Using the flexible ‘5xx Universal Clock System (UCS)
Stefan Schauer

Agenda
- Introduction into the UCS system
- Oscillators (Overview, Characteristics, typical usage)
- Frequency Locked Loop (FLL)
- Low Power Mode support from the UCS
- Summary
F5xx Unified Clock System (UCS)

- Three low-freq sources
 - LFXT1
 - VLO
 - REFO
- FLL reference selectable from LFXT1, REFO, or XT2
- ACLK/SMCLK/MCLK can all be driven from any source
- MODOSC provided to modules
 - Example: Flash controller and ADC
- PLL for USB devices only
 - Up-converts 4-24MHz XT1/2 to internal 48MHz for USB communication

ATC 2008
MSP430 Advanced Technical Conference

UCS Comparison to 4xx and 1xx

- Using best of FLL and Basic Clock
 - FLL
 - High clock flexibility
- Existing clocks essentially unchanged
 - XT1/XT2/DCO/FLL
- Increased clock orthogonality
 - Any source can drive any system clock
- Crystal pins muxed with I/O function, defaulting as I/O
 - Must be initialized to crystal function
- Clock divider on all clock tree outputs

ATC 2008
MSP430 Advanced Technical Conference
Low Frequency Clock Sources

Range of choices to fit application needs

<table>
<thead>
<tr>
<th>Component</th>
<th>Power</th>
<th>Precision</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>XTAL</td>
<td>1μA</td>
<td>HIGH</td>
<td>COMPONENT</td>
</tr>
<tr>
<td>REFO</td>
<td>3μA</td>
<td>MEDIUM</td>
<td>ZERO</td>
</tr>
<tr>
<td>VLO</td>
<td><500nA</td>
<td>LOW</td>
<td>ZERO</td>
</tr>
</tbody>
</table>

(Current included in Active and LPM0-3 current if clock is used for ACLK)

High Frequency Clock Sources

Range of choices to fit application needs

<table>
<thead>
<tr>
<th>Component</th>
<th>Power</th>
<th>Precision</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>XTAL (XT1)</td>
<td>60μA @ 12MHz</td>
<td>HIGH</td>
<td>COMPONENT</td>
</tr>
<tr>
<td></td>
<td>150μA @ 20MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>300μA @ 32MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XTAL (XT2)</td>
<td>60μA @ 12MHz</td>
<td>HIGH</td>
<td>COMPONENT</td>
</tr>
<tr>
<td></td>
<td>150μA @ 20MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>300μA @ 32MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCO</td>
<td>60μA @ 1MHz</td>
<td>Depends on Ref + Jitter</td>
<td>ZERO</td>
</tr>
</tbody>
</table>

(DCO Current included in Active and LPM0 current)
5xx FLL Overview

- **FLL**: Adjust DCO frequency in reference to a lower clock source (similar to PLL)
- Normally the FLL is used as source for the MCLK (CPU)
- Very flexible scaling of the output frequency
- Sources for Reference: REFO / LFXT1/XT1 / XT2
- Output frequency: 100kHz - >32Mhz

Frequency Locked Loop (FLL) functionality

- The System Clock of controllers has to meet different requirements, according to the application and system conditions:
 - High frequency, to react fast onto system hardware requests or events
 - Low frequency, to minimize current consumption, EMI,
 - Stable frequency for timer applications e.g. real time clock RTC
 - Low-Q oscillators to enable start-stop operation with 'zero' delay to operation.
- All these conflicting but essential requests can not be handled, with
 - high-Q, fast frequency crystals
 - low-Q RC-type oscillators
- Lowest current consumption and frequency stability require the use of a low frequency crystal.
- The compromise used in the MSP430 is to use a low frequency crystal, and to multiply its frequency up to the nominal operating range.
Agenda

• Introduction into the UCS system
• Oscillators (Overview, Characteristics, typical usage)
• Frequency Locked Loop (FLL)
• Low Power Mode support from the UCS
• Summary

Oscillators

• LF oscillator
• HF oscillator
• VLO
• Reference Oscillator
• Start up sequence
LF oscillator

- Support for 32kHz Crystal
- Startup time < 1000ms
- Internal Load Caps for Crystal: 2pF, 5.5pF, 8.5pF, 12pF (effective)
- Adjustment of drive strength (0-3)
 - Default: highest setting for highest safety factor
- Oscillator Allowance:
 - 210 kOhm at 6pF (Drive Strength: 0 / Safety Factor: 5)
 - 300 kOhm at 12pF (Drive Strength: 1 / Safety Factor: 5)
- Separate fault flag for LFXT Oscillator
- Many improvements for stability have been added compared to older families
- Bypass mode to feed in external digital clock

HF oscillator

- Support for 4 - 32 MHz Crystal
- Startup time < 10ms (6MHz Crystal)
- Oscillator Allowance: 450 Ohm at 6MHz
 320 Ohm at 12MHz
 200 Ohm at 20MHz
 200 Ohm at 32MHz
- No internal Load Caps for Crystal: (add 1pF from Bond Pads)
- Adjustment of drive strength (default highest setting)
- Bypass mode to feed in external clock
- XT1 and XT2 identical
VLO (Very LP/LF Oscillator)

- Very low-power, low-cost alternative for 32kHz crystal in apps that don’t require precision
- Power draw figures are included in I_{LPM3, VLO}
- Introduced on 2xx

Internal Very-Low-Power Low-Frequency Oscillator (VLO)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>V_{CC}</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{VLO} VLO frequency</td>
<td>Measured at ACLK</td>
<td>1.8 V</td>
<td>4</td>
<td>12</td>
<td>20</td>
<td>kHz</td>
</tr>
<tr>
<td>df_{VLO} Δf VLO frequency drift</td>
<td>Measured at ACLK(^{1})</td>
<td>1.8 V</td>
<td>6.5</td>
<td></td>
<td></td>
<td>kHz/C</td>
</tr>
<tr>
<td>df_{VLO} ΔV VLO frequency supply voltage drift</td>
<td>Measured at ACLK(^{2})</td>
<td>1.8 V</td>
<td>4</td>
<td>1.6</td>
<td></td>
<td>V/V</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>Measured at ACLK</td>
<td>1.8 V</td>
<td>50</td>
<td>90</td>
<td>0%</td>
<td></td>
</tr>
</tbody>
</table>

\(^{1}\) Calculated using the box method: (MAX(180, 55°C) - MIN(40, 55°C))/MIN(55°C - (-40°C))
\(^{2}\) Calculated using the box method: (MAX(1.8, 3.6V) - MIN(1.8, 3.6V))/MIN(1.8, 3.6V - 1.8V)

Reference Oscillator

- Factory calibrated Oscillator
- Accuracy sufficient for UART Communication (up to 9600 Baud)
- Current Higher than LF Oscillator
- alternative to 32kHz crystal
- Moderate frequency tolerance over voltage/temp
 - Similar to DCO, much better than VLO
 - Less accurate than 32kHz crystal
- Power draw is higher than crystal or VLO
- Is the default FLL reference clock

Internal Reference Low-Frequency Oscillator (REFO)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>V_{CC}</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{REFO} REFO oscillator current consumption</td>
<td>T_{A} = 25°C</td>
<td>1.8 V</td>
<td>3</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>f_{REFO} REFO frequency calibrated</td>
<td>Measured at ACLK</td>
<td>1.8 V</td>
<td>32768</td>
<td>±3.5</td>
<td>Hz</td>
<td></td>
</tr>
<tr>
<td>REFO absolute tolerance calibrated</td>
<td>T_{A} = 25°C</td>
<td>3 V</td>
<td>40</td>
<td>50</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Duty cycle</td>
<td>Measured at ACLK</td>
<td>1.8 V</td>
<td></td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>I_{STA} REFO startup time</td>
<td>49%/50% duty cycle</td>
<td>1.8 V</td>
<td>0.4</td>
<td></td>
<td>ms</td>
<td></td>
</tr>
</tbody>
</table>
What Can You Do With REFO?

• Periodic wakeup for apps in which these are true…
 – Don’t need crystal accuracy…
 – But need better accuracy than VLO
 – More cost-sensitive than power-sensitive
• Can you do RTC?
 – Not really -- +/-2% error means ~ +/- 1/2 hour error every day
 – But not bad as a ‘walking wounded’ RTC mode in event of crystal failure!

MODOSC

• Internal oscillator to help automate operation of some modules
 – Substitute for source clock in Flash module
 No configuration of \(f_{FTG} \) required
 No Risk of bad programming due to wrong Flash clock
 – Serves as ADC12_A’s internal oscillator (ADC12OSC)
• ~ 5MHz
• Not available to system clocks – direct to modules
• Generally for applications in which drift isn’t critical
• Activation on demand
 – Flash activates it automatically when programming or erasing
 – ADC12 activates it when chosen as conversion clock
Oscillator Allowance

- Load Capacitance CL contains C1, C2 and CS
- The amplification capability of the oscillator inverter is replaced with a negative resistance $-R_{\text{INV}}$
- The quartz crystal is replaced by the load resonance resistance R_L (effective resistance) and the effective Reactance L_Q.

Condition for oscillation:
$|R_{\text{INV}}| = R_L + R_{\text{Qmax}}$

Safety Factor:
$SF = \frac{R_{\text{Qmax}}}{R_{\text{Lmax}}}$

<table>
<thead>
<tr>
<th>Safety Factor</th>
<th>Qualification</th>
</tr>
</thead>
<tbody>
<tr>
<td>$SF < 1.5$</td>
<td>unsuitable</td>
</tr>
<tr>
<td>$1.5 \leq SF < 2$</td>
<td>risky</td>
</tr>
<tr>
<td>$2 \leq SF < 3$</td>
<td>suitable</td>
</tr>
<tr>
<td>$3 \leq SF < 5$</td>
<td>safe</td>
</tr>
<tr>
<td>$SF \geq 5$</td>
<td>very safe</td>
</tr>
</tbody>
</table>

Crystal Layout

- Crystal as close the to MSP430 as possible
- Short and direct traces, no traces underneath
- Keep away switching signals
- Ground crystal can, use guard ring around leads
- Ground plane underneath crystal
Oscillator startup sequence

```c
void LFXT_START(void)
{
    P7SEL |= 0x03;              // enable XT1 for LFXTAL
    UCSCTL6_L |= XT1DRIVE1_L+XT1DRIVE0; // Highest drive setting for XT1 startup

    while (SFRIFG1 & OFIFG) {   // check OFIFG fault flag
        while (SFRIFG1 & OFIFG) { // check OFIFG fault flag
            UCSCTL7 &= ~(DCOFFG+XT1LFOFFG+XT1HFOFFG+XT2OFFG); // Clear OSC fault Flags
            SFRIFG1 &= ~OFIFG;      // Clear OFIFG fault flag
        }
    }
}
```

- Ports have to be enabled for Oscillator usage (PxSEL)
- Select the required drive strength and load XCAP (default is highest)
- No Software delay loop is required anymore (done in Hardware)

Oscillator Fault / Fail-Safe Modes

- Fault detection (XT1, DCO, XT2)
 - Flag set if oscillator enabled but not operating properly
 - Cristal Oscillator Clocks will switch to save backup clock
- Flags must be reset by software: Not Automatic!
- Fail-safe modes ensure minimal operation if primary clock source fails
- For MCLK/SMCLK/ACLK:
 - If LFXT1 is selected and it fails: reverts to REFO
 - If HFXT1/XT2 is selected and it fails: reverts to DCO
- During an oscillator fault, DCOCLK active even at lowest DCO tap, to provide clock for the CPU
Oscillator Fail-Safes vs 2xx/4xx

- Similar to 2xx/4xx, except….
- If LF crystal fails, REFO now takes over
 - In 2xx/4xx, DCO takes over (only for WDT+)
 - Robust, but large freq difference can affect operation
- REFO and crystal have same nominal frequency, allowing similar functionality
- Remember:
 - REFO tolerance isn’t as tight – not a replacement for crystal in all cases
 - Current draw is higher than crystal -- 3uA (typ)

Oscillator failsafe - Backup clocks

Original Source: LFXT1
Original Source: Other
Oscillator Fault Handling

- Write NMI oscillator fault handlers for robustness!
- Fault detection outputs are “flags” and therefore latched
 - LFOF, DCOF are now XT1LFOFFG, DCOFFG, etc.
 - Specific OF Flags feed into OFIFG, which is also latched (as it was in 2xx/4xx)
 - Source flags must be cleared manually
 - Difference to 2xx/4xx: Self-cleared when condition ceased, and were not called “flags”
- OFIE no longer automatically cleared (Nested NMI interrupts of same level are not accepted by hardware)

Agenda

- Introduction into the UCS system
- Oscillators (Overview, Characteristics, typical usage)
- Frequency Locked Loop (FLL)
- Low Power Mode support from the UCS
- Summary
FLL

- Understanding a FLL, difference to an PLL
- FLL: Regulation and Modulation
- Clock Accuracy (cycle by cycle, average, stability)
- Setting for certain Clock frequency
- Understanding the error of an FLL

Understanding an FLL

- The FLL aligns the frequency (and phase) of the DCO to the low-frequency clock, in order to provide increased stability and determinability of the frequency.
- The FLL operates as a continuous frequency integrator. An up/down counter that follows the loop control corrects permanently the multiplication factor N. The follow-up or up-date rate is identically to the crystal's frequency rate. Using a 32,768 kHz crystal the rate is 30.5μs.
- The accumulated frequency error is the same as that of the crystal's. The time deviation from one machine cycle to another is typically less than 10%.
Digital Controlled Oscillator

- The operating range is controlled by:
 - DCORSEL0…DCORSEL2
 - Wide Range Area
- Digital Controlled Oscillator is controlled by
 - DCO0…DCO5
 - Frequency Tap for fine adjustment
- Five modulation bits MOD0 to MOD4 to define the timing interval

FLL: Blockdiagram

Note: The SCG0 bit in the Status Register (SR) controls the FLL loop (open or closed).
FLL: Digital Oscillator Loop Control

The content of N defines the system frequency if the FLL is active.

\[f_{(DCOCLK)} = D \times (N + 1) \times f_{(FLLRefClock)} / n \]

- **D**: FLL Loop Divider in UCSCTL2 (FLLD bits)
- **N**: Multiplier Bits in UCSCTL2 (FLLN bits) (must be greater than 0)
- **n**: DCO tap selection in UCSCTL 0 (Modified automatically by the FLL)

FLL: Selection of Nominal Frequency

![Typical DCO Frequency](image)

Figure 10. Typical DCO Frequency
FLL: Modulation

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Cycle time</th>
</tr>
</thead>
<tbody>
<tr>
<td>selected:</td>
<td>1000 kHz</td>
</tr>
<tr>
<td>f3:</td>
<td>943 kHz</td>
</tr>
<tr>
<td>f4:</td>
<td>1042 kHz</td>
</tr>
</tbody>
</table>

MOD = 19

FLL: Regulation and Modulation

- On each Ref Clock Cycle the DCO tap and the modulation is updated
- The DCO could get one tap up or down.
- If the Frequency is locked the Tap will stay almost the same and only the Modulation is changed.
- The Modulation allows to change the DCO with each DCO clock cycle to the adjusted frequency and the frequency of the Tap +1 to get less time for zero frequency error.
Understanding the Error of an FLL

- **Clock Accuracy:**
 - Average stability
 - Example for the 'Lock time' of the FLL
 - Shown:
 - 1MHz required Frequency
 - DCO = 943000 MHz
 - DCO+1 = 1037540 MHz
 - Clock Error < 0.1% after 50 clock cycles
 - Clock Error < 0.003% after 100 clock cycles

- **Cycle by cycle**
 - FLL could change the DCO frequency with each FLLREF clock cycle
 - Modulation could change the DCO frequency with each DCO clock cycle

ATC 2008
MSP430 Advanced Technical Conference
FLL versus PLL

<table>
<thead>
<tr>
<th></th>
<th>FLL</th>
<th>PLL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle by Cycle Accuracy</td>
<td>Jitter of ~ 10%</td>
<td>Very small</td>
</tr>
<tr>
<td>Frequency step size</td>
<td>~ 10%</td>
<td>~ 0</td>
</tr>
<tr>
<td>Long time Freq. Error</td>
<td>~ 0</td>
<td>~ 0</td>
</tr>
<tr>
<td>Startup time</td>
<td>< 5us</td>
<td>>100 clock cycles</td>
</tr>
<tr>
<td>Overshoot possible</td>
<td>Limited</td>
<td>Possible</td>
</tr>
<tr>
<td>Support for Low Power Mode</td>
<td>Very good</td>
<td>Limited due to long startup time</td>
</tr>
<tr>
<td>Switch on/off</td>
<td>Simple</td>
<td>Lock in required</td>
</tr>
</tbody>
</table>

Synchronization on Clock Switching

- Hardware controlled clock switching between asynchronous sources to avoid Glitches.
- The current clock cycle continues until the next rising edge.
- The clock remains high until the next rising edge of the new clock.
- The new clock source is selected and continues with a full high period.
Setting for certain Clock frequency

```c
void init_fll(unsigned int fsystem, const unsigned int fcrystal)
{
    UCSCTL2 &= ~(0x3FF); // Reset FN bits
    // Choose the system frequency divider
    UCSCTL2 = FLLD__x | ((fsystem/fcrystal) - 1); // Set Loop Controll and feedback devider
    UCSCTL0 = 0x000; // Set DCO to lowest Tap
    UCSCTL1 = DCORSEL_x ; // Set DCO to required Range
} // End of fll_init()
```

Agenda

- Introduction into the UCS system
- Oscillators (Overview, Characteristics, typical usage)
- Frequency Locked Loop (FLL)
- Low Power Mode support from the UCS
- Summary
Low Power Mode support from the UCS

- The FLL provides the fastest clock on and off switching with a stabilized clock. (LDO on + 6 clocks)
- Dynamic change of clock sources to select lowest possible clock for the application/module.
- Any clock request from a peripheral module will cause its respective clock off signal to be overridden.
 - Clocks are just on as required.
 - Clock could be switched on without CPU wake up.
- Keep in mind: Current consumption for a certain task is independent from the clock, if the System is in LPM during the remaining time, but a e.g. a Timer needs a higher current when it is running on a higher speed then required.

Getting the Application more robust

- The watchdog, due to its security requirement, actively selects the VLOCLK source if the originally selected clock source is not available.
- Many security aspects are already covered by hardware but take respect of the Fail save mechanism in your application to take the proper actions.
- Implement OSC Fault Interrupt Service Routine
- Using an input clock divider could prevent system locks or errors due to spikes (esp. for external clocks).
Fully Automatic Clock Requests

- A module can use a *clock request* to force its source to stay active, even when entering LPMx
- LPMx otherwise goes into effect
- When clock request goes away, clock shuts down & LPMx fully implemented
- Used much more in 5xx than in previous families

Review of Available Clocks

<table>
<thead>
<tr>
<th>Clock</th>
<th>Frequency (nominal)</th>
<th>Precision</th>
<th>Current Draw</th>
<th>Crystal Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-Frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCO</td>
<td>100kHz – 32MHz</td>
<td>Low</td>
<td>60uA</td>
<td></td>
</tr>
<tr>
<td>HFXT1/2</td>
<td>4 - 32MHz</td>
<td>High</td>
<td>60uA @ 12MHz</td>
<td>X</td>
</tr>
<tr>
<td>MODOSC</td>
<td>5MHz</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Low-Frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LFXT1</td>
<td>32kHz</td>
<td>High</td>
<td>300nA</td>
<td>X</td>
</tr>
<tr>
<td>VLO</td>
<td>12kHz</td>
<td>Low</td>
<td>0nA*</td>
<td></td>
</tr>
<tr>
<td>REFO</td>
<td>32kHz</td>
<td>Medium/High</td>
<td>3uA</td>
<td></td>
</tr>
</tbody>
</table>

* Included in LPM3, VLO spec (~1.2uA)
Summary

• Many focus was set on safety and flexibility to meet your application requirements as good as possible.
• Configuration may needs a few more things to consider due to the higher flexibility.
• Default settings are already set to meet most of the common requirements.
• Crystal less operation possible in many cases.

Thank you