Home Power management Battery management ICs Battery charger ICs

BQ25570

ACTIVE

Ultra Low power Harvester power Management IC with boost charger, and Nanopower Buck Converter

Product details

Number of series cells 1 Charge current (max) (A) 0.1 Vin (max) (V) 5.1 Cell chemistry Li-Ion/Li-Polymer, SuperCap Battery charge voltage (min) (V) 2.2 Battery charge voltage (max) (V) 5.5 Absolute max Vin (max) (V) 5.5 Control topology Switch-Mode Boost Control interface Standalone (RC-Settable) Features Input OVP, Solar input/MPPT Vin (min) (V) 0.6 Rating Catalog Operating temperature range (°C) -40 to 125
Number of series cells 1 Charge current (max) (A) 0.1 Vin (max) (V) 5.1 Cell chemistry Li-Ion/Li-Polymer, SuperCap Battery charge voltage (min) (V) 2.2 Battery charge voltage (max) (V) 5.5 Absolute max Vin (max) (V) 5.5 Control topology Switch-Mode Boost Control interface Standalone (RC-Settable) Features Input OVP, Solar input/MPPT Vin (min) (V) 0.6 Rating Catalog Operating temperature range (°C) -40 to 125
VQFN (RGR) 20 12.25 mm² 3.5 x 3.5
  • Ultra Low Power DC-DC Boost Charger
    • Cold-Start Voltage: VIN ≥ 600 mV
    • Continuous Energy Harvesting From VIN as low as 100 mV
    • Input Voltage Regulation Prevents Collapsing High Impedance Input Sources
    • Full Operating Quiescent Current of 488 nA (typical)
    • Ship Mode with < 5 nA From Battery
  • Energy Storage
    • Energy can be Stored to Re-chargeable Li-ion Batteries, Thin-film Batteries, Super-capacitors, or Conventional Capacitors
  • Battery Charging and Protection
    • Internally Set Undervoltage Level
    • User Programmable Overvoltage Levels
  • Battery Good Output Flag
    • Programmable Threshold and Hysteresis
    • Warn Attached Microcontrollers of Pending Loss of Power
    • Can be Used to Enable or Disable System Loads
  • Programmable Step Down Regulated Output (Buck)
    • High Efficiency up to 93%
    • Supports Peak Output Current up to 110 mA (typical)
  • Programmable Maximum Power Point Tracking (MPPT)
    • Provides Optimal Energy Extraction From a Variety of Energy Harvesters including Solar Panels, Thermal and Piezo Electric Generators
  • Ultra Low Power DC-DC Boost Charger
    • Cold-Start Voltage: VIN ≥ 600 mV
    • Continuous Energy Harvesting From VIN as low as 100 mV
    • Input Voltage Regulation Prevents Collapsing High Impedance Input Sources
    • Full Operating Quiescent Current of 488 nA (typical)
    • Ship Mode with < 5 nA From Battery
  • Energy Storage
    • Energy can be Stored to Re-chargeable Li-ion Batteries, Thin-film Batteries, Super-capacitors, or Conventional Capacitors
  • Battery Charging and Protection
    • Internally Set Undervoltage Level
    • User Programmable Overvoltage Levels
  • Battery Good Output Flag
    • Programmable Threshold and Hysteresis
    • Warn Attached Microcontrollers of Pending Loss of Power
    • Can be Used to Enable or Disable System Loads
  • Programmable Step Down Regulated Output (Buck)
    • High Efficiency up to 93%
    • Supports Peak Output Current up to 110 mA (typical)
  • Programmable Maximum Power Point Tracking (MPPT)
    • Provides Optimal Energy Extraction From a Variety of Energy Harvesters including Solar Panels, Thermal and Piezo Electric Generators

The bq25570 device is specifically designed to efficiently extract microwatts (µW) to milliwatts (mW) of power generated from a variety of high output impedance DC sources like photovoltaic (solar) or thermal electric generators (TEG) without collapsing those sources. The battery management features ensure that a rechargeable battery is not overcharged by this extracted power, with voltage boosted, or depleted beyond safe limits by a system load. In addition to the highly efficient boosting charger, the bq25570 integrates a highly efficient, nano- power buck converter for providing a second power rail to systems such as wireless sensor networks (WSN) which have stringent power and operational demands. All the capabilities of bq25570 are packed into a small foot-print 20-lead 3.5-mm x 3.5-mm QFN package (RGR).

The bq25570 device is specifically designed to efficiently extract microwatts (µW) to milliwatts (mW) of power generated from a variety of high output impedance DC sources like photovoltaic (solar) or thermal electric generators (TEG) without collapsing those sources. The battery management features ensure that a rechargeable battery is not overcharged by this extracted power, with voltage boosted, or depleted beyond safe limits by a system load. In addition to the highly efficient boosting charger, the bq25570 integrates a highly efficient, nano- power buck converter for providing a second power rail to systems such as wireless sensor networks (WSN) which have stringent power and operational demands. All the capabilities of bq25570 are packed into a small foot-print 20-lead 3.5-mm x 3.5-mm QFN package (RGR).

Download View video with transcript Video

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

BQ25570EVM-206 — Ultra Low Power Management IC, Boost Charger Nanopowered Buck Converter Evaluation Module

The bq25570 evaluation module (EVM) is a complete module for evaluating the bq25570 energy harvesting charger for storage elements like single-cell Li-Ion/Polymer batteries or super-capacitors. Intended to be powered by high impedance supplies, such as solar panels, thermo-electric generators (...)

User guide: PDF
Not available on TI.com
Code example or demo

SLUC461 Solar App Design Example V1.3, bq25570

Supported products & hardware

Supported products & hardware

Products
Battery charger ICs
BQ25570 Ultra Low power Harvester power Management IC with boost charger, and Nanopower Buck Converter
Calculation tool

SLUC484 bq25505/70 Design Help V1.3

Supported products & hardware

Supported products & hardware

Products
Battery charger ICs
BQ25505 Ultra low power harvester power management IC with boost charger, and autonomous power multiplexor BQ25570 Ultra Low power Harvester power Management IC with boost charger, and Nanopower Buck Converter
Reference designs

TIDM-WLMOTORMONITOR — Wireless Motor Monitor Reference Design

This reference design is inspired by the need to monitor the health of motors and machines to accurately predict and schedule maintenance (or replacement) while minimizing cost and downtime during industrial production. Millions of industrial motors are monitored today with handheld or wired piezo (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-00649 — 4-mA to 20-mA Loop Energy Harvester Reference Design

The TIDA-00649 reference design demonstrates energy harvesting from 4-mA to 20-mA loop-powered systems. The design is simple to insert into existing installations where it scavenges energy from the loop and generates a regulated output voltage. Furthermore, the circuit provides an analog output (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-00246 — Generic Energy Harvesting Adapter Module for Thermoelectric Generators (TEG) Reference Design

This reference design aims at providing a generic solution for energy harvesting while giving a practical application application for thermoelectric generators (TEG). It is a fully programmable state-machine which runs at 60nA and can enable and disable key functions as they are needed by the (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-00616 — Energy Harvesting LaunchPad BoosterPack for Brushed DC Motor Control Reference Design

The Energy Harvesting LaunchPad for Brushed DC Motor Control is designed for charging a Li-ion or Li-polymer battery with solar energy, and subsequently using a voltage regulator to provide secondary system power to a TI LaunchPad and any peripherals connected the LaunchPad. The BoosterPack is (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-00588 — Energy Harvester Booster Pack Reference Design

The TIDA-00588 reference design is a BoosterPack that harvests energy from a wide variety of current sources or from the onboard solar cells to power any low-power TI LaunchPad. This design is a highly integrated power management solution that is well-suited for ultra-low power applications.

There (...)

Design guide: PDF
Schematic: PDF
Reference designs

TIDA-00242 — Solar Power Energy Harvester Reference Design Using a Super Cap

This reference design is a solar charger and energy harvester using a highly integrated power management solution that is well-suited for ultra-low power applications. The product is specifically designed to efficiently acquire and manage the microwatts (μW) to milliwatts (mW) needed to (...)
Test report: PDF
Schematic: PDF
Package Pins Download
VQFN (RGR) 20 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos