of instructions in the longest path, is 
say 300. Later we will see that by following some 
simple guidelines and structuring 
recommendations that we can minimize this path 
and make it’s timing more accurate. We can now 
calculate the loop rate as follows: 

kHz,,LRBG 40
300

00000012
==  (4) 

V. PRACTICAL GUIDELINES TO SOFTWARE 
DESIGN 

Section III. (Software Framework 
Considerations) discussed the benefits of using a 
simple single ISR/BG loop combination. This 
strategy is very applicable for most digitally 
controlled power supplies. Its greatest advantage 
is simplicity; the entire software scope is limited 
to two main flows or loops. In flow chart form a 
software system may look something like the 
example below. 

A. Do We Use “C” Code, Assembly or a Mix of 
Both? 
This is a question many software designers 

struggle with. As usual there is no wrong or right 
answer here, it really depends on the desired 
outcome. The following discussion will give 
some perspective in making this decision. 
Fortunately in the single ISR/BG approach only 
two choices need to be made, what to use for the 
ISR and what to use for the BG? Let’s start with 
the BG, this is a straight forward choice. 

The BG loop typically contains more than 
90% of the total code, it is what gives the power 
supply it’s “personality” i.e. differentiated 
features, intelligence, fault management, “smart” 
diagnostics, etc. Here C code (or C++) makes the 
most sense, it is a powerful language, and has 
great flexibility in performing the hundreds of “if 
then else” type decisions typical of background 
code. However, good coding structure is still very 
important in the BG if high loop rates and 
minimal latency is required, this will be 
discussed in detail in sub section C. 

 

Main

Device level (CPU, PLL,..)
Peripheral level (ADC, PWM...)
System level (GPIO, Comms)

Framework (BG / ISR)
Interrupts

Initialisation

Background loop

ISR

Execute every ISR call
fast Vloop or ILoop

TS1
loop1

TS2
loop2

TS3
filtering

TS4
OVP mgr

Return

400 kHz

100 kHz

Time Slice 
manager

Startup / Shutdown / sequencing
Margining

Diagnostics / Reporting / Comms
Fault management
Slow control loops

100 kHz 100 kHz 100 kHz

 

Fig. 14. Flow chart example of a typical software system. 
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The ISR on the other hand can go either way, 
C or ASM. It really depends on how much 
performance a designer wants to extract out of a 
given CPU. Generally, because C code is so 
standardized (meets ANSI standards) it is 
somewhat abstracted from the underlying CPU 
architecture, i.e. it often does not take advantage 
of the various hardware resources sufficiently 
well, for example shift registers, multiplying 
modes, arithmetic saturation, addressing modes, 
etc. Many C compilers (e.g. TI C28xx/UCD95xx 
compiler) do however offer Intrinsics, which can 
get around this limitation in some cases. ASM 
(assembly language) is a custom fit to the CPU 
architecture, it has complete control of every 
feature, mode and Bit a CPU has to offer, and 
hence can extract the best performance possible 
from a given architecture. In general if a designer 
wants the best performance at a given price point, 
i.e. “do more for less”, for example by choosing a 
lower MIPS device, or pushing performance on a 
given device beyond competitors using the same 
device, then investment in ASM coding can pay 
off. 

The thought of coding in ASM worries many 
software designers, they are usually concerned 
about: 
• Coding complexity (writing large amounts of 

hard to understand ASM instructions) 
• Maintenance of large amounts of ASM code 
• What is the tangible benefit from using ASM 

code 
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Coding Complexity  
Let’s examine this in more detail, to see if we 

can alleviate much of this concern to the point 
where using ASM code becomes an advantage. 
Much of the concern is centered on the amount of 
ASM code an application may require. As 
mentioned previously, the bulk of the code 
resides in the BG loop which is in C, and only a 
small portion resides in the ISR. Recall that the 
primary reason for using an ISR is to implement 
a high priority periodic task which processes time 
sampled data. In fact if we examine the time 
available between samples in real applications, 
we see that it is actually physically impossible to 
“fit” (execute) a large number of instructions 
within a given sample period. The amount of 
code is physically bounded, hence the concern 
that code amounts like 5 K, 10 K, or 20 K bytes 
need to be developed/written is in reality not true. 
To illustrate this let’s examine some figures. 
Table IV shows the maximum number of 
instructions physically able to execute within a 
sample period, assuming straight line coding, i.e. 
no loops or branches. For example a 60 MIPS 
CPU processing data at 200 KSPS (kHz) can 
execute at best 300 instructions (or lines of code). 
This implies 100% ISR utilization, more 
realistically if we apply the 75%/25% rule (i.e. 
25% for BG) and take into account ISR overhead 

(this is one time code re-used throughout all 
applications) then only ~200 lines of ASM code 
is the actual software designer’s burden in this 
example. Moreover, if a CPU with multi-cycle 
instructions is used the MIPS de-rating factor 
reduces the amount of ASM code even further.  

Maintenance Considerations for ASM Code  
On the question of ASM code maintenance, 

two points need be made, first, as discussed in A) 
the amount of code is not really large to begin 
with and second, the code that generally executes 
in an ISR consists predominantly of 
mathematical functions and interface to ADC and 
PWM peripherals. This code once developed and 
debugged seldom changes. It is analogous to 
wanting to modify or maintain C library math 
functions like sine, cosine, square-root, etc. There 
is no need, a designer trusts the functions work 
and keeps re-using them. As an example, in 
Fig. 15, below, is a 2-Pole/2-Zero compensator 
(i.e. IIR filter difference equation) used in many 
closed loop systems. Although the ASM code 
appears complex it is either obtained as part of an 
existing library, example from TI, or coded once 
by a knowledgeable ASM designer. This is the 
code snippet which implements the difference 
equation previously shown as equation (2). 

 

 

TABLE IV. NUMBER OF INSTRUCTIONS POSSIBLE IN A SAMPLE PERIOD FOR A GIVEN CPU MIPS 
RATING 

FSAMPLE (=PWM) MIPS
(kHz) 25 60 100
200 125 300 500
250 100 240 400
300 83 200 333
350 71 171 286
400 63 150 250
500 50 120 200  
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;Calculate input (Ref - Fdbk): 

 MOV  ACC, *XAR0++<<11   ; ACC = Ref1  (Q15 to Q26) 

 SUB  ACC, *XAR1++<<14   ; ACC = Ref1 - Fdbk1 (Q12 to Q26) 

 MOVL @CNTL_2P2Z_DBUFF1+4, ACC ; e(n) = ACC = error (Q26) 

 

;Calculate 2p-2z filter: Note: based on Q25 coefficients 

 MOVL XT, @CNTL_2P2Z_DBUFF1+8  ; XT = e(n-2) 

 QMPYL P, XT, *XAR3++   ; P  = e(n-2)*B2 (Q20 = Q26*Q26) 

 MOVB ACC, #0    ; ACC = 0 

 MOVDL XT, @CNTL_2P2Z_DBUFF1+6  ; XT = e(n-1), e(n-2) = e(n-1) 

 QMPYAL P, XT, *XAR3++    ; P  = e(n-2)*B1 (Q20 = Q26*Q26) 

 MOVDL XT, @CNTL_2P2Z_DBUFF1+4  ; XT = e(n), e(n-1) = e(n)  

 QMPYAL P, XT, *XAR3++    ; P  = e(n)*B0 (Q20 = Q26*Q26) 

 MOVL XT, @CNTL_2P2Z_DBUFF1+2  ; XT = u(n-2) 

 QMPYAL P, XT, *XAR3++   ; P  = u(n-2)*A2 (Q20 = Q26*Q26) 

 MOVDL XT, @CNTL_2P2Z_DBUFF1+0  ; XT = u(n-1), u(n-2) = u(n-1) 

 QMPYAL P, XT, *XAR3++    ; P = Y1*A1 (Q20 = Q26*Q26) 

 ADDL ACC, @P    ; ACC = u(n-1)*A1+u(n-2)*A2+  

       ; e(n)*B0+e(n-1)*B1+e(n-2)*B2 (Q20) 

; Scale u(n) Q20 to Q26, and save it 

 LSL  ACC, #6     ; ACC = Q26, based on Q26 coef & e(n) 

 MOVL @CNTL_2P2Z_DBUFF1, ACC  ; u(n-1) = u(n) = ACC (Q26) 

 

; Saturate the result [0,1] & move to Uout as a Q15 

 MINL ACC, *XAR3++    ; Saturate to < 0.999999.. in (Q26) 

 MAXL ACC, *XAR3++    ; Saturate to > 0.000000.. in (Q26) 

 LSL  ACC, #5     ; Convert from Q26 to Q31 (Duty in Q31) 

 

; output Uout 

 MOV  *XAR4++, AH    ; Output Duty (Q15) to terminal net 

 
Fig. 15. An ASM code sample for a 2-pole/2-zero filter function. 
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Benefits of ASM Code  
How much benefit will going to assembly 

language bring? The best way to gauge this is to 
get some perspective on the code performance 
boost obtained. This can be readily seen from the 
ISR utilization factor, and the impact that saving 
some instructions have on this value. For 
example if an application is estimated to have an 
ISR utilization factor of say 10% if coded in C, 
then coding the ISR in ASM has little to no 
impact, since the BG loop gets 90% BW and 
plenty of margin for overhead exists. On the 
other hand if performance is critical (high 
sampling rates) and code execution is tight, then 
saving a few cycles can make all the difference. 
A useful way to look at this is in Table V. This 
shows (in red) the percent of impact that 10 
instructions can make on ISR utilization for 
various sample rates and CPU MIPS. For 
example, at an ISR loop rate of 400 kHz, while 
running a 60 MIPS CPU, saving 10 instructions 
can reduce the ISR utilization by 5%. In practice 
usually more than 10 instructions can be saved by 
adopting an ASM based ISR, and hence 10~30% 
reduction in utilization can often be realized. 

 
Another equally important way to look at this 

is to see the impact on the BG loop rate. The BG 
loop often has slower tasks running but which 
still must maintain a certain periodicity, i.e. 
execution rate, for example an over-voltage or 
over current manager, or simply a slower control 
loop which must rely on a given sample 
processing rate to be valid. 

Recall the example where: 

kHz,,LRBG 40
300

00000012
==  (5) 

This was achieved based on an ISR utilization 
of 88%, i.e. BG BW = 12%. Now let’s assume a 
saving of 9% is achieved by saving 15 
instructions (15 inst = 10+5 =6%+3%, see table, 
600 KHz and 100 MIPS), hence the ISR 
Utilization is now 79% and BG BW = 21%. 
Recalculating the BG loop rate and assuming the 
same BG code length, this gives: 

kHz,,LRBG 70
300

00000021
==  (6) 

This is a significant boost in execution rate. 
Note a 9% saving (with just 15 instructions) in 
the ISR, has resulted in a 75% boost in BG loop 
rate. Note, the closer to the “edge” (i.e. ISR  
~100%) the more dramatic this boost will be. 

 

TABLE V. PERCENT OF IMPACT OF 10 INSTRUCTIONS ON ISR UTILIZATION  
FOR PWM FREQUENCY VS CPU MIPS 

FSAMPLE (=PWM) MIPS
(kHz) 25 60 100
200 8.0% 3.3% 2.0%
250 10.0% 4.2% 2.5%
300 12.0% 5.0% 3.0%
350 14.0% 5.8% 3.5%
400 16.0% 6.7% 4.0%
600 24.0% 10.0% 6.0%  
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B. ISR Structure Details – Using Time Slicing 
A single ISR for the control loop makes a lot 

of sense, it incurs the context save/restore 
overhead only once, and being the only ISR 
means it has the highest CPU priority and hence 
its execution is precisely periodic and 
deterministic. The price we pay for this is 
somewhat less flexibility when implementing 
multi-loop/multi-stage systems. In these cases we 
do not have the flexibility of choosing arbitrary 
combinations of sample rates and PWM 
frequencies. Our choices must be limited to 
frequencies (and sampling rates) having an 
integer multiple relationships with each other or 
to a fundamental frequency. Actually in power 
systems this restriction to integer multiple 
frequencies turns out to be a requirement rather 
than a limitation, since it is undesirable to have 
mismatched frequencies due to beating effects 
and non deterministic switching noise, making it 
very difficult to schedule ADC start of 
conversion triggers during non-switching time 
windows. 

 
Implementing a time slice manager within an 

ISR is quite simple and very efficient on cycles. 
Any number of time slices can be chosen, 
whereby effectively dividing the ISR frequency 
by the chosen number. Below is a simple 
example of an 8-slot time-slicer. 

Here four separate cases are shown, where 
the code module C1 is shown to execute at 
different rates, depending on which Time Slice 
(TS) it occupies. Four choices are possible, same 
frequency as the ISR, 1/2 rate, 1/4 rate and 1/8 
rate. 

 

 
Fig. 16. 8-slot time-slicer. 
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To show how the time slice technique is used 
in practice, below are two examples of multi-
stage/multi-output power systems, requiring 
multiple independent control loops all executed 
from a single CPU and ISR. The first example is 
control of multiple DC/DC bucks which might be 
used in a POL application. Two single phase 
bucks (independent outputs) are running at full 
ISR speed, i.e. 600 kHz, while three independent 
multi-phase interleaved bucks are running at 
150 kHz and are run during only one time-slot, 
where by reducing the execution rate to 1/4 of the 
ISR rate. 

Note, the PWM frequency of bucks 3, 4 and 5 
is 300 kHz in this example, it could have been 
made 150 kHz, or 600 kHz, depending on 
magnetics. It does not need to be the same as the 
code execution rate, only in integer multiple of it. 

 

TABLE VI. SUMMARY OF FREQUENCIES FOR EACH BUCK STAGE 

 

 

Fig. 17. Time-slice timing for the 5-buck system. 
 

Code Function PWM rate (kHz) Code execution rate (kHz) Identifier 
Buck 1 - single phase V Loop 600 600 B1 
Buck 2 - single phase V Loop 600 600 B2 
Buck 3 - 4-phase IL V Loop 300/phase (90o apart) 150 B3 
Buck 4 - 3-phase IL V Loop 300/phase (120o apart) 150 B4 
Buck 5 - 3-phase IL V Loop 300/phase (120o apart) 150 B5 
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The second example is for an AC/DC rectifier 
implementation. This particular rectifier has two 
DC/DC outputs and in addition to PFC and 
Boost, has many code modules running. Here 
also it is convenient to choose a four time-slice 
ISR approach. Table VII summarizes the multiple 
code activities that need to execute and at what 
rate. 

Some points to consider: 
• The PFC voltage loop is typically a very slow 

loop (a few kHz) and can be run in the BG 
loop, providing a periodic execution rate, (say 
1 kHz) can be implemented. More details on 
this later in the BG structure discussion. 

• Not all the software tasks shown need to run 
at an execution rate of 50 kHz or greater, 
some can run just fine at 25 kHz or even 12.5 
kHz, for example the current balancing loop 
(IBAL), however it may be more convenient to 
just allow it to run at the time-slot rate 
especially if enough CPU bandwidth exists. If 
cycles are getting tight, a given time-slice can 
be further subdivided if necessary, for 
example in TS4, execution of ICMD and RA 
could be done on a interleaved basis, i.e. run 
each one every other time, this effectively 
reduces the rate to 25 kHz and opens up more 
cycles for other processing if required. 

 

TABLE VII. – SUMMARY OF TASKS AND FREQUENCIES FOR THE AC/DC RECTIFIER SYSTEM 

 

 

Fig. 18. Time-slice timing for the AC/DC rectifier. 

Code Function PWM rate (kHz) Code execution rate (kHz) Identifier 
DC/DC-1 V Loop 200 200 V1 
DC/DC-1 I Loop 200 200 I1 
DC/DC-2 V Loop 200 100 V2 
DC/DC-2 I Loop 200 100 I2 

PFC I loop 50 IPfc 
PFC V loop (done in BG) 50 VPfc 

PFC 1/X2 (X=Vac Rect & Avg) 50 1/X2 
PFC I-cmd (V1*V2*V3) 50 Icmd 

PFC Vac Rect. and Average 50 RA 
PFC I-balance 

 
 

100 

50 Ibal 
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Sample code (in assembly) showing a practical implementation of a 4 slot time-slicer. 

 
;============================================================ 

_ISR_Entry: CONTEXT_SAVE ; call save macro 

 

;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

; Code executed every Interrupt 

;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 User code.... 

 User code.... 

 User code.... 

;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

; Time Slice Manager (1:4) 

;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 MOVW  DP,#tsPtr 

 MOVL  XAR7,@tsPtr ; fetch current TS address 

 LB  *XAR7  ; Jump there (indirectly) 

;============================================================ 

; TIME SLICE 1 - Code executed only on TS1 

;============================================================ 

TS1: MOVL  XAR7,#TS2 ; Load TS2 address for 

 MOVL  @tsPtr,XAR7 ; next time through 

;============================================================ 

 User code.... 

 User code.... 

 User code.... 

 LB  EXIT_ISR ; Branch to ISR exit 

 

;============================================================ 

; TIME SLICE 2 - Code executed only on TS2 

;============================================================ 

TS2: MOVL  XAR7,#TS3 ; Load TS3 address for 

 MOVL  @tsPtr,XAR7 ; next time through 

;============================================================ 

 User code.... 

 User code.... 

 User code.... 

 LB  EXIT_ISR ; Branch to ISR exit 

 

;============================================================ 

; TIME SLICE 3 - Code executed only on TS3 

;============================================================ 

TS3: MOVL  XAR7,#TS4 ; Load TS4 address for 

 MOVL  @tsPtr,XAR7 ; next time through 

;============================================================ 
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 User code.... 

 User code.... 

 User code.... 

 

 LB  EXIT_ISR ; Branch to ISR exit 

 

;============================================================ 

; TIME SLICE 4 - Code executed only on TS4 

;============================================================ 

TS4: MOVL  XAR7,#TS1 ; Load TS1 address to 

 MOVL  @tsPtr,XAR7 ; start over again 

;============================================================ 

 User code.... 

 User code.... 

 User code.... 

 

;============================================================ 

EXIT_ISR CONTEXT_REST ; Restore context & return 

  IRET 

;============================================================ 

 
Fig. 19. Practical time-slicer implementation using C28xx assembly. 
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C. BG Structure Details Using State-Machine 
Techniques 
The BG loop (BGL) is responsible for many 

tasks (as many as 50~100 in some cases) and 
typically contains more than 90% of an 
applications software. As already discussed the 
best choice for the BGL is high level language 
such as C or C++. 

The BGL needs to manage two main 
categories of tasks or functions: 
• Local decision based/request (e.g. 

communications) based execution 
• Periodic based execution 

It is critical to run all tasks in a well 
structured and timely manner so the BGL rate is 
maximized and the periodic functions can 
execute at rates required by the application. This 
can be achieved in several ways, including the 
use of an operating system. In keeping with the 
“keep it simple” approach, an approach using 
state-machine based task scheduling will be used. 
With this approach tasks can execute on a time 
schedule (i.e. periodic) or based on decisions. 

Decision Based Execution 

One of the key concepts of this approach is to 
totally avoid using any type of “closed loop 
constructs”, i.e. code that loops on itself waiting 
for a condition or state to be true before 
executing a task and the passing control to other 
tasks. Fig. 20 shows a flow chart and equivalent 
C example of what needs to be avoided.  

Avoiding this is critical because of two main 
reasons: 
• It is very wasteful on cycles. 
• It can be very difficult or almost impossible 

to put a measure on the time of such a “wait” 
loop. Worst case, the condition may never 
happen, hence wait is “infinite” 
The key in a TDM system is to continually 

share the CPU cycles amongst all tasks as often 
as possible, this cannot be guaranteed using the 
above coding. A better approach is to check for 
the condition once every BGL time, if the 
condition is not true then control must pass over 
to next task/s. If all tasks or functions are 
designed to execute in this manner, then the BGL 
rate is maximized. The recommended approach is 
shown in Fig. 21 below. 

 
Fig. 20. Avoiding closed loop constructs. 

 
Fig. 21. Recommended approach for decision based software. 
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Often a task consists of multiple subtasks (or 
components) which can them selves be decision 
based or simply just “go execute”. Keeping track 
of which subtask to execute and in what order, 
can get quite complex, especially if many main 
tasks have subtasks at various stages of 
completion. One very simple yet powerful 
technique to address this is by utilizing state-
machine based execution. As an example let’s 
examine the implementation of a soft-start 
function using this technique. 

 

 

 

Fig. 22. Flow diagram utilizing state-machine based execution. 
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A State Pointer variable (SPtr) keeps track of 
the current state to be executed. Once per BG 
loop cycle, one of the states (0 – 6) is executed. 
The state-machine may keep it’s state pointer set 
to one particular state for a long time, waiting for 
a certain condition to occur, for example a 
ShutDown command. If the required condition is 
met, the state pointer is set for the next state. 
Note, code always enters the state-machine only 
once per BGL, executes only one State and exits 
again, it does not loop waiting for any conditions 
to occur. 

Implementing such state-machine control in 
C is very simple; one way is through the “case 
statement”. Fig. 23 contains some sample code of 
the soft-start example. 

//===================================================================== 

void SoftStartFunction(void) // Soft Start via Vref control  

//===================================================================== 

{ 

 switch(StatePtr) 

 { 

  case 0: // Idle (wait for Start cmd) State 

   if(StartUp == 1) 

   { 

    StatePtr = 1; 

    DelayCtr = 0; 

   } break; 

 

  case 1: // Delayed Start-up state 

   DelayCtr++; 

   if(DelayCtr >= DelayUp) 

   { 

    StatePtr = 2; 

   } break; 

 

  case 2: // RampUp State 

   Vref = Vref + RampUpRate; 

   if(Vref >= VrefTarget) 

   { 

    Vref = VrefTarget; 

    StatePtr = 3; 

   } break; 

 

  case 3: // "On" (at Target Voltage) state 

   if(StartUp == 0) 

   { 

    DelayCtr = 0; 

    StatePtr = 4; 

   } 
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  case 4: // Delayed Shut-Down State 

   DelayCtr++; 

   if(DelayCtr >= DelayDown) 

   { 

    StatePtr = 5; 

   } break; 

 

  case 5: // Ramp-down state 

   Vref = Vref - RampDownRate; 

   if(Vref <= 0) 

   { 

    Vref = 0; 

    StatePtr = 0; 

   } break; 

 } 

} 

Fig. 23. Sample code of the soft-start example. 

 
For a small number of state-machines and states with each machine, the case statement approach 

works fine. A typical power supply application however has a lot more going on in the BGL than just a 
single soft start controller. 
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For example a multi-output/multi-phase POL 
application may have the following BGL 
activities: 
• Soft start and shutdown control for multiple 

outputs (VOUT1, VOUT2, VOUT3 and VOUT4) 
• Phase current measurement scheduling 
• Phase current balancing loop (slow 1~5 kHz) 
• Temperature monitoring loop for each VOUT 

and each phase (in multi-phase case) 
• Reporting (VIN, VOUT, Temp, IPHASE, etc) to 

host 
• Self diagnostics for failure prediction 
• Fault management – phase shedding (N N-

1) in case of phase fault/over-current 
• Other etc. 

Clearly what is needed is a method to support 
a multitude of state-machines each with possibly 
a large number of sub-states, all managed with 
minimal CPU cycles. The weakness with the case 
statement is when the number of cases is large, 
because every case needs to be evaluated up until 
the “true” case is found. If for example, the state-
machine is positioned at a state towards the end, 
the number of evaluations can be large, and each 
needs to be calculated by the CPU every BGL 
time. A better method is to use a pointer to 
Function approach, where each function is a state 
or sub-state. In this approach the C compiler can 
use the indirect addressing capabilities of the 
CPU and hence the State function can be 
“jumped to” immediately based on a preloaded 
function address. In a complex system, this can 
help save a large amount of BGL cycles. A flow 
diagram of what this may look like is shown 
below. 

A0 A1 A2 A3 A4

B0 B1 B2 B3 B4

C0 C1 C2 C3 C4

D0 D1 D2 D3 D4

E0 E1 E2 E3 E4

“A”
State-

Machine

“B”
State-

Machine

“C”
State-

Machine

“D”
State-

Machine

“E”
State-

Machine

Code
entry

Code
exit

 

Fig. 24. Flow diagram for “pointer-to-function” based state-machine. 
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Here as many sub-states (1, 2, 3…) as needed 
can be added, each state-machine (A, B, C…) can 
have different number of sub-states. The number 
of state functions (A0, A1,…B0, B1,…) can be 
very large and a system could have a large 
amount of code, however, the path of execution 
each time round the BGL can be kept quite short. 

To illustrate more clearly this method, the 
soft-start function has been implemented using a 
pointer-to-function based state-machine. In this 
case, the SS function could be any one of the 6 
state-machines shown previously, i.e. A-tasks, B-
tasks, etc. Here A-tasks have been used. 

 
 

// State Machine function prototypes declarations 

//======================================================== 

// A task states 

void A1(void); //state A1 

void A2(void); //state A2 

void A3(void); //state A3 

void A4(void); //state A4 

void A5(void); //state A5 

void A6(void); //state A6 

 

// Variable declarations 

void (*A_Task_Ptr)(void); // State pointer A tasks 

void (*B_Task_Ptr)(void); // State pointer B tasks 

 

//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

// Soft Start state-machine 

//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 (*A_Task_Ptr)(); // jump to an A Task (A1,A2,A3,...) 

 

//======================================================== 

void A1(void) // Idle (wait for Start cmd) - State 1 

{ 

 if(StartUp == 1) 

 { A_Task_Ptr = &A2; DelayCtr = 0; } 

} 

//======================================================== 

void A2(void) // Delayed Start-up - State 2 

{ 

 DelayCtr++; 

 if(DelayCtr >= DelayUp) 

 { A_Task_Ptr = &A3; } 

} 



 6-29

//======================================================== 

void A3(void) // RampUp - State 3 

{ 

 Vref = Vref + RampUpRate; 

 if(Vref >= VrefTarget) 

 { Vref = VrefTarget; A_Task_Ptr = &A4; } 

} 

//======================================================== 

void A4(void) // "On" (at Target Voltage) - State 4 

{ 

 if(StartUp == 0) 

 { DelayCtr = 0; A_Task_Ptr = &A5; } 

} 

//======================================================== 

void A5(void) // Delayed Shut-Down - State 5 

{ 

 DelayCtr++; 

 if(DelayCtr >= DelayDown) 

 { A_Task_Ptr = &A6; } 

} 

//======================================================== 

void A6(void) // Ramp-down - State 6 

{ 

 Vref = Vref - RampDownRate; 

 if(Vref <= 0) 

 { Vref = 0; A_Task_Ptr = &A1; } 

} 

 

Fig. 25. Implementation of soft-start using a pointer-to-function based state-machine. 
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Periodic Based Execution in the BGL 
In many cases it is very important to execute 

tasks periodically, and synchronous to a CPU 
time-base. Two examples of this are: 
1. Slow control loop, such as a PFC voltage 

control. Here the sample rate (loop rate) can 
be quite slow, for example 1 kHz. Some 
timing jitter can be tolerated, but the 
sample/execution rate does need to be 
periodic. 

2. “Tick time-base” for use in soft start. The 
state-machine driven soft-start function 
makes an assumption that it is executed at a 
fixed time interval, for example every 0.5 ms 
(2 kHz), this ensures that the ramp rates or 
delayed start-up required by an application 
can be accurately timed. For instance if a 
converter’s voltage output needs to ramp to 
target value of 2.0 V in 20 ms, then the soft-
start function needs to allow for 40 voltage 
increments (20 ms/0.5 ms) of VREF 
adjustment, i.e. 2 V/40 = 50 mV steps. 

Recall that the BG loop rate is an average 
value, and is valid only over longer time periods. 
An “instantaneous” rate cannot be guaranteed. 
However, if a periodic rate of programmable 
frequency is required, such as in the two 
examples, then it is possible to tie the execution 
of tasks (state-machines) to known time-bases. 
Anytime asynchronous software (like the BGL) 
is tied or synchronized to a fixed time-base, some 
jitter will be introduced. Most loops or processes 
can tolerate jitter and typically does not present a 
problem, however it must be comprehended. 

The amount of jitter will be related 
approximately to the ratio of BG loop rate and 
synchronizing time-base. For instance, in a 
previous example, a BGLR of 70 kHz was 
calculated. If a 1-kHz time-base synchronized 
loop is needed it will show approximately 
1/70×100% = 1.4% jitter. For a PFC voltage loop 
this should be a non issue. For the soft-start 
function this is certainly no problem and in fact a 
jitter of 10~15% could be tolerated, as the ramp-
up rates are not critical, for example a ramp time 
of 20 ms ± 10% would be an acceptable power 
supply specification. 

Usually a digital power supply controller (e.g. 
UCD911x or F280x/UCD9501) has spare timers 
available which can be utilized to provide an 
accurate time-base for task synchronization. Note 
not all the BGL software needs to be 
synchronized, it is possible, and desirable to have 
a mix of software tasks, some slaved off a time 
base, and others running as fast as the BG loop 
rate permits. 
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Implementing timed task execution requires 
programming a controller’s timer to set a flag 
every time a period match event occurs. The 
BGL code then checks this flag every time 
through its loop (e.g. at a rate of 70 kHz) if set 
then a state-machine function (or several) is 
triggered to execute. If enough timer resources 
exist, several time bases can be working 
concurrently and multi-rate State-machine 
execution is possible. On the F280x/UCD9501 
controller, three timers are available as part of the 
CPU, i.e. in addition to the DPWM and GP PWM 
timers. 

Below is a flow chart of how BGL software 
might be implemented. Here 6 state-machines are 
running, three are synchronized to hardware 
timers and three are executing at the BG loop 
rate. A tasks execute at a period interval set by 
timer 1. A and B tasks execute at a period 
interval set by timer 2. The code sample given 
after the flow chart shows a possible C 
implementation of such a scheme using 
F280x/UCD9501 CPU timers as the 
synchronizing hardware. 

BG

N

YTimer1
Period Flg

set ?
Clear Period Flg

A State-machine Tasks

N

YTimer2
Period Flg

set ?

Clear Period Flg
B State-machine Tasks
C State-machine Tasks

D State-machine Tasks
E State-machine Tasks
F State-machine Tasks

 

Fig. 26. Implementing BGL software. 
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//=============================================================== 

// State Machine Sync timers period initialization 

//--------------------------------------------------------------- 

// Timing sync for background loops 

CpuTimer0Regs.PRD.all = 40000; // 400 uS (0.400 mS) - A tasks 

CpuTimer1Regs.PRD.all = 100000; // 1000 uS (1.000 mS) - B tasks 

CpuTimer2Regs.PRD.all = 5000;  // 50 uS (0.050 mS) - C tasks 

 

 

//=============================================================== 

// BG loop – Synchronous and Asynchronous Task execution 

//--------------------------------------------------------------- 

 

   ........ 

   ........ 

 

 // loop rate synchronizer for A-tasks 

 if(CpuTimer1Regs.TCR.bit.TIF == 1) 

 { 

  CpuTimer1Regs.TCR.bit.TIF = 1; // clear flag 

  //=========================================================== 

  (*A_Task_Ptr)(); // jump to an A Task (A1,A2,A3,...) 

  //=========================================================== 

 } 

 

 // loop rate synchronizer for B & C -tasks 

 if(CpuTimer2Regs.TCR.bit.TIF == 1) 

 { 

  CpuTimer2Regs.TCR.bit.TIF = 1; // clear flag 

  //=========================================================== 

  (*B_Task_Ptr)(); // jump to a B Task (B1,B2,B3,...) 

  (*C_Task_Ptr)(); // jump to a C Task (C1,C2,C3,...) 

  //=========================================================== 

 } 

 // Execute at the BG loop rate 

 //=========================================================== 

 (*D_Task_Ptr)(); // jump to a D Task (D1,D2,D3,...) 

 (*E_Task_Ptr)(); // jump to a E Task (E1,E2,E3,...) 

 (*F_Task_Ptr)(); // jump to a F Task (F1,F2,F3,...) 

 //=========================================================== 

 

Fig. 27. Timer synchronized implementation of  BG loop software. 

 

 


