Selecting the Right RF Protocol for your MSP430 Application

Miguel Morales

Agenda

- Introduction to ultra-low power wireless networking
- Low power protocol selection criteria
- In-depth look @ TI offerings
 - 802.15.4
 - ZigBee
 - SimpliciTI
- Application examples
Agenda

- Introduction to ultra-low power wireless networking
- Low power protocol selection criteria
- In-depth look @ TI offerings
 - 802.15.4
 - ZigBee
 - SimpliciTI
- Application examples

Fundamentals of low-power wireless networks
Low-power wireless application space

- Others not shown:
 - ULP Bluetooth
 - RFID
 - SimpliciTI
 - ANT
 - Blue Robin
 - Wireless KNX
 - Z-wave
 - Wireless HART

Low-power protocol selection criteria

Application Considerations
- *Robustness & Reliability*
- *Ease of Use*

Hardware & RF Considerations
[1] Application considerations

• What does your application require?
 – Network topology
 – Reliability of communications
 – Security concerns
 – Customization → design freedom
 – Development time → protocol complexity
 – Interoperability

• What drawbacks can you accept?
 – Protocol complexity → development time
 – Standard-defined limitations or restrictions
 → sible royalty fees

[1] Application considerations

• Network Topologies

 Peer to Peer Tree Star

 M E S H

 Coordinator
 Start the network
 Routes packets
 Routers
 Routes packets
 Extend network range
 Sink Device
 Sleep most of the time
 Can be battery powered
 No routing function
[2] Robustness and reliability

• Messaging Protocol
 – Synchronous Communication
 • Periodic beacon from the coordinator
 • Timeslots for communication → Time division multiple access (TDMA)
 – Asynchronous Communication
 • Nodes contend for the channel using listen-before-talk
 – Channel sense multiple access (CSMA)

• Message Delivery
 – Routing schemes
 – [N]ACK communication
 – Message retries

• Message Security
 – Message integrity/authentication
 – Security keys and encryption
 • AES-128 encryption
 – Trust center

ATC 2008
[2] Robustness and reliability

- Physical Layer Reliability
 - All channels and RF devices are subject to:
 - Noise
 - Transmission environment
 - Product Encasing
 - Physical relation to other nodes (height, orientation)
 - How does one mitigate its effects on the application?
 - Channel Scanning
 - RSSI & LQI values
 - Frequency Agility
 - Antenna Selection & Design
 - Power and Frequency Restrictions / Certifications
 - ETSI in Europe
 - FCC in America
 - ARIB in Japan

[3] Ease of use

OSI Network Model
- Application
 - Application Services
- Presentation
 - Data Encryption
- Session
 - Link Management
- Transport
 - End-to-End Reliability
- Network
 - Routing & Protocol
- Data Link
 - Peer-to-Peer Reliability
- Physical
 - HW Interface

ALSO CONSIDER:
TOOLS
- Evaluation
- Debugging
- 3rd Party

DOCUMENTATION

SUPPORT
[4] Hardware & RF considerations

• Link Budget
 – Transmit Power
 – Receiver Sensitivity
 – Antenna Technology

• Coexistence
 – Receiver Selectivity
 – Clear Channel Assessment / Listen-Before Talk

• Low Power
 – Wake On Radio
 – Low Power Modes
 – Startup Time (Off → Active)
 – Switching time between modes
 – Smart, flexible peripherals

• Misc / System
 – Integrated encryption
 – Integrated analog
 – Physical hardware size
 – Memory size in support of the protocol

Agenda

• Introduction to ultra-low power wireless networking
• Low power protocol selection criteria

• In-depth look at TI offerings
 – 802.15.4
 – ZigBee
 – SimpliciTI

• Application examples
IEEE 802.15.4 Standard → TIMAC

- IEEE PAN wireless standard
- Design considerations
 - Data rate
 - Frame overhead
 - Complexity
 - Range
 - Power Management
- Applications
 - Home Automation
 - Industrial Controls
 - Agriculture
 - Security

ATC 2008

TIMAC Application Considerations

- If the application requires:
 - Faith in a standardized physical layer and lower-layer protocol
 - Freedom to design own higher layer protocol
 - Free choice of different HW and lower layer SW vendors
 - Interoperability on the physical and lower protocol layer
 - Support and maintenance by other vendors/providers

- And can accept drawbacks like:
 - Design and development of higher layer protocol and application
 - Radio channel restrictions
TIMAC Topologies

Peer to Peer Star Combined

FFD RFD Communication Flow

TIMAC Robustness & Reliability

- **Messaging protocol**
 - Synchronous or asynchronous

- **Message delivery**
 - P2P ACKs
 - Reprogrammable message retries

- **Physical layer considerations**
 - Energy Detection Scan (EDS) on network init

- **Security**
 - PAN ID
 - Configurable join logic
TIMAC Ease of Use

Application Layer
Presentation Layer
Session Layer
Transport Layer
Network Layer
Data Link Layer
Physical Layer

Ease of Use Meter

IEEE 802.15.4 MAC
868/915 MHz 2400 MHz

802.15.4 Standard

ATC 2008
MSP430 Advanced Technical Conference

TIMAC Hardware & RF Considerations

EXP461x + CC2420
SMARTRF04
Code Size
- 26 KB Flash/ROM
- 2.3 KB RAM

MSP430F2618 + CC2520
SMARTRF05
Code Size
- 27 KB Flash/ROM
- 2.3 KB RAM

HW Resource Requirements
Radio Interface:
- 4 x GPIO
- 4-wire SPI
Peripherals:
- Timer_A CCR0 & CCR1
- Timer_B CCR0 & CCR1

ATC 2008
MSP430 Advanced Technical Conference
Agenda

- Introduction to ultra-low power wireless networking
- Low power protocol selection criteria
- In-depth look at TI offerings
 - 802.15.4
 - ZigBee
 - SimpliciTI
- Application examples

ZigBee 2006 & 2007 (Pro) → Z-Stack 2.0

- Built “on” 802.15.4
- Target applications
 - Energy Management
 - Home Automation
 - Building Automation
 - Industrial Automation
- Most functionality
 - Application-level implementation
 - Extremely reliable communications
- INTEROPERABILITY
 - IEEE 802.15.4 MAC
 - 868/915 MHz
 - 2400 MHz
Z-Stack Application Considerations

• If the application requires:
 – Faith in a standardized physical layer and lower layer protocol (IEEE 802.15.4)
 – Standardized higher layer protocol (providing e.g. mesh topology, multi-hop)
 – Full interoperability; even up to the application layer (public profiles)
 – Minimal design and development effort (focusing on application only)
 – High competition due to support and maintenance between vendors/providers

• and can accept drawbacks like:
 – Code size (overhead of functionality one might not use)
 – Cost for ZigBee Alliance membership
 – Certification costs (not needed if not targeting a ZigBee certified product)
 – Radio channel restrictions (to the channels specified in 802.15.4)
Z-Stack Robustness & Reliability

- **Messaging Protocol**
 - Typically asynchronous
 - Optional synchronous mode
- **Message Delivery**
 - P2P ACKs
 - End-to-end ACKs
 - Reprogrammable message retries
 - Route Discovery → Self-healing mesh
- **Physical Layer Considerations**
 - Energy Detection Scan (EDS) on NWK startup
 - Frequency Agility

- **Security**
 - PAN ID
 - Levels of security keys
 - Mandatory AES 128-bit & MIC 128-bit encoding

Z-Stack Robustness & Reliability

- **Application-Level Abstractions**
 - Endpoints
 - Multiple end points per network node
 - Clusters
 - 1 x data in & 1 x data out
 - Device descriptors
 - Endpoint + Clusters
 - Binding
 - Group Addressing

- **Application Profiles**
 - e.g. - Home Automation, Smart Energy
 - Private Profiles available
Z-Stack Ease of Use

Application Layer

- Presentation Layer
- Session Layer
- Transport Layer
- Network Layer
- Data Link Layer
- Physical Layer

IEEE 802.15.4 Standard

- 868/915 MHz
- 2.400 MHz

Z-Stack HW & RF Considerations

MSP430 + CC2520

- **Code Size**
 - Coordinator: 57 KB Flash/ROM, 6.6 KB RAM
 - End Device: 41 KB Flash/ROM, 4.4 KB RAM
- **Radio Interface**
 - 4 GPIO
 - 4-wire SPI
- **Timers**
 - Timer_A CCR0 & CCR1
 - Timer_B CCR0 & CCR1
- **Debugging Peripherals**
 - USCI_A <-> ZTool
 - LCD_A <-> LCD

CC2430 / CC2431

- **Code Size**
 - Coordinator: 97 KB Flash/ROM, 6.7 KB RAM
 - End Device: 76 KB Flash/ROM, 3.7 KB RAM

Run on the GenericApp application provided with the Z-Stack

- Excluding pre-compiler definitions for LCD and ZTool debugging
- IAR MSP430 v4.10 compiler optimizations: Size → High
- IAR 8051 v7.09B compiler optimizations: Size → High
Z-Stack Hardware & RF Considerations

- Free-up MCU resources
- Small memory footprint
- Configure CC2480 from the MCU
- Simplify ZigBee API calls

Agenda

- Introduction to ultra-low power wireless networking
- Low power protocol selection criteria
- In-depth look at TI offerings
 - 802.15.4
 - ZigBee
 - SimpliciTI
- Application examples
Texas Instruments’ SimpliciTI

- **SimpliciTI Key Features**
 - **Low Power**
 - Supports sleeping devices for low power consumption
 - **Low Cost**:
 - Uses < 8K FLASH & < 1K RAM in most applications
 - **Flexible**:
 - Simple star w/ extender and/or p2p communication
 - **Simple**:
 - Utilizes a very basic 6-instruction API
- **NWK Topologies**
 - P2P
 - Simple Star
- **FREE source code**
- **No license and royalty fees**

SimpliciTI Application Considerations

- If the application requires:
 - Freedom to design own higher layer protocol
 - Lower cost on design & development than the purely proprietary solution
 - Usage of available lower layer protocol to obtain easy implementation and deployment out-of-the-box.
- and can accept drawbacks like:
 - Design and development of higher layer protocol and application
SimpliciTI: Robustness & Reliability | Ease of Use

- Messaging Protocol
 - Asynchronous communication

- Message Delivery
 - Network management capabilities
 - Initialization (NWK join)
 - Ping
 - Link / link listen
 - Security*
 - Freq agility
 - Rx / Tx
 - I/O

- Physical-layer Considerations
 - No formal PHY or data-link layer
 - Simple HAL
 - No OSAL

ATC 2008

SimpliciTI HW Considerations

- Example Compilation and Resource Requirements:
 - Access Point
 - End Device
 - ~9KB ROM
 - ~6.5KB ROM
 - ~700B RAM
 - ~400B RAM

- Out-of-the-box support for:
 - CC2430DB CC2430 Demonstration Board
 - EXP461x ATC 2006 eval kit
 - EZ430RF MSP430 + RF eval kit
 - RFUSB RF evaluation kit
 - SRF04EB Smart RF board
LPW Product Summary

<table>
<thead>
<tr>
<th>Product / Kit</th>
<th>Protocol</th>
<th>Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC2430DB / CC2430EB</td>
<td>SimpliciTI</td>
<td>SimpliciTI 1.0.4</td>
</tr>
<tr>
<td>11xx, 25xx, 2430</td>
<td>SimpliciTI</td>
<td>SimpliciTI 1.1.0</td>
</tr>
<tr>
<td>CC2420+MSP430F4618</td>
<td>IEEE 802.15.4 MAC/PHY</td>
<td>TIMAC 2420 1.2.1</td>
</tr>
<tr>
<td>CC2520+MSP430F2618</td>
<td>IEEE 802.15.4 MAC/PHY</td>
<td>TIMAC 2520 1.2.1</td>
</tr>
<tr>
<td>CC2430DK</td>
<td>IEEE 802.15.4 MAC/PHY</td>
<td>TIMAC 1.2.1</td>
</tr>
<tr>
<td>CC2530DK</td>
<td>IEEE 802.15.4 MAC/PHY</td>
<td>TIMAC 1.x.x</td>
</tr>
<tr>
<td>CC2420+MSP430F4618</td>
<td>ZigBee-2006</td>
<td>Z-Stack 1.4.3</td>
</tr>
<tr>
<td>CC2430ZDK</td>
<td>ZigBee-2006</td>
<td>Z-Stack 1.4.3</td>
</tr>
<tr>
<td>CC2431ZDK</td>
<td>ZigBee-2006 w/ Location</td>
<td>Z-Stack 1.4.3</td>
</tr>
<tr>
<td>CC2480</td>
<td>ZigBee-2006 Network Processor</td>
<td>Z-Stack & ZASA</td>
</tr>
<tr>
<td>CC2420+MSP430F4618</td>
<td>ZigBee-2007 (PRO)</td>
<td>Z-Stack 2.0.0</td>
</tr>
<tr>
<td>CC2520+MSP430F2618</td>
<td>ZigBee-2007 (PRO)</td>
<td>Z-Stack 2.0.0</td>
</tr>
<tr>
<td>CC2530ZDK</td>
<td>ZigBee-2007 (PRO) + AMI</td>
<td>Z-Stack 2.1.0</td>
</tr>
</tbody>
</table>

DIY Proprietary Solution

- **If the application requires:**
 - High design freedom
 - Proprietary ‘private’ solution
 - Low complexity
 - Low code overhead (implement only what is needed)

- **and can accept drawbacks like:**
 - Cost on design and development of protocol and application
 - No interoperability
 - Lack of support & maintenance by other vendors/providers

- **Examples:**
 - MSP430 Interface to CC100/2500 Code Library (siaa325) [Ultra-low-power]
 - MSP430 + CC2500 / CC1100 Examples and Function Library (swra141) [Abstraction and ease of porting]
 - Slingshot IDE by Sentilla → embedded programming in Java

ATC 2008

MSP430 Advanced Technical Conference
Questions?

Agenda

• Introduction to ultra-low power wireless networking
• Low power protocol selection criteria
• In-depth look at TI offerings
 – 802.15.4
 – ZigBee
 – SimpliciTI
• Application examples
Customer Examples

• Data logger
• Medical Sensor Network
• AMR
• Home security

Data Logger Example

• Applications considerations
 – System is designed to capture humidity, air pressure data every 5 minutes
 – Up to five sensing stations
 – Base station must communicate data to PC network
 – System is for retrofitting factories, replaces mechanical logging methods
• Robustness & Reliability
 – Factory data should remain confidential
 – Not critical but data logged during factory processing must be maintained per regulatory requirements for five years
• Ease of Use
 – System released to market in six months
• Hardware & RF Considerations
 – Battery operated—must last minimum of two years

Recommendation: Use SimpliciTI
Medical Sensor Network

- **Application Considerations**
 - Modular, wireless health monitoring system next to the hospital bed.
 - EKG, Glucose meter, Body temperature, Blood pressure monitor, etc.
 - Alarm + warning signals exist as End Devices on the network and serve as gateways to the hospital’s alarm system.
 - A standard physical and P2P communication may benefit multiple medical end-equipment vendors from a support and design perspective.

- **Robustness & Reliability**
 - Data must be received and recorded accurately with near zero dropouts
 - Patient medical data should remain confidential
 - Can tradeoff with real-time system performance
 - Need highly reliable P2P communications and a Star network topology with limited application-level development
 - Base station redundancy
 - Application-level sensor implementation Ease of Use
 - Need faith in an industry standard to market the products successfully

- **Hardware & RF Considerations**
 - Batteries need to last for weeks, maybe months

Recommendation: Use 802.15.4

Automatic Meter Reading

- **Application Considerations**
 - Wireless collection of utility meter data
 - Remove the need for the utility vendor to drive around to each home, checking utility meters.

- **Robustness & Reliability**
 - System must remain secure against tampering, eavesdropping
 - Data must be received and recorded accurately with zero dropouts

- **Ease of Use**
 - Promoting and industry standard would increase competitive advantage.
 - Need high levels of complexity and reliability without the time it takes to implement in-house.

- **Hardware & RF Considerations**
 - No size restrictions
 - Batteries need to last for years
 - Base station will need considerably more memory than end devices

Recommendation: Use ZigBee; consider SimpliciTI
Home Security Network

- **Application Considerations**
 - Home security network
 - Smoke, glass breakage, motion, occupancy detection development
 - Base station must communicate data to home security company
 - User interface must be intuitive
 - Only interoperable with home security products from own company

- **Robustness & Reliability**
 - A key design criteria
 - System must remain secure against tampering, eavesdropping

- **Ease of Use**
 - Desire quick, easy integration of wireless communications to existing applications.
 - Willing to possibly implement methods of reliability and security.

- **Hardware & RF Considerations**
 - Most network devices are battery powered

Recommendation: SimpliciTI

Home Security Network

- **Application Considerations**
 - Home security network
 - Smoke, glass breakage, motion, occupancy detection development
 - Base station must communicate data to home security company
 - User interface must be intuitive
 - Require faith in an industry standard

- **Robustness & Reliability**
 - A key design criteria
 - System must remain secure against tampering, eavesdropping

- **Ease of Use**
 - Require a standardized P2P reliability protocol

- **Hardware & RF Considerations**
 - Most network devices are battery powered

Recommendation: Use 802.15.4
Home Security Network

- Application Considerations
 - Home security network
 - Smoke, glass breakage, motion, occupancy detection development
 - Base station must communicate data to home security company
 - User interface must be intuitive
 - Should benefit from interoperability with and support from different vendors
- Robustness & Reliability
 - A key design criteria
 - System must remain secure against tampering, eavesdropping
- Ease of Use
 - Require standardized, implemented schemes for reliability and security
 - Plan to integrate home security applications into an overall home automation network
 - Willing to take the time to learn and leverage a more complex API
- Hardware & RF Considerations
 - Most network devices are battery powered

Recommendation: Use ZigBee