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Applying Digital Technology to  
PWM Control-Loop Designs

Mark Hagen and Vahid Yousefzadeh

Abstract

This topic discusses the application of digital-control to DC/DC-switching converters and how to model 
the digitally controlled system. The main blocks that appear in almost every digital controller—the error 
ADC, the compensator, and the digital PWM engine—are discussed and used to model small-signal 
characteristics such as frequency response, stability criteria, the effects of quantization, as well as the 
impact of sampling rate and delay introduced by the digital controller to the system. This model is extended 
to include nonlinear gain and its benefits. Finally, a graphical user interface is introduced and 
demonstrated for use with the design of a two-phase synchronous-buck converter.

I. Introduction

Switch-mode power-supply (SMPS) converters 
find use in a wide variety of applications, ranging 
from a fraction of a milliwatt in on-chip power 
management to hundreds of megawatts in power 
systems. All of these applications require efficient 
and cost-effective static and dynamic power 
regulation over a wide range of operating 
conditions. An analog or digital controller closes 
the feedback loop around the switching converter 
and actively controls the on/off states of the power-
semiconductor devices to achieve input or output 

regulation. Fig. 1 shows a typical analog controller 
that uses analog feedback to provide output voltage 
regulation.

Over the past few decades, digital controllers 
in the form of digital-signal processors (DSPs), 
microcontrollers, and field-programmable gate 
arrays (FPGAs) have seen extensive application in 
motor-drive controllers and high-voltage and high-
current power electronics. In these applications 
the control algorithms are generally sophisticated, 
while the semiconductor devices operate at 
relatively low switching frequencies, e.g. at tens 
of kilohertz.

Fig. 1. Analog-controlled SMPS.
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Continued rapid advances in CMOS and VLSI 
technology have enabled the development of a 
high-performance, practical, cost-effective, and 
low-power digital SMPS controller. Fig. 2 shows a 
block diagram of an advanced digital controller 
that closes the feedback around a SMPS. Such a 
controller, because it is implemented in a digital 
silicon technology, usually includes a standard 
communication block; general-purpose ADCs 
(ADCs); digital I/Os; memory; and a processing 
unit (microcontroller) that handles programming, 
communication, diagnostics, power management, 
etc. The result is that a digital controller not only 
regulates the output voltage, but also can perform 
complex sequencing and can monitor key 
parameters like average current and power for the 
host system. 

This topic focuses on the use of digital 
technology to implement a SMPS controller. 
Specific examples are for a non-isolated point-of-
load (POL) application. We first review the 
techniques necessary to model the discrete time 
controller. Then the new features and functions 
that digital control enables are discussed. There 
are three specific blocks that enable the digital 
controller to achieve the high-performance 
regulation requirements of an SMPS: the ADC 
used to sample the error voltage (and an associated 
setpoint reference DAC), the digital filter that 
compensates the error signal, and the digital pulse-

width modulator (DPWM) that converts the 
sampled, compensated error signal into the gate-
drive signals.

Because most digital controllers contain a 
serial interface, they can be easily configured 
from design software. This allows the design 
software to do the “heavy lifting” in terms of 
modeling the system and calculating appropriate 
compensation for the SMPS. In this topic we 
discuss the what goes on “under the covers” of the 
design software. 

II. Modeling a Digital Controller

Switch-mode power supplies have always had 
a digital component; they have a control effort 
with a discrete update interval. That interval is the 
switching period. The net result is that there can 
be a latency in the response to disturbance in the 
control effort. When we analyze a SMPS system, 
this latency shows up as a rotation in the phase of 
the open-loop system. When we introduce digital 
components into the system, there are additional 
phenomena that must be taken into account. These 
things are:

Feedback quantization1.	
Control effort quantization2.	
Delay needed to sample the feedback and 3.	
calculate the control effort

The key to implementing a digitally-controlled 
power supply is understanding these effects. 
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Fig. 2. Digital controller in an SMPS.
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Fig. 3 shows the closed-loop block diagram 
for a digitally controlled SMPS that first generates 
an analog error voltage and then digitizes that 
voltage to calculate the PWM control effort. For 
this system the total open-loop gain is

	 T s G s H s( ) ( ) ( )= × 	 (1)

Then the closed-loop gain, from the PWM 
control effort, u, to the sensed output voltage, 
vsense, is 

	

v
u

G s
G s H s

sense =
+

( )
( ) ( )1 × 	

(2)

The contributors to the closed-loop system are 
itemized in Table 1. To determine the frequency 
response of the power supply, and from that, 
determine the stability margin of the system, we 
need to define the dynamic gain for each block. 
Once we have the transfer function for each block, 
the standard measure of stability can be applied:

Gain Margin•	 —The inverse of the magnitude 
of the open-loop gain, expressed in dB, at the 
frequency where the phase of the open-loop 
gain is 180 degrees.
Phase Margin•	 —The phase of the open-loop 
gain, expressed in degrees, where the magnitude 
of the open-loop gain is 1.0 (0 dB).

In addition to developing a frequency-domain 
model of the system, it is important to develop a 
time-domain model of the digitally-controlled 
power supply so that the effects of quantization 
can be observed. In the following sections we will 
work our way around the feedback loop and 
develop the necessary description of each 
functional block so that both a frequency-domain 
model and a time-domain model can be created.

III. Power-Stage Modeling

The development of the frequency response of 
the plant is identical for analog or digitally-
controlled power supplies. It is derived for the 
average model of the power stage(s). For a buck 
regulator, such as used in the POL power supply, 
the continuous-mode, small-signal-transfer 
function is simply 

	
G s

v
duty

V G splant
out

in LC( ) ( ),= = ×
	

(3)

where GLC(s) is the transfer function of the LC 
low-pass filter and load resistance of the power 
stage.

There are several reasons that the derived 
frequency response of the average model may be 
insufficient when designing a digitally-controlled 
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Fig. 3. Closed-loop block diagram.

Table 1. Closed-Loop System 
Contributors

KAFE Analog front-end gain in V/V

KEADC Error ADC gain in LSB/volt

KNLR Nonlinear boost gain

GCLA Control-law accelerator (digital compensator) 
gain

GDelay1 Total sampling and CLA computational delay

KPWM PWM gain in duty/LSB

GDelay2 On-time and any delay to multiple power stages 
driving Vout

GPlant* Transfer function from the time location of the 
falling edge of the PWM signal to Vout of the 
power stage

GDiv Divider network transfer function in V/V

*The frequency response of the plant is derived from the 
average model of the power stage(s). 
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power supply. Digital control introduces 
quantization of the error voltage and quantization 
of the output-PWM control effort. There also are 
additional delays in a digital system such as the 
time it takes to convert the error voltage to a 
numerical value, and the time it takes the digital 
filter to calculate the control effort. Finally, 
processing the error signal digitally enables non-
linear gains to be applied to the signal. All of these 
effects are best observed in a time model of the 
system. 

A time-domain model of the system should 
describe how variations in input voltage, load 
current, and duty cycle affect the output voltage. 
Since the power stage of a switching converter 
forms a nonlinear system, designing a linear 
controller usually involves linearizing this power 
stage. The traditional approach uses average 
modeling to provide a dynamic model for PWM-
operated DC/DC converters [1]. The frequency 
range of interest is much smaller than the switching 
frequency, so the model ignores the switching 
frequency and its harmonics. The small-signal 
linear model of the power stage is easily derived 
from the average model.

Although a linearized model based on switch 
averaging provides accurate results at low 
frequencies, it starts to break down beyond about 
1/5 of the switching frequency, fsw. The phase 
response exhibits large discrepancies between the 
model and the measured behavior. This modeling 
error becomes particularly important in the design 
of high-bandwidth switching converters.

Reference [2] discusses discrete-time modeling 
of DC/DC switching converters that take into 
account the sampling effect of the PWM for analog 
controllers. Recently, the growing focus upon 
digital control for high-frequency DC/DC 
converters has revived interest in discrete-time 
analysis and modeling [3]. Discrete-time modeling 
easily incorporates the propagation delay of 
discrete components, computational delay, and 
DPWM delay into a dynamic model [4, 5]. The 
following sections discuss the techniques for 
switch averaging and discrete-time modeling in 
further detail.

A. Review of the Average Model
Switch averaging removes the switching 

ripples in the inductor-current and capacitor-
voltage waveforms over the switching period. The 
following equations define the low-frequency 
components of the inductor and capacitor 
waveforms:

	

L
d i t

dt
v t

C
d v t

dt
i t

L T
L T

C T
C T

s

s

s

s

( )
( )

( )
( )

=

=

, and

,
	

(4)

where

	
x t Ts

( )
	

denotes the average of x(t) over an interval of one 
switching period, Ts:

	
x t x dT t

t T

s

s( ) ( ) .=
+

∫ τ τ
	

(5)

Although averaging removes the high-
frequency switching ripple, the average value still 
varies from one switching period to the next so as 
to model low-frequency variations. The differential 
equations for capacitor voltages and inductor 
currents are derived for each switching interval 
(for example, the on time and the off time of the 
switch in a simple buck converter). Averaging the 
differential equations for each switching interval 
provides the desired average equations.

The next step in obtaining the small-signal 
model of the power stage involves linearizing the 
average equations. The capacitor voltage and 
inductor currents are generally nonlinear functions 
of the signals in the converter (input and output 
voltages, duty cycle, etc.). To obtain the small-
signal behavior of the power stage, perturb the 
signals and the average values of capacitor voltages 
and inductor currents around their steady-state 
operating point:

	 = +u t U û( ) , 	
(6)

where û << U. Next, replace the signals, the 
capacitor voltages, and the inductor currents with 
their perturbed values from Equation (6). 
Eliminating the DC components, U, and the high-
frequency components, û1û2, yields the differential 
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equations for the small-signal values of û. Fig. 4 
shows the small-signal model of a buck converter 
with inductor parasitic resistance, RL, and output-
capacitor equivalent-series resistance, Resr. D 
indicates the steady-state duty cycle, and  
D´ = 1 – D.

The model of Fig. 4 provides the basis for 
computing control-to-output-voltage (d-to-vout) 
and input-voltage-to-output-voltage (vg-to-vout) 
transfer functions.

B. Average Model with Delay
A digital controller with an eADC sampling 

once per switching period, generates a delay 
associated with the sampling point within each 
switching interval. The average model presented 
in the previous section does not include this delay. 
Therefore, the phase response differs significantly 
from the actual small-signal transfer function. The 
average model can be augmented with the known 
delay, td, to produce a more accurate model:

	
G s

v
d

e G svd del
out t s

vd
d

− = =( )
ˆ

( ),ˆ 	
(7)

where Gvd(s) is the control-to-output-voltage 
transfer function found with average modeling 
and td is the delay. From the point of view of the 
power stage, the total delay is defined as the time 
from when the output voltage is sampled to the 
falling edge of the controlled MOSFET switching 
node (for a trailing-edge modulation system). 

	
t t td fallingedge sample= −

	 (8)

C. Discrete-Time Model
Because averaging eliminates the high-

frequency components of the frequency response, 
it cannot predict sampling effects like period 
doubling that can occur in peak-current control 
mode. Discrete-time modeling [4, 5] takes into 
account PWM sampling. Also, an average model 
dues not easily display the effects of quantization 
and non-linear gain. 

Fig. 5 shows a switching buck converter 
operating in closed-loop, digital-voltage-mode 
control. Fig. 6 shows waveforms illustrating the 
derivation of a discrete-time model that 
approximates the perturbation of the control-signal 
duty cycle, d, as a train of impulses. The 
perturbation of the duty cycle occurs at the 
modulating edge of the PWM signal. The duty-
cycle perturbation changes the state variables of 
the switching converter (capacitor voltages and 
inductor currents) at the modulating point and 
propagates through the switching period. Discrete-
time modeling obtains the capacitor-voltage and 
inductor-current values at the eADC sample points 
as a function of previous capacitor and inductor 
samples; the control signal, d; and the input 

Fig. 4. Small-signal model of a buck converter with losses.
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Fig. 5. Voltage-mode, closed-loop buck converter.
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voltage, Vg. The total delay, td, shown in Fig. 6 
equals the time between eADC sampling and the 
modulation edge of the PWM signal.

To derive the discrete-time differential 
equations for the capacitor voltage and inductor 
current, the state matrices for the power stage at 
each switching interval must first be obtained: 

	

�x A x B V

v C x D V
q q g

out q q g

= +

= +

 and

,
	

(9)

where q = 1 denotes on time, and q = 2 denotes off 
time.

For the switching buck converter with parasitic 
parameters shown in Fig. 5, the state matrices and 
variables become:

A A A
R R C

R
R R C

R
R R L

R R R
L

esr esr

esr

L esr
= = =

−
+ +

−
+

− +










1 2

1
( ) ( )

( )
( )










=














= = =

= = =
+

,
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L
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R
esr
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0
1 0 0,  , and

RR x
v
iesr

C

L


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


 =









, .

	

(10)

The z-domain control-to-output-voltage 
transfer function can be determined from the 
small-signal discrete-time equations

	

x n= −Φ Γ
Cxv n

x nˆ[ ] ˆ[ ] ˆ[ ]
ˆ [ ] ˆ[ ].

d n
nout

+ −
=

1 1  and

	
(11)

Fig. 6. Waveforms illustrating derivation of a discrete-
time model for a digitally-controlled SMPS.
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Table 2 shows the resulting discrete-time-
model matrices Φ and Γ for the trailing- and 
leading-edge DPWM and the eADC sampling 
instants during switch on and off time.

In Table 2, α =  (A1 – A2)Xp + (B1 – B2)Vg, 
where Xp  =  [VC IL]T represents the steady-state 
capacitor voltage and inductor current. The small-
signal z-domain control-to-output-voltage transfer 
function of the power stage is

	
G z

v
d

C I z
zvd

out( )
ˆ
ˆ

( ) .= = − − −1 1Φ Γ

	
(12)

A software program such as 
MATLAB® or Mathcad® can easily 
solve this equation. Alternatively, one 
can further simplify the equation by 
reducing the exponential matrices 
using the approximation eATs ≈ I + ATs. 
The simplified results for the buck 
switching converter are shown in 
Reference [4].

Fig. 7 compares the control-to-
output-voltage magnitude and phase 
response of a buck converter modeled 
with the approaches described earlier 
in this section. The parameters for 

this converter are: L  =  1  µH; C  =  4 x 200  µF; 
Resr = 2 mΩ; RL = 8.6 mΩ; Vg = 10 V; Vout = 1 V; 
R = 10 Ω; fsw = 500 kHz; and td = 0.25Ts + DTs, 
where D ≈ 0.1 and Ts = 2 µs. This shows that the 
average model including the total delay, td, closely 
approximates the accurate frequency response of 
the discrete-time model.

The Texas Instruments Fusion Digital Power 
Designer PC program provides both an average 
model with delay and a discrete-time model of the 
target system to assist in configuring the design of 
digital-power applications. 

Table 2. The Discrete-Time-State Matrices

Φ Γ

Trailing-Edge DPWM

0 ≤ t < DTs, on-time sampling e e eA DT t A D T A ts s1 2 1( )− ′ e e TA DT t A D T
s

s s1 2( )− ′ α

DTs ≤ t < Ts, off-time sampling e e eA T t A DT A t DTs s s2 1 2( ) ( )− − e TA T t
s

s2 ( )− α

Leading-Edge DPWM

0 ≤ t < D´Ts, off-time sampling e e eA D T t A DT A ts s2 1 2( )′ − e e TA D T t A DT
s

s s2 1( )′ − α

D´Ts ≤ t < Ts, on-time sampling e e eA T t A D T A t D Ts s s1 2 1( ) ( )− ′ − ′ e TA T t
s

s1( )− α

Fig. 7. The control-to-output-voltage magnitude 
and phase response of a buck converter. 
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MATLAB is a registered trademark of The 
MathWorks, Inc. Mathcad is a registered trademark 
of Parametric Technology Corporation.
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IV. Divider Network Model

To estimate the stability margin from the 
average model or examine the cycle-by-cycle 
behavior with the discrete-time model, we need to 
describe each circuit around the feedback loop. 
The next circuit after the power stage is the 
voltage-divider network. This circuit produces a 
scaled sense voltage for the controller. It also can 
provide a compensation zero and a pole that acts 
as an anti-alias filter for the digital-controller 
ADC. 

the compensation zeros that are created by the 
digital filter in the controller, so Cz is typically not 
populated. 

Adding capacitor Cp adds a pole to the overall 
open-loop gain and can serve the useful purpose of 
attenuating frequency content in the sensed voltage 
that has a frequency greater than 1/2 the sample 
rate of the controller ADC and compensator. 
Sampling theory states that harmonic frequencies 
around integer multiples of the sample rate 
(typically the same as the switching frequency, fsw) 
will alias to near DC and can cause an error in the 
regulated voltage. By rolling off the sense voltage 
for frequencies above the ADC sample rate, we 
attenuate these errors. 

	
C

R R fp = 1
21 2 × π

 (for C  = 0)2
	

(14)

To model the divider network in the discrete-
time domain, we translate the transfer function 
from the s domain to the z domain. In this case the 
bilinear transformation is chosen. The bilinear, or 
“Tustin” transformation estimates the expression  
z = esT as 

	
z e sT

sT
sT= ≈ +

−
1 2
1 2

/
/ 	

(15)

Then we can express s as 

	
s f z

zsw= −
+







2 1
1 	

(16)

Substituting Equation (16) into (13) yields a 
transfer function in z. From the z-domain transfer 
function, we can write the discrete difference 
equations shown in Equation (17) below.

This is the technique used in the TI Fusion 
Digital Power Designer program.

Fig. 8. Divider network.
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To model the divider we first write out the 
transfer function for the circuit in s. Here Kdiv is 
the DC divider ratio R2/(R1+R2). 

G s K R C s
K R C C sdiv div

z

div z p
( ) = +

+( ) +
1

1

1
1

	
(13)

To calculate the system open-loop gain for a 
Bode plot, this transfer function is evaluated at  
s = j2πf and the resulting vector of values multi
plied by the complex vector of gain values for the 
power stage. A compensation zero can be created 
by including a capacitor in the Cz location. 
However, this zero will not be programmable like 

	
v n v n K vsense

pole

pole
sense Div

zero

pole
se[ ] = −

−
+

−[ ]+
+
+

1
1

1
1
1

τ
τ

τ
τ nnse Div

zero

pole
sensen K v n[ ]+

−
+

−[ ]1
1

1
τ
τ

,
	

(17)

where 

	

τ

τ

zero z
sim

pole Div z p
sim

R C
T

K R C C
T

=

= +( )
1

1

2

2

,

.

 and

	

(18)
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V. Compensator Model

Digital controllers compensate the error 
voltage using digital-filter techniques. This enables 
the compensator to be programmable. It also 
allows the manufacturer to incorporate a nonlinear 
response to the error. The required number of 
poles and zeros in the digital filter depends on the 
application. For a voltage-mode buck regulator, 
two zeros are needed to compensate for the second-
order plant (power stage) and a pole at the origin is 
needed to minimize steady-state error. Control 
engineers will recognize this as a proportional, 
integral, derivative (PID) compensator. Equation 
(19) is this two-zero, one-pole filter expressed in 
the discrete-time, or z domain. Here z–1 represents 
a unit-sample delay.

G z d z
e z

K K z K z
zc ( ) ( )

( )
= =

+ +
−

− −

−
0 1

1
2

2

11 	
(19)

One approach to constructing a digital filter to 
be used as the compensator is shown in Fig. 9. 
Here the multiplication of the error by the 
numerator-filter coefficients K0, K1 and K2 is done 
using a table look-up technique. This is the method 
used by the Texas Instruments UCD9112 digital 
controller. By using a table for each product in the 
numerator of the compensator-transfer function, 

non-linear gains can be built into the table. The 
down side to this technique is that the tables grow 
geometrically with increasing dynamic range on 
the error signal. In the UCD9112 the sampled-
error signal has a 4-bit range so each table is  
16 elements long.

Additional poles can be incorporated into the 
compensator to shape noise in the compensated 
error. The addition of a second pole has the effect 
of smoothing the quantization error in the 
compensator output. In general, a two-zero/two-
pole digital filter has the following form:

G z d z
e z

b b z b z
a z a zc ( ) ( )

( )
= =

+ +
− −

− −

− −
0 1

1
2

2

1
1

2
21 	

(20)

The discrete-time-domain difference equation 
resulting from Equation (20) is:

  

d n b e n b e n b e n
a d n a d n

[ ] [ ] [ ] [ ]
[ ] [ ]

= + − + −
− − − −

0 1 2

1 2

1 2
1 2

× × ×
× × 	

(21)

Expressing the difference equation in this form 
is called the direct form. A direct-form digital 
filter has a topology that follows this equation as 
shown in Fig. 10. The Texas Instruments UCD92xx 
family of digital-POL controllers uses this filter 
arrangement for the compensator. 

Fig. 9. Table look-up implementation of a digital filter.
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Fig. 10. Direct-form digital-filter implementation.
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Finally, the two-pole, two-zero digital filter 
can be realized as a parallel-filter structure. Some 
digital controllers use this implementation for the 
compensator. The classic proportional, integral, 
derivative (PID) controller is a parallel filter 
structure. Even if the hardware realization of the 
filter is not implemented as a PID controller, it is 
useful to express the filter in this form 
mathematically. 

   
G z d z

e z
K K z

z
K z

zc P I D( ) ( )
( )

= = +
−

+ −
−1

1
α 	

(22)

In Equation (22), we see that a PID compensator 
is the sum of the voltage error multiplied by a 
proportional gain, KP, the voltage error multiplied 
by a integral gain, KI, and accumulated, and the 
voltage error subtracted from the previous voltage 
error and multiplied by KD. We can multiply this 
expression out so that it is expressed as a ratio of 
polynomials with a common denominator as in 
Equation (23) below to show that the PID controller 
is an equivalent representation of the direct-form 
filter. 

In Fig. 11, dI[n] is the integrator state and 
represents the average duty cycle for the controlled 

loop. dD[n] is the derivative state and is zero at 
steady state. Of the three K gains, KD is the largest 
and is a function of the location of the zeros in the 
compensator-transfer function. We will come back 
to this interpretation of the compensator when we 
discuss quantization. 

A. Choosing the Digital-Compensator 
Coefficients

One of the most straightforward ways to 
determine what compensation to apply to a switch-
mode power supply is to express the total open-
loop gain as described in Equation (1) and plot the 
magnitude and phase of the loop gain as a Bode 
plot. From the Bode plot, the stability metrics of 
phase margin and gain margin can be determined 
and adjustments to the compensation made until 
the desired metrics are obtained. Since most power 
engineers are familiar with the behavior of the 
total loop gain as the gain and compensating zeros 
are changed, it is advantageous to first define the 
compensation as a continuous-time transfer 
function with specified gain, zeros, and poles. 
Then this continuous-time transfer function is 

G z
K K K z K K K z K K

z zc
P I D P I D P D( ) =

+ +( ) − +( ) + +( ) + +( )
− +( ) +

2

2
1 2

1

α α α

α α 	

(23)

Fig. 11. PID digital-filter implementation.
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transformed to the discrete-time domain to 
determine the discrete filter coefficients. 
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(24)

Either Equation (24) or (25) can be used to 
describe the continuous-time prototype controller. 
If the compensating zeros are complex, Equation 
(25) is a more convenient form. 
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(25)

Once the design parameters of ωr, Q, ωp2 and 
KDC are determined, the continuous-time transfer 
function is mapped to the z-domain using the 
bilinear transformation. 

s f z
zsw= −

+
2 1

1 	
(26)

Here fsw is the sampling frequency used by the 
compensating digital filter. This is typically the 
switching frequency. This mapping results in the 
following relationship between the continuous-

time design parameters and the discrete-filter 
coefficients:
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(28)

To evaluate the frequency response of the 
compensator as part of the total open loop gain, 
the discrete-time transfer function in z is evaluated 
by substituting 

z ej T= ω , 	
(29)

where T is the sample period for the compensating 
digital filter. This is preferable to evaluating the 
continuous-time prototype compensation-transfer 
function because there are distortions introduced 
when doing the bilinear mapping from continuous 
time to discrete time. This is because the bilinear 
transformation maps the entire left-half s-plane 
into the unit circle of the z-domain. As a result, the 
specified continuous-time transfer function will 
differ slightly from the discrete-time transfer 
function at frequencies near the Nyquist frequency. 
This distortion does not cause a problem as long as 
the Bode plot, and the stability metrics derived 
from it, are constructed using the discrete-time 
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transfer-function polynomial and the substitution 
of Equation (29). Equation (29) assumes there is 
an exact mapping between the continuous and 
discrete-time domains (see Fig. 12). 

The most basic method of designing the 
compensator tunes the zeros and poles to obtain 
the desired bandwidth while maintaining 
reasonable phase and gain margins (>45º and 
>10  dB, respectively). However, these criteria 
may not be sufficient to provide optimal 
performance. Fig. 13 shows the loop gain 
of the switching converter introduced later 
in this paper for two different compensators. 
Both were designed in the s-domain and 
mapped to the z-domain with a bilinear 
transformation. Furthermore, both 
compensators contain a high-frequency 
pole at ωp = 2π  × 50 kHz and a DC gain 
of Kdc  ≈  21150. The first compensator 
includes one real zero at the corner 
frequency, ω0, of the power stage’s control-
to-output-voltage transfer function, ωz1 = 
ω0 = 2π × 5.4 kHz, and a second zero at 
ωz2  =  2π × 6  kHz. This compensator, 
Gc1(z), achieves a phase margin of 
φm = 50°, a bandwidth of fc = 30 kHz, and 
a gain margin of Gm = 18 dB.

The second compensator, Gc2, provides the 
same bandwidth, fc, while maintaining a higher 
phase margin. This compensator contains two 
complex zeros at the corner frequency of the 
power stage’s control-to-output-voltage transfer 
function, ω0. The Qc value of the compensator in 
Equation (25) is close to the Q value of the power 
stage’s control-to-output-voltage transfer function. 
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Fig. 12. Frequency response of continuous-time and discrete-time compensator.
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This results in approximate cancellation 
of the double pole of the power-stage 
output filter. Fig. 13 shows that Gc2(z) 
flattens the loop gain and increases the 
phase margin to φm = 65°. Intuitively, the 
second compensator would be expected 
to perform better than the first. However, 
the closed-loop converter with Gc2(z) 
responds poorly to load transients. Fig. 14 
shows why. The closed-loop output 
impedance, Zout_cl, of the converter with 
the Q of the zeros set to match the Q of 
the power stage, has a higher peak output 
impedance and therefore has a poorer 
response to load transients. For this 
reason, it is advantageous for the design 
software to present the expected closed-
loop output impedance. The closed-loop 
output impedance is

Z
Z

Tout cl
out op

_
_ .=

+1 	
(30)

Fig. 15 shows the results of simulating 
the closed-loop buck converter in 
MATLAB Simulink® with the two 
compensators, Gc1(z) and Gc2(z), for a 
load transient of 1 to 10 A. The closed-
loop feedback using Gc2(z) introduces 
significant ringing at ω0 due to the larger 
magnitude of Zout_cl2 at this frequency.
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VI. Modeling the Voltage-Sense ADC and 
Digital-PWM Engine

The three blocks that close the feedback loop 
and regulate the output voltage in a switching 
converter are the input ADC, the compensating 
digital filter, and the digital-PWM engine. The 
input ADC and the output digital PWM introduce 
quantization error into the system. Also, these 
functional blocks are the key elements in 
determining the precision at which the output 
voltage can be regulated. 

Regulating the sensed feedback signal to the 
desired level requires a precise reference voltage, 
Vref. When this reference is programmable, it can 
be used to precisely control soft start/stop ramps 
under closed-loop control, to perform margining, 
and to provide a means of automated calibration. 
Factors that define the resolution requirements for 
the setpoint-reference DAC are: 1) the desired 
setpoint resolution, and 2) the allowable error in 
the output voltage during the soft start/stop ramp 
due to the discrete steps in the DAC output 
compared to a linear ramp. Resolution of a few 
millivolts is usually adequate.

There are two ways to subtract the sensed 
output voltage from the setpoint reference. It can 
be done in a summing amplifier ahead of the ADC 
or it can be done digitally (see Fig. 16), after the 
sensed output voltage has been converted to 
numerical values. In the first case, in order to 
provide programmability to the voltage setpoint, a 
setpoint reference DAC is provided and the error 
voltage is converted by the ADC. Since the 
resulting error voltage has a much smaller dynamic 
range than the sensed output voltage, a fast, 
narrow-range ADC can be implemented in the 
controller. In this case the setpoint resolution, that 
is, the precision to which the output voltage can be 
programmed, is defined by the setpoint reference 
DAC. The resolution of the error ADC is important 
to the dynamic control of the output voltage, but 
does not influence the average DC-output voltage. 
An extreme example of this is the thermostat in 
your house. It contains a precision setpoint 
reference and a one-bit ADC with infinitely large 
resolution. 

The other way a digital controller can subtract 
the sensed output voltage from the setpoint 

reference is to first digitally sample the output 
voltage with an ADC with a wide dynamic range 
and then subtract this numerical value from a 
digital setpoint reference. In this case, the reso
lution of the ADC does in fact define the resolution 
at which the system can set the output voltage. 

Examples of digital controllers that use the 
narrow-range ADC and separate setpoint-DAC are 
the UCD9112 and UCD9240. On the other hand, 
TI DSP controllers such as the TMS320C2801 use 
a full-range ADC. 

A. Consequences of Sense-Voltage Quantization
With any ADC, whether an absolute type or 

window type, there is a trade-off between dynamic 
range and resolution. By including an analog 
programmable gain block in the error-voltage 
signal path, the dynamic range and resolution can 
be tailored for a given application. The system in 
Fig. 17 has programmable gains of 1, 2, 4, and 8. 
For an analog gain of GAFE = 1, this error ADC 
provides a resolution of 8 mV/LSB and a dynamic 
range of ±256 mV, while for GAFE  =  8, it has a 
resolution of 1 mV/LSB and a dynamic range of 
±32 mV. Voltage-mode digitally-controlled DC/
DC converters usually require an eADC resolution 
of better than 0.2%. For example, non-isolated 
DC/DC applications usually need error-ADC 

error
ADC

ref
DAC

e[n]

KAFE

Vsense
v (t)o

v (t)e

ref

+

–
+

–

ADC

KAFE

Vsense
v (t)o v [n]o

ref

e[n]+

–

Fig. 16. Comparison of analog and digital 
setpoint reference.

a. Digital setpoint.

a. DAC generated analog setpoint.
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resolutions of 1 to 5 mV. The required range of the 
eADC depends on its application and should cover 
the required operational range for the load. 

When we calculated the coefficients for the 
digital-compensation filter, the dynamic range of 
the digitized output-sense voltage was not taken 
into account. Most of the response to fast 
disturbances to the control effort (such as a load 
step) is provided by the effective differential gain 
of the compensator. The digital filter generates 
this control effort by subtracting the most recent 
error-voltage sample from the previous error 
sample and multiplying by a gain. In fact the 
differential gain is typically the largest gain in the 
compensator. If the error voltage saturates because 
of the dynamic range of the ADC, the differential 
contribution to the control effort will drop to zero 
and the transient response will be substantially 
degraded. 

As an example of the effect of error-ADC 
saturation, consider a system based on a continuous-
time compensator with a DC gain of 14500, and 
zeros at 1.9 kHz and 16 kHz. Expressing the 
digital compensator as a parallel-form PID filter, 
the gain coefficients are: 

	 KP = 0.86; KI = 0.03; KD = 2.31 
In this case, the differential gain is 77 times 

larger than the integral gain, so if the error ADC 
saturates, a substantial portion of the control effort 
will be lost. 

If the dynamic range of the error voltage is one 
side of the coin, quantization error introduced by 
the error ADC is the other side of the coin. The 
error ADC effectively rounds the error voltage to 
discrete integer values. Therefore, the output of 
the ADC, e[n], changes at voltages defined as 

e n q n[ ] ,= +





1
2 	

(31)

where q is the quantization interval, or resolution, 
of the ADC. The ADC output gain, relative to the 
continuous-time input-error voltage is then shown 
in Fig. 18b. At steady state, the error voltage will 
be near zero and a discrete sequence of error 
values {0, 0, 0, ...} will be applied to the 
compensator. When the system is perturbed by a 
small amount, the sequence will include isolated 
+1 or –1 values. Here it is instructive to use a 
direct-form compensation filter to observe what 
happens. For the example where the continuous-
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Fig. 17. Block diagram of an eADC together with 
a programmable DAC.

Fig. 18. Error-voltage quantization.
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time prototype compensator has a DC gain of 
14500, and zeros at 1.9 kHz and 16 kHz, the 
direct-form numerator coefficients are 

b0 = 0.539; b1 = –0.942; b2 = 0.406. 
This means that an isolated +1q error value will 
generate a control-effort output sequence of 

{d, d, d + 0.539%, d – 0.942%, d + 0.406%, 
d + 0.0034, d + 0.0034, d + 0.0034,...}, 

where d is the nominal duty cycle and % means 
percent of the switching period. So, in this example, 
if the switching frequency is 333 kHz, the pulse 
width will swing from increase by 16.2 ns, then 
decrease by 28.3 ns, then increase by 12.2 ns, then 
return to the nominal pulse width plus 100 ps. 

B. Application of Nonlinear Gain
To comply with today’s tight requirements for 

the transient performance of switching converters, 
the digital controller can apply nonlinear signal 
processing to the compensation. This application 
of nonlinear gain can in some cases make up for 
the loss of phase margin due to the computational 
delay inherent in a digital controller. Digital non
linear control techniques remain the subject of 
much research. The main difficulty with these 
techniques is to define stability criteria in the 
presence of all transients and operating conditions. 
This section introduces one of the digital nonlinear-
control techniques implemented in TI devices.

Fig. 19 shows the diagram of a digital non
linear gain block. This block is situated between 
the error ADC and the digital-compensation filter. 

The error signal is compared to a set of program
mable limits which partition the dynamic range of 
the error signal into segments. This allows the 
gain to be individually programmed for each error-
signal segment. As a result, the loop gain can be 
reduced for quiescent operating conditions where 
the error signal is near zero and the loop gain can 
be boosted when a transient forces the error away 
from zero. Fig. 20 shows an example where the 
comparator limits are set to –6, –3, +3, and +5 
error-signal LSBs and the gains are set to 5.0, 3.0, 
1.0, 3.0, and 4.0. 

Loop stability should be determined using the 
largest gain applied by the nonlinear-gain block. 
This is particularly true if the gain is larger for 
error-signal values away from zero. It is these gain 
values that will be seen by the system during a 
transient and will determine the amount of ringing 
in the transient response. 

Fig. 19. Digital controller with nonlinear 
quantization.

Fig. 20. Application of nonlinear gain.
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Fig. 21 shows captured scope traces of the 
output voltage with varying amounts of nonlinear-
gain boost. The top trace has a uniform gain 
through the nonlinear-gain block, the second trace 
is the transient response for a case where a 3X 
gain is applied when LSBs. The third trace shows 
the response when the gain is 4X when LSBs. 

VII. Digital PWM Engine

The DPWM forms one of the most important 
elements of a digital controller for a switching 
converter. As shown in Fig. 2, the DPWM obtains 
the duty-cycle information, d, at the output of the 
compensator and generates switching signals, c1 
to cn, for the switching converter. High-resolution, 
high-frequency DPWMs are required to achieve 
high-bandwidth, precise-voltage regulation in 
digitally-controlled switching converters. Although 
dithering or sigma-delta approaches can be applied 
to improve effective DPWM resolution to some 
extent, it is very desirable to achieve high-hardware 
resolution using relatively minimal-hardware 
resources. A direct implementation of an analog 
PWM in the digital domain produces a counter-
based DPWM [6]. An n-bit counter increments at 
each input clock period, tclk. When the counter 
reaches its maximum value, it resets and starts 
counting from zero. The counter-based DPWM’s 
input-clock frequency, fclk, directly depends on the 
number of bits in the counter, n, and the desired 
switching frequency, fsw: fsw = 1/Ts, and fclk = 2nfsw. 
A counter-based DPWM has the advantages of 
simplicity and linearity, however, this scheme 
requires many bits to achieve high 
resolution. Therefore, the required 
clock frequency, fclk, can become 
unreasonably large. For example, 
a 10-bit DPWM at fsw = 1 MHz 
requires a clock frequency of  
fclk ≈ 1 GHz. This makes the 
implementation of a high-
resolution, high-frequency counter-
based DPWM very costly.

Hybrid DPWMs [7, 8, 9–11] 
can provide high resolution and 
high frequency without the very 
high input clock frequencies 

required by counter-based DPWMs, or the very 
large areas required by pure delay-line-based 
DPWMs [12]. Fig. 22 shows an example of a 
hybrid DPWM with an open-loop delay line [13]. 
The counter provides the most significant portion 
of the duty-cycle command, and the delay line 
provides the least significant portion. 

The counter increments at each input clock, 
clk. The output, c1, is set high at the zero value of 
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Fig. 21. Vout with and without nonlinear-gain boost.
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Fig. 22. Hybrid DPWM with external clock.
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the counter. Comparing the output of the counter 
with the most significant bits of the input duty-
cycle command, msb(duty), produces the signal 
delclk. The width of delclk equals one clock period 
of the input clk signal. The signal delclk propagates 
through the delay line. The output of each delay 
cell taps out and connects to an L:1 multiplexer. 
The multiplexer output is selected by observing 
the least significant portion of the input duty-cycle 
command, lsb(duty). The appropriate input of the 
multiplexer is then connected to the output, R, 
which resets c1. It is important to note that the 
frequency of signal c1 is still determined according 
to the relationship fclk = 2Nfsw, where N represents 
the number of bits in the counter. The hybrid 
DPWM uses a smaller counter and therefore 
requires a lower input-clock frequency than a 
counter-based DPWM with the same resolution.

To guarantee monotonicity and nearly optimal 
linearity, the total delay of the delay line should 
equal one clock period of the input clock. However, 
even in a very careful design, the cell delay varies 
with process and temperature. Therefore, an 
adjustable delay cell is required to achieve the 
desirable delay through the delay line. Furthermore, 
an active-control scheme must control the delay 
through each individual delay cell. In References 
[12, 14, 15], analog or digital phase-locked loops 
or delay-locked loops adjust the delay of the delay 
line in a DPWM in order to synchronize the 
operation to an external clock.

Fig. 23 shows another implementation of a 
hybrid DPWM using a combination of a ring 

oscillator and a counter to provide high resolution 
[7, 9]. This structure propagates a pulse around a 
ring containing L-delay cells. Unlike the structure 
shown in Fig. 22, this topology does not require an 
external clock. Instead, the ring oscillates and so 
provides an internal clock. The output of one of 
the delay cells connects to the input clock of the 
n-bit counter that determines the switching 
frequency of the DPWM. The output, c1, is set 
when the counter value, cnt, equals zero. Like the 
hybrid delay line of Fig. 22, both the appropriate 
delay-cell output and the output of the n-bit counter 
determine the reset point of the DPWM. Reference 
[10] provides a complete list of different hybrid 
DPWM architectures.

We can determine the effect of the finite pulse-
width resolution out of a digital PWM by noting 
that the output voltage of a buck regulator is  
D × Vin. Then, expressing D in terms of the 
effective clock rate of the PWM, the switching 
period and the number of clock cycles determined 
by the digital-compensator calculated control-
effort, n, we can quantify the change in Vout for 
each discrete change in the PWM output. This is 
shown in Equations (32) and (33). 

V DV
NT
T

Vout in
clk

sw
in= =

	
(32)

V  Resolutionout = T f Vclk sw in 	 (33)

For example, if Vin is 12 V, Tclk = 250 ps, and 
fsw = 500 kHz, the Vout Resolution is 1.5 mV.

Fig. 23. Hybrid DPWM with ring oscillator.
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A. Limit Cycling
Digital-PWM resolution and error-ADC 

resolution together determine output-voltage 
regulation. If the change in the output voltage 
resulting from a one-step change in the digital 
PWM is much greater than the input resolution of 
the error-voltage ADC, limit cycling can occur 
[16, 17]. Limit cycling is the condition where the 
output voltage oscillates around the nominal output 
voltage. It can be predicted by examining the 
quantization in each of the three major blocks in 
the controller. Limit cycling occurs when the 
voltage resolution coming out of the integrator 
state is larger than the voltage resolution coming 
into the integrator state. When this occurs, the 
register or variable holding the integrator state 
acts as a hysteretic memory element, where we 
have to dump “charge” into or out of the state 
before a change in the output can be observed. 

To determine if limit cycling will occur, the 
quantization (expressed in volts) must be calculated 
for the signal path into the integrator state and for 
the signal path out of the integrator state. In  
Fig. 24, we can work backwards from the PWM 
signal to the integrator state. From Equation (33), 
we know the change in output voltage for each 
LSB change in the PWM counter threshold. The 
counter threshold is the result of the compensator 
output times the switching period. In the UCD9240, 

this is a fixed-point multiply where d[n] is a 16-bit 
signed value and Period is a 14-bit unsigned value. 
The result is a 30-bit value, of which we keep  
18 bits by rounding and then dropping the bottom 
11 bits and the now redundant sign bit. So for this 
device, when the switching frequency is 500 kHz, 
the value in the Period resistor is 500. This means 
that the integrator state must change by 4 LSBs for 
the counter threshold to change by one LSB and 
for the output voltage to change by 1.5 mV. Further 
simplifying, for this device, each one LSB change 
in the integrator state causes a Vin/215, or 0.366 mV, 
change in the output voltage with a 12-V input. 

V
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(34)

Working from the input, the effect on the 
integrator state for a one-LSB error is the ADC 
gain times the nonlinear gain times the integrator 
gain of the compensator. The integrator gain (KI) 
is the sum of the b0, b1, and b2 multiply operations. 
For an example power supply, we choose the ADC 
gain to be 1/resolution = 1/2 mV; the nonlinear 
gain to be 2.0; and the integrator gain to be  
933 – 1532 + 611 = 12. Then the input voltage 
change that causes a one-LSB change in the 

Fig. 24. Location of the integrator state in the controller system.
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other conditions. Real-time system identification 
and controller autotuning can fine-tune controller 
parameters, either during development or in actual 
operation. This section describes the system 
identification and autotuning techniques used in 
the TI UCD9240 digital controller.

A. System Identification
Power-distribution systems containing 

multiple-power sources may experience dynamic-
performance degradation and even instabilities 
caused by uncertainties in the system parameters 
and interactions between different power modules. 
An intelligent system within each power module 
can perform system identification. A central or 
distributed controller can use these results to fine-
tune controller parameters. The inherent flexibility 
and programmability of digital controllers make 
them attractive platforms for automatic system 
identification. There are several digital-system 
identification techniques [18–20]. In each case, 
the system is perturbed by an excitation signal and 
then the response to that excitation is measured. 
The excitation signal can be an impulse, a step, 
white noise, or a sine wave. Exciting the system 
by injecting a sine wave into the feedback loop is 
the technique used by power system/dynamic 
network analyzers because it produces the highest 
signal-to-noise measurement of the system-transfer 
function. The UCD9240 digital controller and it’s 
supporting design software use this approach.

integrator state is 0.667 mV. So in this case, the 
criteria that the output resolution be finer than the 
input resolution is satisfied. 

d n v t K K b b b

v t
d n K

err ADC NLR

err

AD

−[ ] = + +( )

−[ ] =

−1 2

1
2

0 1 2
3

3

( )

( )

× × × ×

CC NLRK b b b× × 0 1 2+ +( ) 	

From Equation (35), we can see that the 
compensator gain, including the ADC and 
nonlinear gains, determines if limit cycling will 
occur. Fig. 25 shows the output voltage for a 
system where the nonlinear gain has been reduced 
by a factor of 8, from 4.0 to 0.5, for the zero-error 
voltage gain. In this case the input resolution is no 
longer larger than the output resolution and limit 
cycling occurs. 

VIII. System Identification and 
Autotuning

Most SMPS controllers are designed to obtain 
the highest achievable dynamic performance. Such 
designs require precise knowledge of the system 
parameters and operating conditions. Furthermore, 
for a power module that operates in parallel or 
interacts with other modules, the overall system 
model might not be predictable. Therefore, a 
controller optimized for one set of operating 
conditions might actually become unstable under 

(35)

Fig. 25. Limit cycling with low nonlinear gain.
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Cycling



7-21

To
pi

c 
7

The system identification 
is entirely performed in the 
UCD9240 and the results are 
reported back to the GUI. 
This technique synthesizes a 
digital-sinusoidal signal and 
injects it into the closed-loop 
system. Then the response to 
that excitation is measured at 
another point in the loop. 
From this measured closed-
loop response the open-loop 
gain is calculated. Repeating 
this over a range of frequencies provides the data 
necessary to create the Bode plot for the system. 
Fig. 26 shows the location of the injected signal, 
r[n], and of the measurement points e[n] and d[n] 
in the UCD9240.

In the usual way, we can write the transfer 
function from the reference to the output voltage. 
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In the same way, we can write the transfer function 
from the excitation x[n] to d[n]. 
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(37)

Then we can solve Equation (37) for GPlant. 
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(38)

To generate the excitation signal, a 
table look-up technique is used. The 
table contains a sequence for one 
period of the sine wave and a pointer is 
stepped through the table at different 
rates to generate each excitation 
frequency. To measure the response, 
the same table is used to generate a 
cosine and a sine sequence. These two 
sequences are multiplied by the 
response vector, d[n], and summed to 
obtain a complex estimate of the 
response at the excitation frequency. 
This is repeated at each frequency for 
which a measurement is desired. From 
the complex estimate of the response, 
we can generate the Bode plot for the 
system (see Fig. 27).
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(36)

Fig. 27. Bode plot measured with Auto-ID versus model.
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Because most of the gains in the system are 
digital—the compensator, the digital PWM, the 
computational delay, etc.—this technique produces 
an accurate estimate of the transfer function of the 
power stage. Then, once we have that estimate, we 
can use it to make decisions about the optimal 
compensation of the loop. 

B. Autotuning
Traditional controllers usually require redesign 

or retuning during development to account for 
wide variations in the power-supply parameters 
and operating conditions. Most of the well-known 
digital autotuning techniques [21, 22] try to shape 
the frequency response of the closed-loop gain. 
The controller coefficients are tuned to achieve the 
desired phase and gain margins and loop bandwidth. 
These techniques do not guarantee optimal time-
domain-transient performance.

A user interface that can communicate with 
the digital controller provides an adequate tool for 
autotuning. The TI GUI [23] can perform 
autotuning based on both the frequency response 
of the system and the time-domain simulation 
results. Autotuning based on frequency response 
can use the simulation results or the system 
identification technique described in Section VI.A. 
Fig. 28 shows the Auto-Tune design screen of the 
TI GUI for the UCD9240. The autotuning process 
uses criteria such as crossover frequency, phase 
margin, gain margin, DC gain (the loop gain at  

10 Hz), and the maximum closed-loop output 
impedance for frequency-response shaping. The 
user chooses the desired value and the weight 
applied to each criterion. The GUI also supports 
time-domain criteria including settling time, 
overshoot, and undershoot. The GUI iterates the 
compensator coefficients to achieve the desired 
frequency response and time-domain simulation 
results. After evaluating the results, the user can 
load the final compensator coefficients into the 
device register of the UCD9240.

Fig. 28. TI GUI Auto-Tune design screen for the 
UCD9240.
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IX. Design Example

This section describes a design example based 
on the UCD9240 digital controller [7]. Fig. 29 
shows the implementation of a two-phase buck 
converter using an integrated driver and power 
MOSFET (DrMOS) [24], and the UCD9240 
digital-power POL-system controller [7]. The 
signals CS.1 and CS.2 are used for current sharing 
within the UCD9240.

The power-stage parameters are as follows: 
L1  =  L2  =  0.363  µH, inductor DC resistance  
DCR1 = DCR2 = 2.4 mW, total output capacitance 
C = 3 × 470 + 12 × 47 µF, capacitor ESR = 1 mW, 
Vin = 10 V, Vout = Vref = 1 V, fsw = 350 kHz, and the 
voltage-sense gain = 0.8.

A. UCD9240 Digital Controller
Fig. 2 shows a simplified block diagram of the 

UCD9240 digital controller [7]. This controller 
incorporates a window-type error ADC with 
analog front-end gain, GAFE, and programmable 
gains of 1, 2, 4, and 8. The output of the eADC has 
a 6-bit signed-integer format. The resolution of the 
error ADC equals 1  mV for GAFE  =  8. The 
UCD9240 also provides a programmable reference 
using a 10-bit DAC. The DAC has a dynamic 

Fig. 29. Block diagram of a two-phase buck converter using the 
UCD9240 digital controller.
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range of 1.6 V, giving a resolution of 1.6 mV. 
Furthermore, the sampling frequency of the eADC 
depends on the digital PWM switching frequency, 
fsw. The sampling location during one switching 
period is programmable.

The UCD9240 includes a high-resolution 
hybrid DPWM as shown in Fig. 23. The digital 
PWM implements a 4-bit ring oscillator. The clock 
frequency of the counter equals 250 MHz. 
However, because of the hybrid nature of the 
PWM engine, the resolution of the duty cycle is 
actually 250  ps. The PWM engine uses a 
programmable switching frequency between 
15  kHz and 2  MHz with 4-ns resolution. It also 
provides several outputs for synchronous 
rectification and supports programmable dead 
times with 250-ps resolution. The dead-time 
programmability of the DPWM module helps 
optimize efficiency in a synchronously rectified 
DC/DC converter [25].

The input to the digital PWM consists of a 
signed 16-bit duty-cycle value from the 
compensator. The PWM-engine design ensures 
that for any programmed value of switching 
frequency, the maximum value of the duty cycle 
(7FFF hex) provides a 100% PWM output  
(always on). 
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The UCD9240 also contains a direct-form, 
two-zero/two-pole compensator like the one shown 
in Fig. 10. It also includes a cascaded first-order 
filter that adds another programmable pole and 
zero to the compensator. The compensator 
coefficients occupy a programmable 12-bit format. 
The sampling rate of the compensator is 
synchronized with the sampling rate of the eADC. 
In addition, a nonlinear gain block, shown in  
Fig. 19 resides at the input of the compensator. 

B. Controller Design
The first step in designing the controller is to 

model the power stage. A PC program [23] is 
available for the UCD9240 digital controller that 
allows the user to design the controller with 
minimal effort. The user interface provides the 
power stage, loop gain, and compensator frequency 
response. Nonlinear gain is applied to improve the 
time-domain-transient performance, and the 
controller coefficients are loaded into the UCD9240 
device registers.

Fig. 30 shows the window that receives the 
parameters of the two-phase synchronous buck 
converter. To obtain the small-signal model of the 
power stage, the GUI models the two-phase 
synchronous buck converter as an equivalent one-
phase synchronous converter with the inductor,  
L = L1 × L1/(L1+L2); inductor series resistance, 
RL  =  RL1||RL2; and phase-capacitor equivalent-
series resistance, Resr  =  Resr1||Resr2. The GUI 
computes the control-to-output-voltage transfer 
function in a manner similar to that described. The 
GUI can configure the sampling point of the 
eADC as a function of the phase of the switching 
period. The GUI applies the total delay, from the 
eADC sample point to the falling edge of the 
DPWM, to the loop-gain response. The user can 
enter the s-domain compensator parameters by 
observing the frequency response of the plant 
(power stage).

Fig. 31 shows the compensator design window. 
The GUI accepts the compensator coefficients in 
various forms, including real zeros, complex zeros, 

or PID coefficients. The user interface calculates 
the z-domain compensator-transfer function using 
a bilinear mapping technique. The resulting 
z-domain transfer function is then applied to the 
plant transfer function to provide the loop gain. 
The UCD9240 implements bit formatting and 
arithmetic in such a manner that the equivalent 
gain of the eADC and DPWM equals unity 
(neglecting the quantization effect on the gain). 
Therefore, the gain factors for the loop gain are 
the control-to-output-voltage transfer function of 
the power stage, Gvd; the output-voltage sense, H; 
and the compensator, Gc.

Fig. 30. Power-stage parameters window.

Fig. 31. Compensator design window.
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Fig. 32 shows the loop gain and the control-to-
output-voltage frequency response. As shown in 
Fig. 31, the GUI also provides the frequency 
response of the open-loop output impedance,  
Zout_op, and the closed-loop output impedance, 
Zout_cl. Fig. 33 shows that the magnitude of Zout_cl 
significantly decreases as compared to Zout_op at 
the output-filter corner frequency. By observing 
the loop gain and Zout frequency response, the user 
can fine-tune the compensator to provide optimal 
results. The user can also apply the autotuning 
technique described in Section VIII.B to obtain 
the desired frequency and time-domain response.

Fig. 34 shows the GUI window settings for the 
nonlinear-gain block. These nonlinear gains 
improve the transient performance. The threshold 
values are defined based on the range of error, e. 
These values have a a 6-bit signed-integer format 
and lie between –32 to 31. The gain blocks use a 
4.2-bit format where a value of 1 indicates unity 
gain. For the power stage and controller mentioned 
earlier, the nonlinear gain and threshold values 
improve transient performance while maintaining 
stability.

To verify the performance of the designed 
controller, the user interface provides a time-
domain load-transient simulation. In this part of 
the GUI, the user specifies the range and rate of 
the load step and the frequency of the load transient. 

Fig. 32. Loop gain and control-to-output-voltage 
frequency response.

Fig. 33. Frequency response of open-loop and 
closed-loop output impedance.

Fig. 34. Settings for the nonlinear-gain block.
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The output voltage and inductor current are then 
computed based on the power-stage parameters, 
and the compensator coefficients are found with 
the discrete differential equations. Fig. 35 shows 
waveforms where a load transient of 50 A to 25 A 
with a 5-A/µs rate was applied to the output. The 
top waveform shows the value of vo  – Vref. The 
lower waveforms show the inductor currents of 
the two phases.

C. Experimental Results
This section describes experimental results 

based upon a two-phase synchronous buck 
converter implemented with the UCD9240. The 
compensator and nonlinear gains were based on 
the values provided in the previous section. A load 
transient of 25 to 50 A with a rate of 5 A/µs was 
applied to the output. A LeCroy scope set at  
2 mV/div and 100 MS/s recorded the effect of load 
transients on the output voltage. A low-noise 
LeCroy probe measured the voltage. The sampled 
data was captured through the USB port of the 
scope and plotted with MATLAB. Fig. 36 shows 
the response to the step-down load transient. The 
output-voltage overshoot closely follows the 
results derived from the simulation. Fig. 37 shows 
the experimental response to the 25- to 50-A step-
up load transient. The step-up load-transient 
response exhibits a smaller-than-expected 
undershoot (around 25 mV). However, the output 
voltage suffers from a longer settling time in the 
step-up load transient. This longer settling time 
compared to the simulation results is the effect of 
the load transient on the supply voltage, Vin.  
Fig. 35 shows the effect of the load transient on 
the input voltage (Vg – 10 V). Increasing 
the low-esr bypass input capacitance, Cin, 
improves the results.

Fig. 35. Simulation results of a 50- to 25-A load 
transient for a synchronous two-phase buck 
converter.

Fig. 36. The step-down load-transient response.
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X. Conclusion

The development of a system model for a 
continuous-conduction, voltage-feedback buck 
regulator was reviewed. This model was aug
mented to include the effects of quantization error 
and computational delay, which are unique to 
digital control. This model was then used to show 
the onset of limit cycling due to error-voltage 
quantization and output-pulse-width quantization.  
The ability of a digitally controlled system to 
measure the transfer function of the closed-loop 
system without external test equipment was also 
presented. The system model was also used to 
identify (measure) the transfer function and how 
the programmability of the digital controller can 
be used to automatically tune the compensation 
for the feedback loop of a switch-mode power 
supply. 

The above digital-control fuctions were 
implemented with the TI Fusion Digital Power 
Designer software. The software GUI simplifies 
the design steps required to develop a digitally 
controlled switching converter.
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