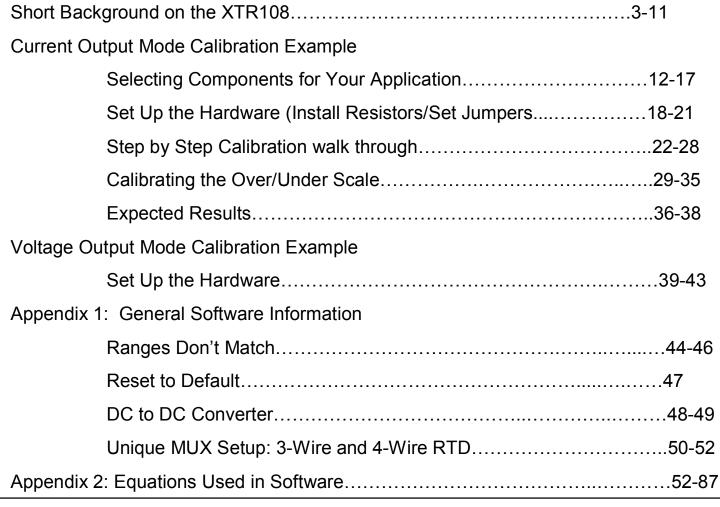
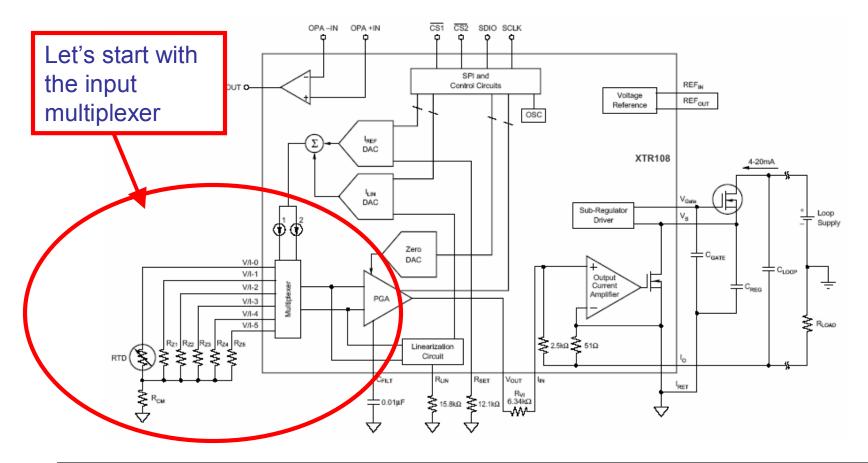

Burr-Brown Products from Texas Instruments

XTR108 Quick Start System Reference Guide


by Art Kay High-Precision Linear Products

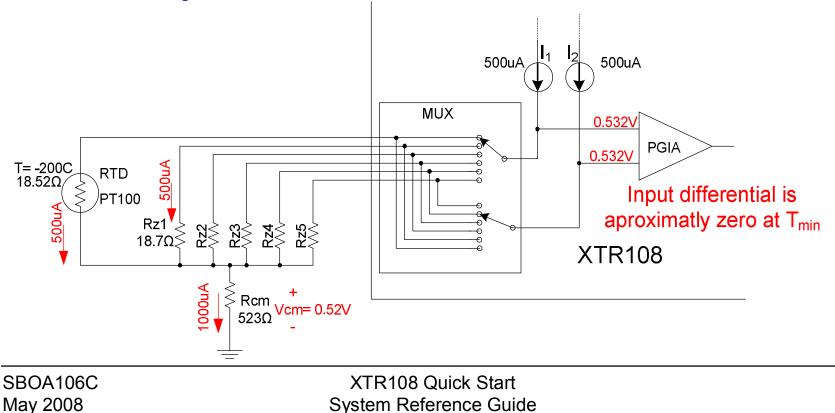
SBOA106C April 2005 - Revised May 2008

XTR108 Quick Start Contents



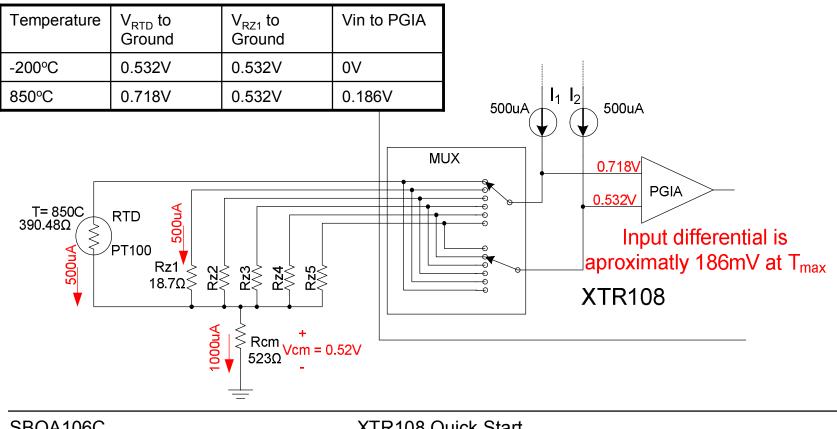
XTR108 Operation

The figure below shows a simple block diagram of the XTR108. This section of the Quick Start Guide will give a brief description of the major sections.


SBOA106C May 2008 XTR108 Quick Start System Reference Guide

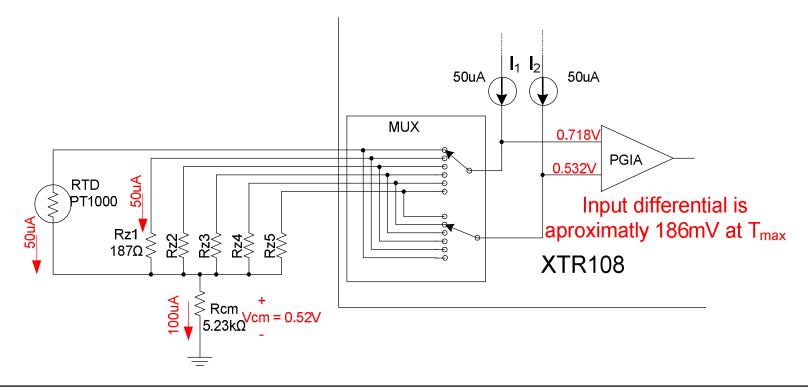
4

XTR108 Operation – Input Mux


The primary function of the XTR108 Input MUX is to allow a single hardware module to function for multiple RTD ranges, and types. In the typical XTR108 configuration one MUX channel is used for the RTD and five different channels remain for different ranges. Rz1 through Rz5 are used to set the minimum temperature (T_{min}) of a particular range. In the example shown below, $T_{min} = -200C$, Rz1 is selected to match the resistance of the RTD at this temperature (i.e. 18.7 Ω closest standard value). This will force the differential input voltage of the PGIA to be approximately zero at T_{min} . R_{cm} generates a common mode voltage so that the common mode range of the XTR108 is not violated.

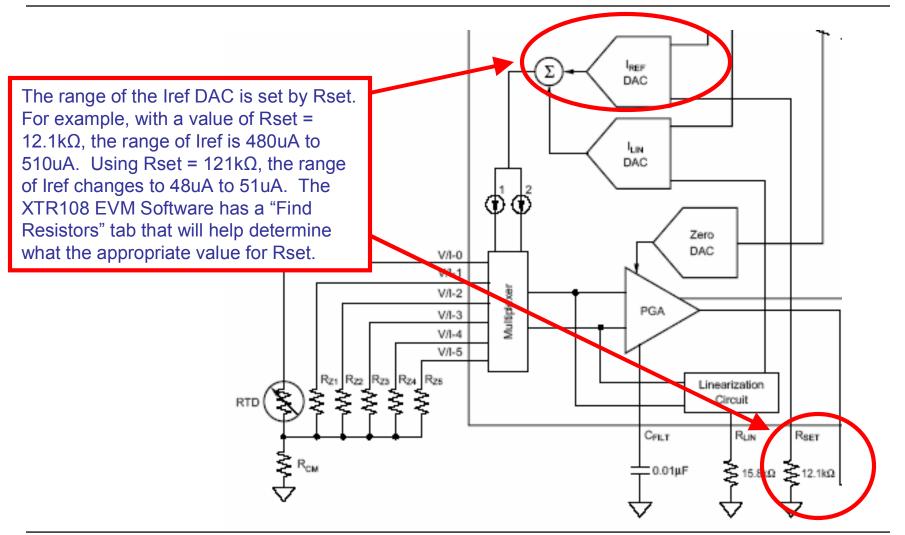
XTR108 Operation – Input Mux

The figure below shows the same multiplexer configuration with the RTD at maximum temperature T_{max} =850C. At this point the differential input to the PGIA is maximum (e.g. 186mV). This example range is summarized in the table below.

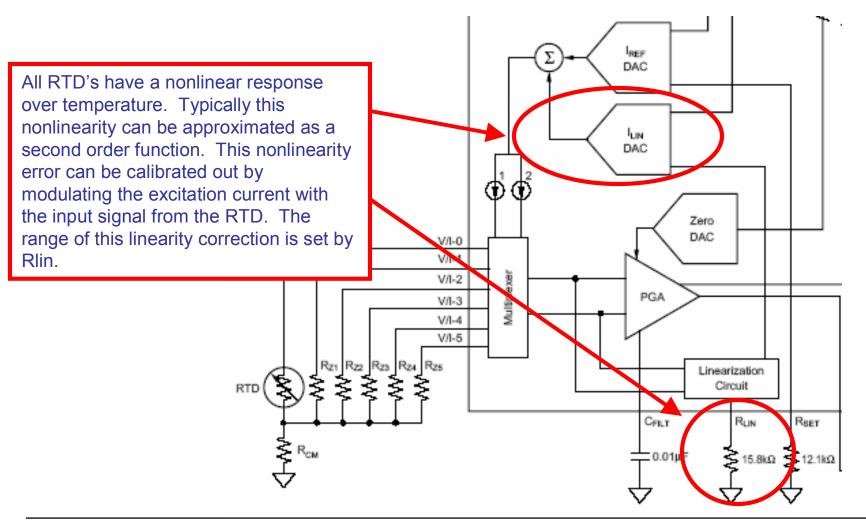


SBOA106C May 2008 XTR108 Quick Start System Reference Guide 6

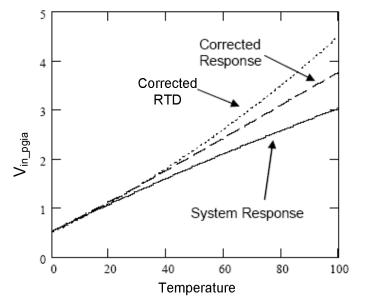
XTR108 Operation – Input Mux



The figure below shows how the current sources can be programmed to accommodate different types of RTD's. The previous example used a 100Ω RTD (PT100). In this example we changed the RTD to 1000Ω (i.e. PT1000). The current sources I_1 and I_2 are scaled to accommodate this new resistor (i.e. they are changed from 500uA to 50uA). Rz1 and Rcm are also scaled to accommodate this new RTD type. Note that I1 and I2 are matched current sources programmed by one set of DACs (7 bit plus sign CoarseDac, 7 bit plus sign FineDac). These current sources will be programmed during calibration.

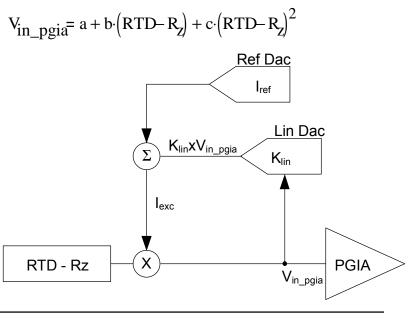

XTR108 Operation – Rset

XTR108 Operation – Rlin



XTR108 Operation – Linearity Correction

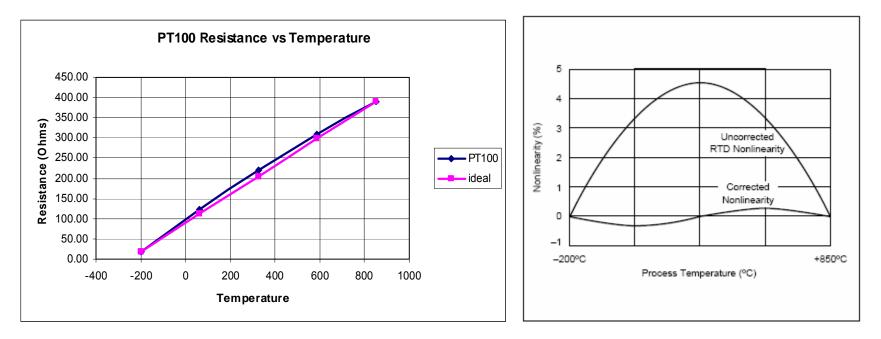
How it works!


The graph below illustrates how the linearity correction works. The RTD has a system response that is approximately quadratic. The positive feedback of the input signal through the LinDac generates a system response that is also approximately quadratic. The two responses counteract each other to generate a linear output.

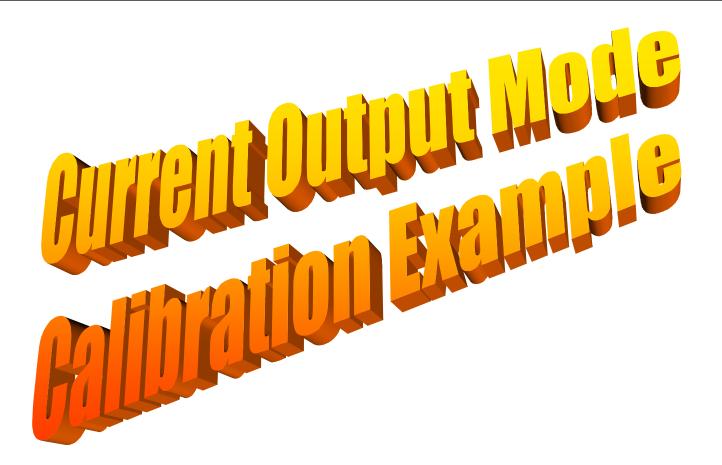
$$V_{in_pgia} = \left(K_{lin} V_{in_pgia} + I_{ref}\right) \left(RTD - R_{z}\right)$$

$$V_{in_pgia} = \frac{I_{ref} (RTD - R_z)}{1 + K_{lin} (RTD - R_z)}$$

If you do a Taylor Expanson the response can b aproximated as a second order


SBOA106C May 2008 XTR108 Quick Start System Reference Guide 10

XTR108 Operation – Linearity Correction Instruments




How much will it improve the nonlinearity?

The graph below shows pre and post correction for a typical RTD. Normally you can expect a 40:1 improvement in linearity.

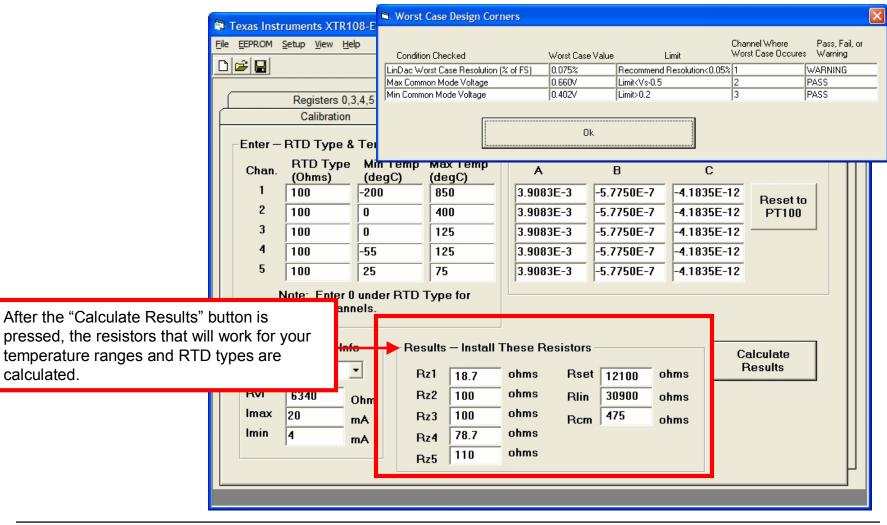
There are several external components that are used to set the type of RTD used, and the temperature range that it can be used over. The XTR108 "Find Resistor" tab on the XTR108 Software is a tool that helps select resistors to accommodate five ranges on the XTR108. These components are located on the XTR108-EVM Sensor Board.

 R_{z1} through R_{z5} – sets the zero temperature for the multiplexer channels 1 through 5.

 $\mathbf{R}_{\mathbf{LIN}}$ – sets the range of linearity correction.

 R_{cm} – the common mode resistor. This resistor ensures that the lowest common mode voltage is greater then the data sheet specification.

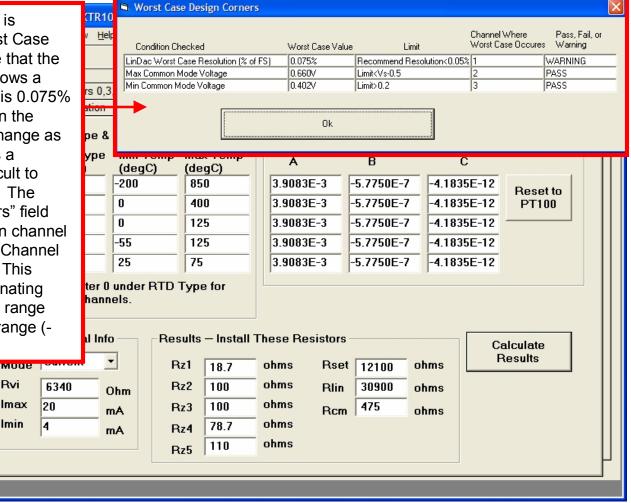
 R_{set} – this resistor sets the range for the current references.


 R_{vi} – the voltage to current resistor. This resistor is always selected to be 6.34k by the spreadsheet because this is the optimal value for the zero adjust circuit to work for 4mA to 20mA.

The "Find Resistors" tab on the XTR108 EVM Software can be used to determine what external resistors are required to configure the XTR108 for different RTD ranges.

	Texas Instruments XTR1	08-EVM Application									
	EEPROM Setup View He					2	. Enter the Callendar-				
1. Enter the RTD		τ -					an Dusen Coefficients				
resistance at 0 degC							ere. The "Reset to				
and the temperature	Registers 0,3	345	Registers 6,7,8	9	Registers 10,11,12,13						
	Calibration	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Summary	, <u>~</u>	Find Resistors		PT100" button will reset ne coefficients to that of				
range.											
	Enter – RTD Type &			llendar-Van Dus	en Coe ^{re} cients ——	a	typical PT100 RTD.				
	Chan. RTD Type (Ohms)	Min Temp Max (degC) (de		В	С	_					
	1 100	-200 85		-5.7750E-7	-4.1835E-12	++-					
	2 100	0 40	0 3.9083E-3	-5.7750E-7	-4.1835E-12 PT						
	3 100	0 12	5 3.9083E-3	-5.7750E-7	-4.1835E-12						
	4 100	-55 12	5 3.9083E-3	-5.7750E-7	-4.1835E-12						
	5 100	25 75	3.9083E-3	-5.7750E-7	-4.1835E-12						
3. Select current mode	Note: Enter I	under RID Type	e tor	· ·	·		Press the "Calculate				
or voltage mode. Enter	unused chanr					Re	esults" button. This				
Rvi. Rvi is typically						wi	Il compute values for				
6340Ω for most	– Enter – General Inf	o — Results	– Install These Resist	ors	CAlcarate	Rz	z1 through Rz5, Rset,				
	de Current	- Rz1	100 ohms F	set 0 ol	hms Results	an	d Rcm. If the XTR108				
applications. The output	Dui Donto	D -0					nnot accommodate all				
at Max Temperature	0010	Ohm Rz2	200		hms		e ranges, then the				
(Imax) and the output at		mA Rz3		cm 0 ol	hms						
minimum temperature	Imin 4	mA Rz4	400 ohms			pro	ogram will give errors.				
(Imin).		Rz5	500 ohms								
· · ·		-									

SBOA106C May 2008



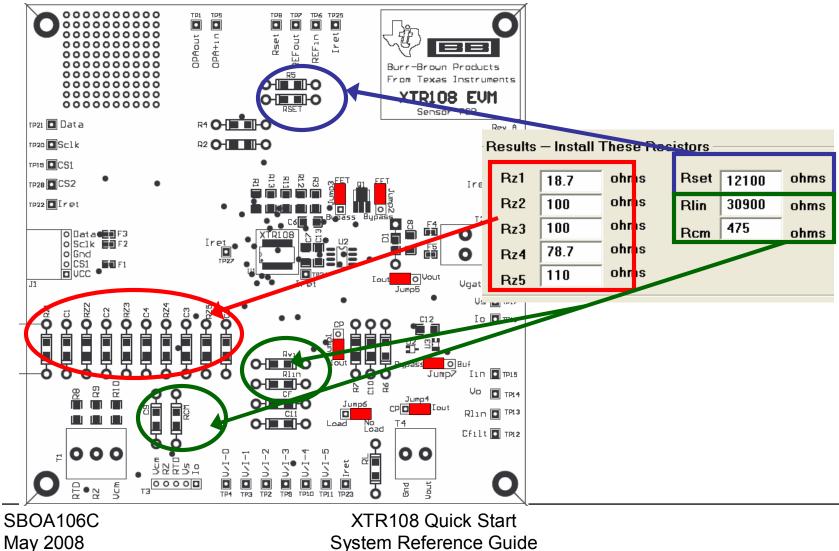
After the "Calculate Results" button is pressed, this summary of the "Worst Case Design Corners" is displayed. Note that the "LinDac Worst Case Resolution" shows a warning in this example. The value is 0.075% indicates that a change of one bit on the LinDac could cause the output to change as much as 0.075%. This is shown as a warning because it will make it difficult to attain a 0.1% post calibration error. The "Channel Where Worst Case Occurs" field indicates that the problem occurs on channel 1. This makes sense because this Channel has the widest temperature range. This problem can be moderated by eliminating either the most narrow temperature range (25, 75) or the widest temperature range (-200, 850).

Rvi

Imax

Imin

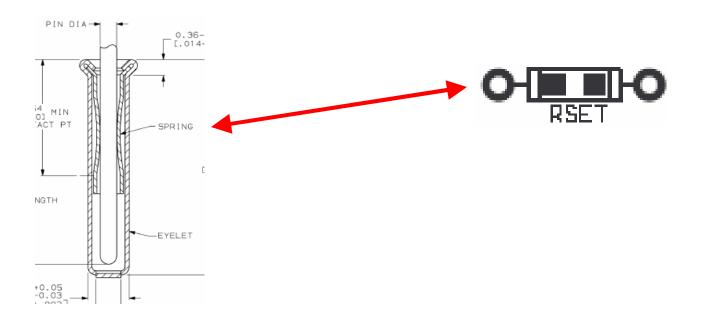
SBOA106C May 2008


Texas Instruments XTR108-EVM Application File EEPROM Setup View Help Registers 0,3,4,5 Registers 6,7,8,9 Registers 10,11,12,13,14,15 Calibration Summarv Find Resistors Enter - RTD Type & Temp Range Enter - Callendar-Van Dusen Coefficients RTD Type Min Temp Max Temp В С Chan. А (Ohms) (degC) (degC) 1 100 -200 850 3.9083E-3 -5.7750E-7 -4.1835E-12 Reset to 2 400 -5.7750E-7 100 0 3.9083E-3 -4.1835E-12 PT100 3 125 100 Π 3.9083E-3 -5.7750E-7 -4.1835E-12 4 0 -55 125 3.9083E-3 -5.7750E-7 -4.1835E-12 5 10 25 75 3.9083E-3 -5.7750E-7 -4.1835E-12 Note: Enter 0 under RTD Type for unused channels. Enter – General Info Results - Install These Resistors Calculate Mode Current Results -Rz1 18.7 ohms Rset 12100 ohms Rvi ohms 6340 Rz2 100 Rlin 30900 ohms Ohm Imax ohms Rcm 475 20 Rz3 100 mΑ ohms Imin ohms 4 78.7 Rz4 mΑ ohms 110 Rz5

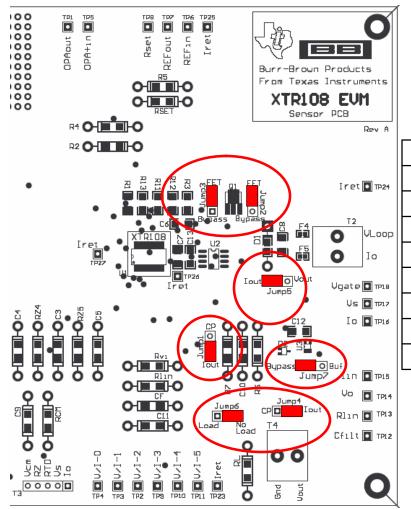
In some cases, you may not want to use all of the channels available on the XTR108. In this case, you can enter 0 for the RTD Type. This will disable the channel.

SBOA106C May 2008

Install The Resistors

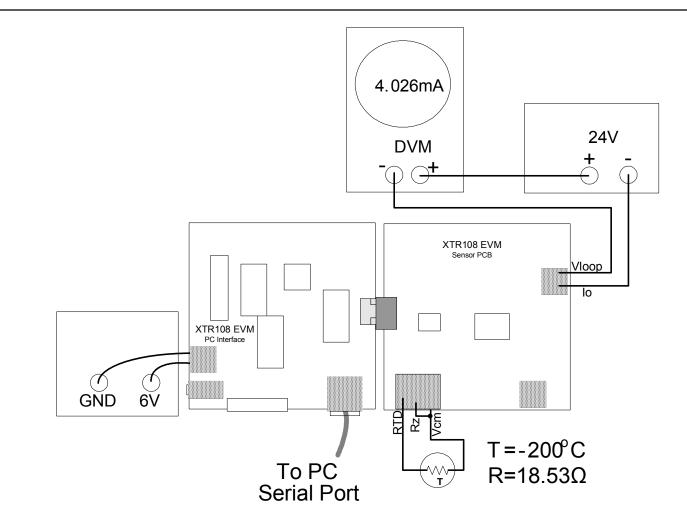


18


Install The Resistors

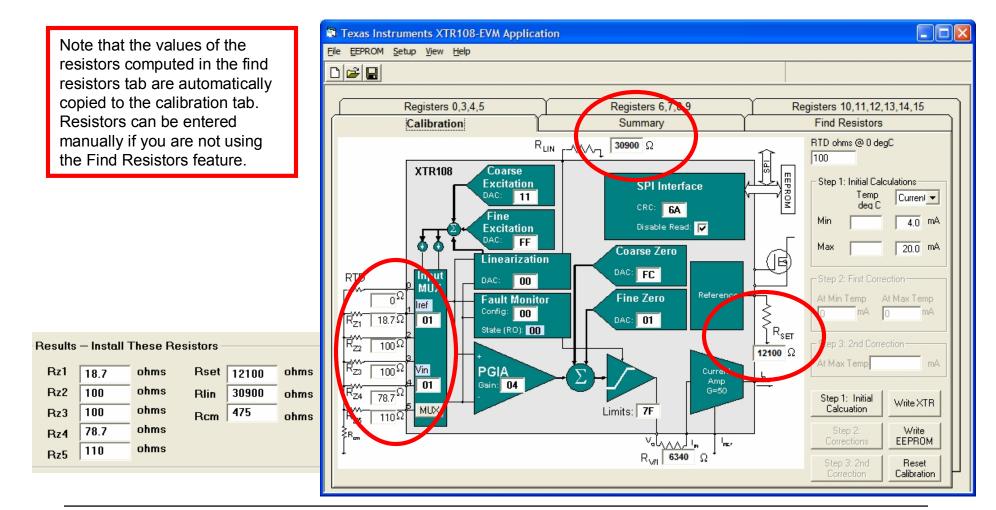
The figure below shows a typical component footprint on the XTR108 Sensor Board. The footprint is a surface mount resistor inside of a through hole resistor. The through hole resistor pads have "pin sockets" installed in them to allow easy replacement of the resistors. The pin sockets have gold plated springs internally that provide excellent contact with the resistor leads. The XTR108 EVM has surface mount resistors installed for a typical PT100 application. If you want to change the configuration, de-solder these surface mount resistors and connect the through hole resistors via the pin sockets.

Set the Jumpers

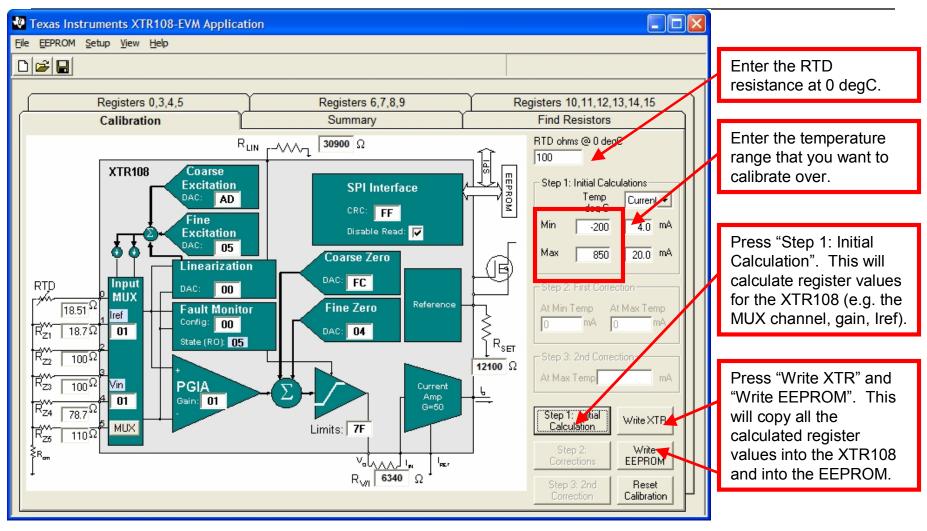


The table below and the figure illustrate the jumper settings for current output mode calibration.

XTR108 Senso	XTR108 Sensor Interface Board – Factory Jumper Settings										
Jumper	Position										
JUMP1	lout	Use current output mode									
JUMP2	FET	Use FET Subregulator									
JUMP3	FET	Use FET Subregulator									
JUMP4	lout	Use current output mode									
JUMP5	lout	Use current output mode									
JUMP6	No Load	Do not connect load to Voltage Output									
JUMP7	Bypass	Bypass Voltage Mode Charge Pump									


SBOA106C May 2008 **Connect the power**

Example Calibration: Step by Step Calibration Enter The Resistor Values

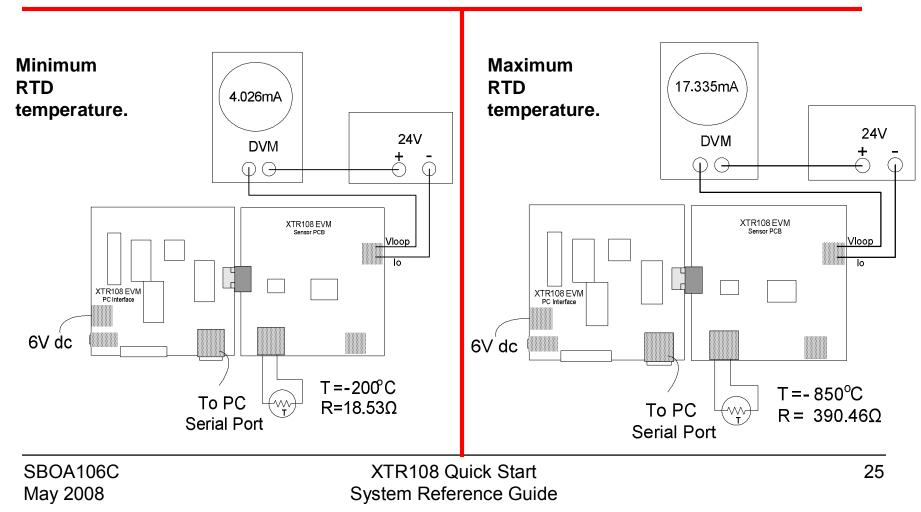


SBOA106C May 2008

Example Calibration: Enter the temperature range and Press "Step1: Initial Calculation".

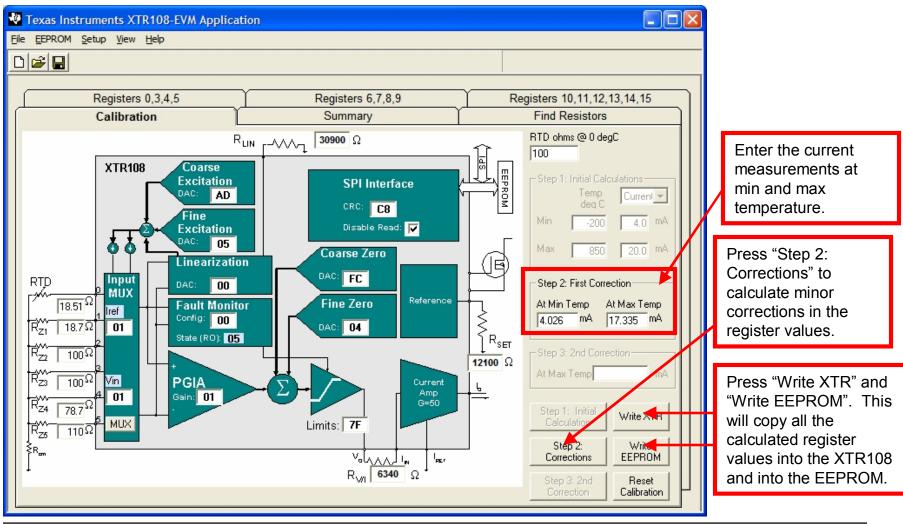
SBOA106C May 2008

		struments XTR10	8-EVM Applica	tion					
		Setup View Help)						
ers 6,7,8,9 R	egisters 10,11,12,13,14,15								
mary			,4,5	F	Registers 6,7,8,9		Registers 10,11,12,13,14,		
	RTD ohms @ 0 degC	Calibration			Summary	Ţ.	Find R	esistors	
	100	- RTD Type &	Temp Range		-Enter - Calle	ndar-Van Du	Dusen Coefficients		
	Step 1: Initial Calculations	RTD Type	Min Temp (degC)	Max Temp (degC)	A	в	С	_	
RC: 89		100	-200	850	3.9083E-3	-5.7750E-7	-4.1835E-12	Reset to	
)isable Read: 🔽	Min _200 _4 ma	100	0	400	3.9083E-3	-5.7750E-7	-4.1835E-12		
	Max 850 20 ma	100	0	125	3.9083E-3	-5.7750E-7	-4.1835E-12		
		100	-55	125	3.9083E-3	-5.7750E-7	-4.1835E-12	-	
FC C	Step 2: First Correction	100	25	75	3.9083E-3	-5.7750E-7	-4.1835E-12	-	
Zero Reference Reference	At Min Temp At Max Temp 0 ma	Note: Enter 0 unused channe		ype for	1	,			
12100 Ω	Step 3: 2nd Correction	r – General Info		ults — Install T	hese Resistors				
Current	At Max Temp ma		а					Calculate Results	
		Current	Rz	1 100	ohms Rse	t o o	ohms		
7F	Step 1: Initial Calcuation Write XTR		hm Rz	2 200	ohms Rlin	0 0	ohms		
	Step 2: Write	20 m	A Rz	3 300	ohms Borr	0,	nhme		
	Corrections EEPROM								
R _{VII} 6340 Ω ¹	Step 3: 2nd Reset								
SBOA106C	Correction Calibration H	XTR108	Quick St	art				24	


XI R108 Quick Start System Reference Guide

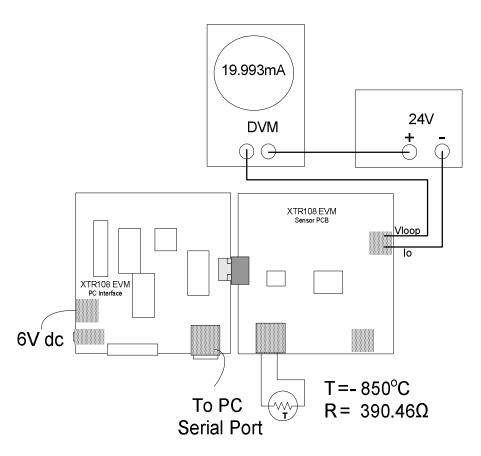
May 2008

TEXAS INSTRUMENTS

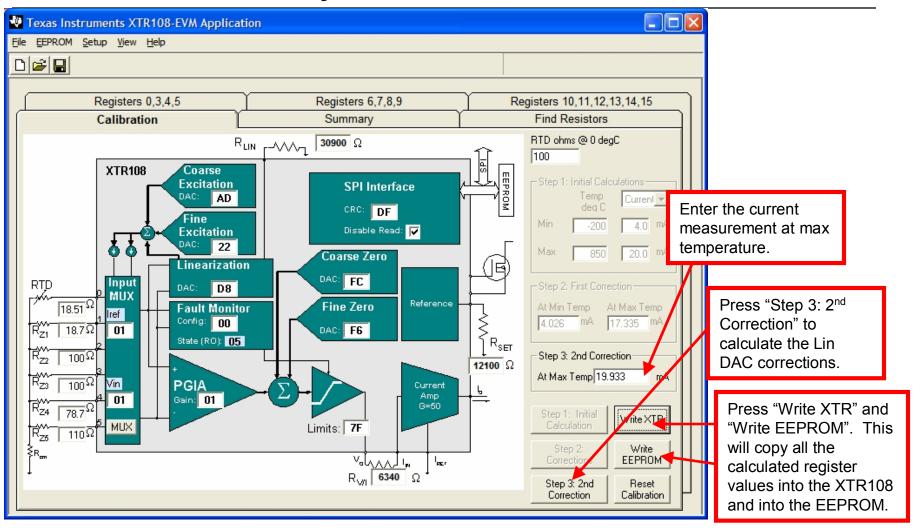

Measure the Output

After the "Step 1: Initial Calculation" results are written into the XTR108, you will need to read the output at minimum and maximum RTD temperature. Note that linearity correction is turned off during this step and so, you should not expect to see an accurate 4mA to 20mA.

Example Calibration: Enter First Correction



SBOA106C May 2008 XTR108 Quick Start System Reference Guide 26


Measure the Output at Full Scale to Correct for Linearity DAC Errors

Measure the Output at Full Scale to Correct for Linearity DAC Errors

SBOA106C May 2008

🖗 Texas Instrun	nents XTR	108-EVM A	Application	1						
<u>File E</u> EPROM <u>S</u> e	tup <u>V</u> iew	<u>H</u> elp								Overscale = 28mA
0 🖻 日										
Summary	Find	Resistors	s Č C	alibration	Error	^r Calculato	or Reg	g 0, 3, 4, ś	j 📔 R	Re
-XTR Registers 0	245									
	D7	D6	D5	D4	D3	D2	D1	D0	HEX	20mA —— — — — — — — — — — — — — — — — — —
Reg 0: Control Register 1	RST False	Chksum Err False	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved		
	0	0	0	0	0	0	0	0	00	
Reg 3: Fault Status	Reserved	Reserved	Reserved	Reserved		NC	INE			
	0	0	0	0	0	0	0	0	00	
Reg 4: Control	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Single EE Read		4mA
Register 2	0	0	0	0	0	0	0	1	01	
Reg 5: Over/ Under	FD Enable	Vo Ondrth 300 mV	Io Undrth-R 2.4 n		Vo Ovrth 3.5 V	Io O	vrth-Rvi=6.25 28.0 mA	lohm		
Scale	O	1	1	1	1	1	1	1	7 F	
										Min Min
The un	ders	cale,	and	over	scal	e is a	1			Temp Temp
progra value o					e mi	n an	d ma	iximu	ım	Underscale = 2.4mA

Summary	Find	Resistors	s Y Ca	alibration	Error	^r Calculato	or Reg	1 0, 3, 4, 5		Reg 6 - 9 Reg 10 - 15																																																																		
<tr 0<="" registers="" th=""><th>.3,4,5 D7</th><th>D6</th><th>D5</th><th>D4</th><th>D3</th><th>D2</th><th>D1</th><th>D0</th><th>HEX</th><th></th></tr> <tr><td>Reg 0: Control Register 1</td><td>RST False</td><td>Chksum Err False</td><td>Reserved</td><td>Reserved</td><td>Reserved</td><td>Reserved</td><td>Reserved</td><td>Reserved</td><td></td><td></td></tr> <tr><td>2</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>00</td><td>Write Reg</td></tr> <tr><th>Reg 3: Fault Status</th><th>maxii</th><th>mum (2</th><th>2.4mA,</th><th>28mV)</th><th>nd und) during</th><th>g calib</th><th>ration.</th><th>This</th><th>et to</th><th></th></tr> <tr><th>Fault Status Reg 4: Control</th><th>maxii preve</th><th>mum (2 ents the</th><th>2.4mA, e overs</th><th>28mV) scale a</th><th></th><th>g calib lerscal</th><th>ration.</th><th>This</th><th>et to</th><th>Write XTR</th></tr> <tr><td>Fault Status Reg 4:</td><td>maxii preve</td><td>mum (2 ents the</td><td>2.4mA, e overs</td><td>28mV) scale a</td><td>) during nd und</td><td>g calib lerscal</td><td>ration.</td><td>This s from</td><td>et to 01</td><td>Write XTR Write EEPROM</td></tr> <tr><td>Fault Status Reg 4: Control</td><td>maxii preve affect</td><td>mum (2 ents the ting an 0</td><td>2.4mA, e overs by calib</td><td>28mV) scale a pration</td><td>) during nd und results</td><td>g calib derscal s.</td><td>ration. e limit</td><td>This s from</td><td></td><td>Write</td></tr>	.3,4,5 D7	D6	D5	D4	D3	D2	D1	D0	HEX		Reg 0: Control Register 1	RST False	Chksum Err False	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved			2	0	0	0	0	0	0	0	0	00	Write Reg	Reg 3: Fault Status	maxii	mum (2	2.4mA,	28mV)	nd und) during	g calib	ration.	This	et to		Fault Status Reg 4: Control	maxii preve	mum (2 ents the	2.4mA, e overs	28mV) scale a		g calib lerscal	ration.	This	et to	Write XTR	Fault Status Reg 4:	maxii preve	mum (2 ents the	2.4mA, e overs	28mV) scale a) during nd und	g calib lerscal	ration.	This s from	et to 01	Write XTR Write EEPROM	Fault Status Reg 4: Control	maxii preve affect	mum (2 ents the ting an 0	2.4mA, e overs by calib	28mV) scale a pration) during nd und results	g calib derscal s.	ration. e limit	This s from		Write
.3,4,5 D7	D6	D5	D4	D3	D2	D1	D0	HEX																																																																				
Reg 0: Control Register 1	RST False	Chksum Err False	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved																																																																				
2	0	0	0	0	0	0	0	0	00	Write Reg																																																																		
Reg 3: Fault Status	maxii	mum (2	2.4mA,	28mV)	nd und) during	g calib	ration.	This	et to																																																																			
Fault Status Reg 4: Control	maxii preve	mum (2 ents the	2.4mA, e overs	28mV) scale a		g calib lerscal	ration.	This	et to	Write XTR																																																																		
Fault Status Reg 4:	maxii preve	mum (2 ents the	2.4mA, e overs	28mV) scale a) during nd und	g calib lerscal	ration.	This s from	et to 01	Write XTR Write EEPROM																																																																		
Fault Status Reg 4: Control	maxii preve affect	mum (2 ents the ting an 0	2.4mA, e overs by calib	28mV) scale a pration) during nd und results	g calib derscal s.	ration. e limit	This s from		Write																																																																		

Summary	Find	Resistors	s Č	alibration	Error	Calculate	r Reg	g 0, 3, 4, 5		Reg 6 - 9 Reg 10 - 15																																																																																								
<tr (<="" registers="" th=""><th>.3,4,5 D7</th><th>D6</th><th>D5</th><th>D4</th><th>D3</th><th>D2</th><th>D1</th><th>D0</th><th>HEX</th><th></th></tr> <tr><td>Reg 0: Control Register 1</td><td>RST False</td><td>Chksum Err False</td><td>Reserved</td><td>Reserved</td><td>Reserved</td><td>Reserved</td><td>Reserved</td><td>Reserved</td><td></td><td>Wite Deg 1</td></tr> <tr><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>00</td><td>Write Reg</td></tr> <tr><th>Fault Status</th><th>unde</th><th>rscale</th><th>limits i</th><th>iracy o is not v ired ge</th><th>very go</th><th>od. A</th><th>n</th><th>Single TE</th><th>00</th><th></th></tr> <tr><th>Reg 4: Control Register 2</th><th>Reserved</th><th>Reserved</th><th>Reserved</th><th>Reserved</th><th>Reserved</th><th>Reserved</th><th>Reserved</th><th>Read</th><th></th><th></th></tr> <tr><th></th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>1</th><th>01</th><th>EEPROM</th></tr> <tr><td></td><td>FD Enable</td><td>Vo Ondrth 300 mV</td><td>Io Undrth-Ry 2.4 m</td><td></td><td>Vo Ovrth 3.5 V</td><td>Io O</td><td>//th-Rvi≈6.25k 28.0 mA</td><td>uohm</td><td></td><td>Calibrate</td></tr> <tr><th>Reg 5: Over/ Under</th><th></th><th></th><th>1</th><th>1</th><th>1</th><th>1</th><th>1</th><th>1</th><th>$7\mathbf{F}$</th><th>Over/Under</th></tr> <tr><td>Over/</td><td>O</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>	.3,4,5 D7	D6	D5	D4	D3	D2	D1	D0	HEX		Reg 0: Control Register 1	RST False	Chksum Err False	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved		Wite Deg 1		0	0	0	0	0	0	0	0	00	Write Reg	Fault Status	unde	rscale	limits i	iracy o is not v ired ge	very go	od. A	n	Single TE	00		Reg 4: Control Register 2	Reserved	Read				0	0	0	0	0	0	0	1	01	EEPROM		FD Enable	Vo Ondrth 300 mV	Io Undrth-Ry 2.4 m		Vo Ovrth 3.5 V	Io O	//th-Rvi≈6.25k 28.0 mA	uohm		Calibrate	Reg 5: Over/ Under			1	1	1	1	1	1	$7\mathbf{F}$	Over/Under	Over/	O	1														
.3,4,5 D7	D6	D5	D4	D3	D2	D1	D0	HEX																																																																																										
Reg 0: Control Register 1	RST False	Chksum Err False	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved		Wite Deg 1																																																																																								
	0	0	0	0	0	0	0	0	00	Write Reg																																																																																								
Fault Status	unde	rscale	limits i	iracy o is not v ired ge	very go	od. A	n	Single TE	00																																																																																									
Reg 4: Control Register 2	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Read																																																																																										
	0	0	0	0	0	0	0	1	01	EEPROM																																																																																								
	FD Enable	Vo Ondrth 300 mV	Io Undrth-Ry 2.4 m		Vo Ovrth 3.5 V	Io O	//th-Rvi≈6.25k 28.0 mA	uohm		Calibrate																																																																																								
Reg 5: Over/ Under			1	1	1	1	1	1	$7\mathbf{F}$	Over/Under																																																																																								
Over/	O	1																																																																																																

Reg 0, 3, 4, 5

D0

Reserved

0

0

Single EE Read

 \mathbf{I}

1

HEX

00

00

01

07

32

D1

Reserved

0

0

Reserved

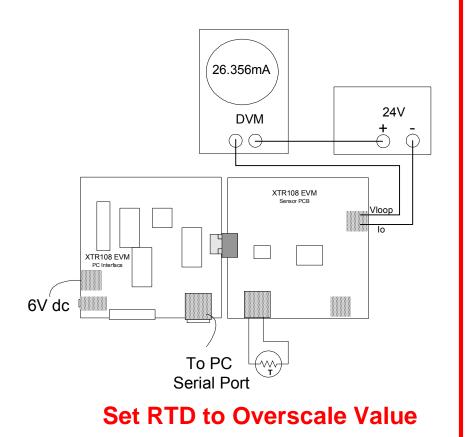
0

Io Ovrth-Rvi=6.25kohm

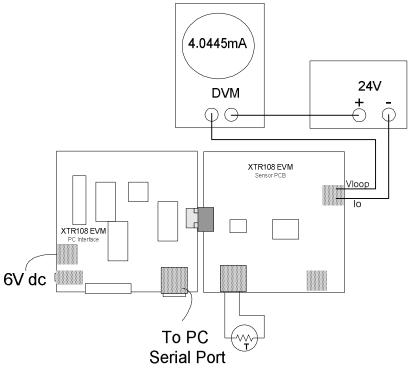
1

24.0 mA

Error Calculator


Cal Over / Under Scale		Ē	ile EEPROM Se			Application			
Mode Current		Ē	Summary	Find	Resistors	s Či	alibration	Error	Calculat
Target Over Scale Limit 24 Target Under Scale Limit 3.8 Compute Over / Under Limit Write XTR Write EEPROM		Press and " updat In the under error	the overso "Compute Write EEPI ted accord e next step, rscale outp in these va verscale ar	e Over ROM". ing to y you w but. In alues.	/ Unde Note t your se ill reac genera The fin	r Limits that reg election I the ov al, there al step	s", "Wr gister 5 n. verscal e is a s o will be	ite XTF has e and ignifica	R", ant
- Compute Adjusted Limits	-		Reg 4: Control	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
			Register 2						1
Measured Linder Seale Limit	-			0	0	0	0	0	0
Measured Under Scale Limit			Reg 5: Over/ Under	0 FD Enable		O Io Ondrth-Ry 3.8 m	vi=6.25kohm	0 Vo Ovrth 3.0 V	0 Io (
			Over/	FD	Vo Ondrth	Io Undrth-Ry	vi=6.25kohm	Vo Ovrth	
Compute Adjusted Limit			Over/ Under	FD Enable	Vo Undrth 475mV	Io Undrth-Ru 3.8 m	/i=6.25kohm ∩A	Vo Ovrth 3.0 V	IoC

SBOA106C

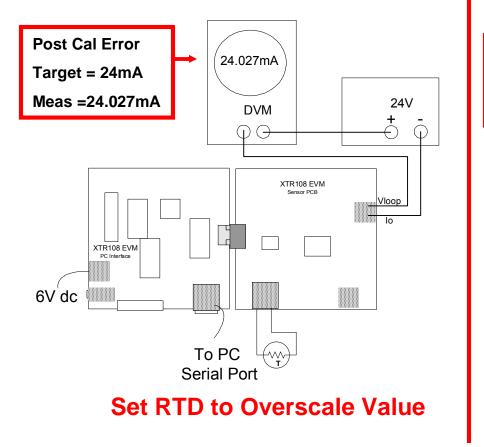

May 2008

Read Overscale

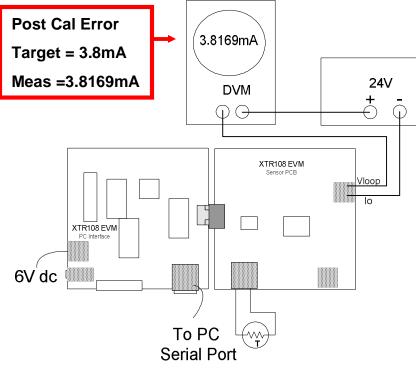
Read Underscale

Set RTD to Underscale Value

			🖗 Texas Instrun	nents XTR	108-EVM A	Application	1					
🐂 Cal Over / Under Scale			<u>Eile E</u> EPROM <u>S</u> e	tup <u>V</u> iew	<u>H</u> elp							
- Initial Settings				×				× -				× -
Mode Current	ſ		Summary	d resul		press	-	oute	r Calculat		g 0, 3, 4, 5	
Target Over Scale Limit 24 Target Under Scale Limit 3.8	5 to cori "Write E	d Limit". T ect for the EPROM" to	errors o copy	. Pres	s "Writ	e XTR'	' and	er 2	D1 Reserved	D0 Reserved	HEX	
Compute Over / Under Limit			I EEPROM.		a had «	sianific	ant eri	ors		0	0	00
Write XTR		Note that the initial setting had significant errors Target = 24mA and measured result =26.356mA.										
WIRE LET TIOM				0	0	0	0	0	0	0	0	00
Compute Adjusted Limits			Reg 4: Control Register 2	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Single EE Read	
Measured Over Scale Limit 26.356			Tregister 2	0	0	0	0	0	0	0	1	01
Measured Under Scale Limit 4.0445			Reg 5: Over/ Under	FD Enable	Vo Ondrth 450 mV	Io Ondrth-Ru 3.6 m		Vo Ovrth 2.6875 V	IoC	Io Ovrth-Rvi=6.25kohm 21.5mA		
Compute Adjusted Limit Write XTR			Scale	O	0	0	1	0	0	1	0	12
Write EEPROM												


XTR108 Quick Start System Reference Guide

SBOA106C

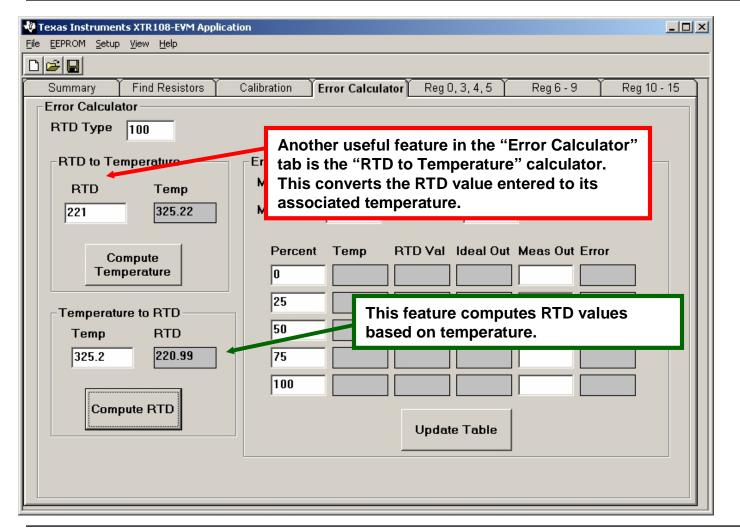

May 2008

Read Corrected Overscale

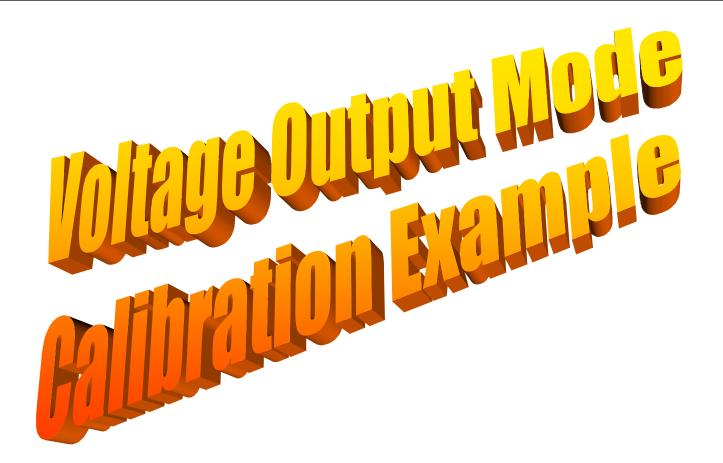

Read Corrected Underscale

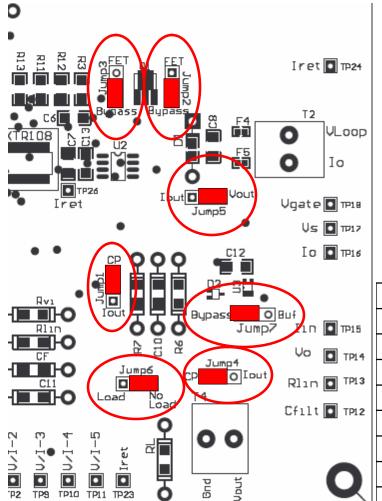
Set RTD to Underscale Value

Example Calibration Done: Post Calibration Error is less then 0.1%


Example Calibration Done: Post Calibration Error is less then 0.1%

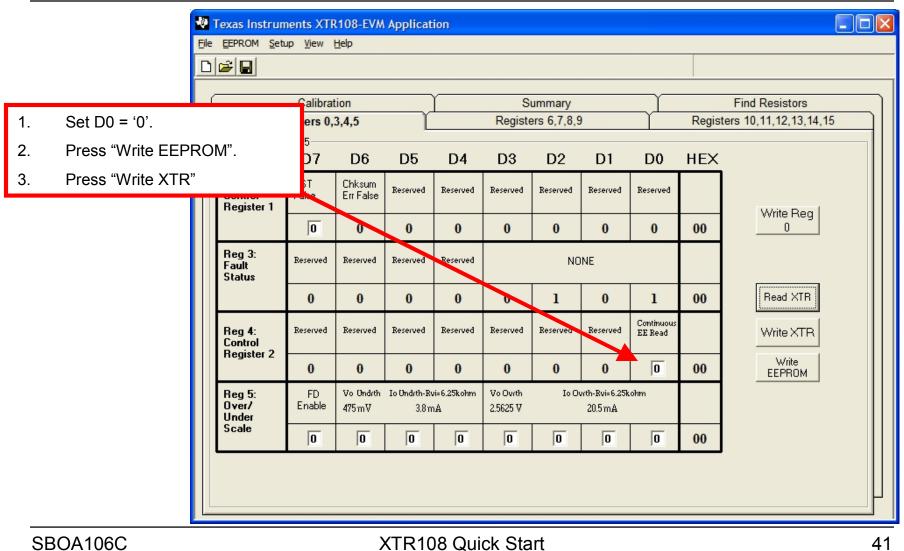
💐 Texas Instruments XTR108-EVM Applicat	ion	
<u> Eile E</u> EPROM <u>S</u> etup <u>V</u> iew <u>H</u> elp		
Summary Find Resistors	Calibration Frror Calculator Reg 0, 3, 4, 5 Reg 6 - 9	Reg 10 - 15
RTD Type 100	Error Calculator	1. Use the "RTD calculator" tab to compute the error.
RTD Temp	Min Temp -200 Min Out 4	
	MaxTemp 850 Max Out 20	2. Enter the temperature range and the output range.
Compute Temperature	Percent Temp RTD Val Ideal Out Meas Out End 0 -200 18.52 4 4.002 0	nror 01
Temperature to RTD		3. Press Update table to fill in the Temp, RTD Val, and Ideal
Temp RTD	50 325 220.92 12 12.004 0.	⁰² Out.
		07
Compute RTD	Update Table	4. Enter the measured output signal and press update table. This will compute the error.


Example Calibration Done: Post Calibration Error is less then 0.1%


SBOA106C May 2008 XTR108 Quick Start System Reference Guide

Voltage Output Mode Set the Jumpers

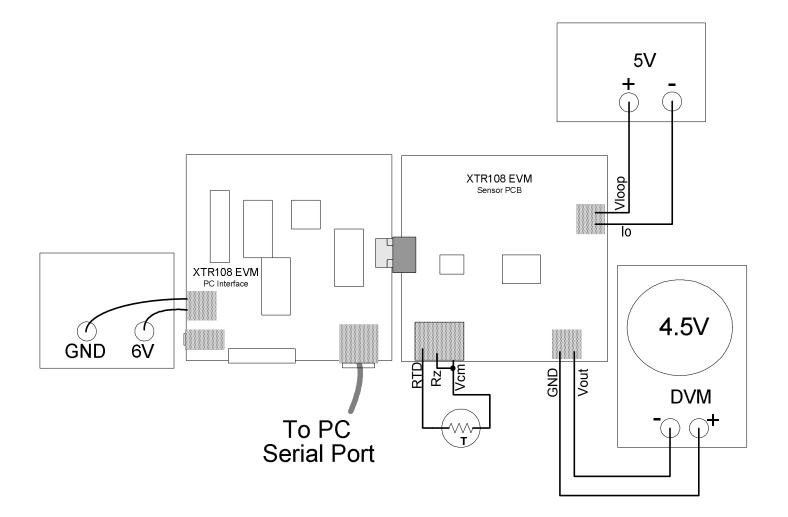
The table below illustrates a typical Voltage output mode jumper configuration. Note that Jump2 and Jump3 are configured so that the sub-regulator is not being used. In this mode, the supply must be adjusted to 5V. Keep in mind that the diode D1 will drop Vloop by approximately 0.7V. It is recommended that a small negative voltage is connected to the input of the XTR108 V/I amplifier when the XTR108 is used in voltage output mode. The jumper configuration shown generates this voltage (-50mV) by connecting a small discrete charge pump to the clock signal. The XTR108 must be put in "continuous EE read mode" (see register 4, D0).


XTR108 Sensor Interface Board – Factory Jumper Settings		
Jumper	Position	
JUMP1	Vout	Use current output mode
JUMP2	Bypass	Bypass FET Sub-regulator
JUMP3	Bypass	Bypass FET Sub-regulator
JUMP4	CP	Use current output mode
JUMP5	Vout	Use current output mode
JUMP6	No Load	Do not connect load to Voltage Output
JUMP7	Bypass	Bypass Voltage Mode Charge Pump

SBOA106C May 2008 XTR108 Quick Start System Reference Guide

Voltage Output Mode:

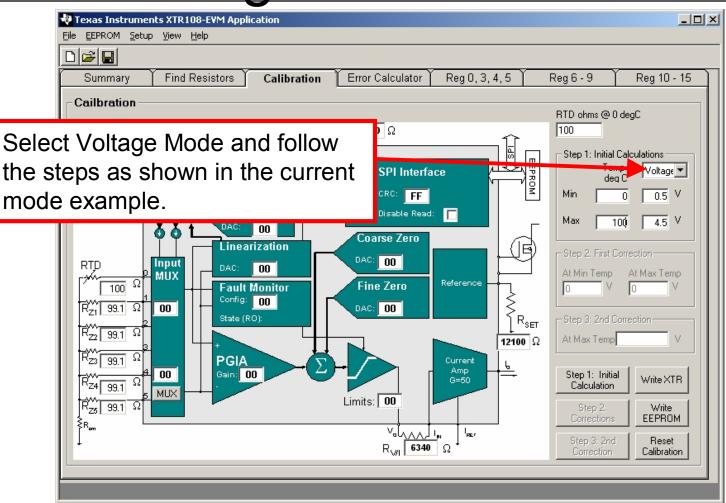
Continuous Read Mode to Generate Charge Pump Voltage


May 2008

System Reference Guide

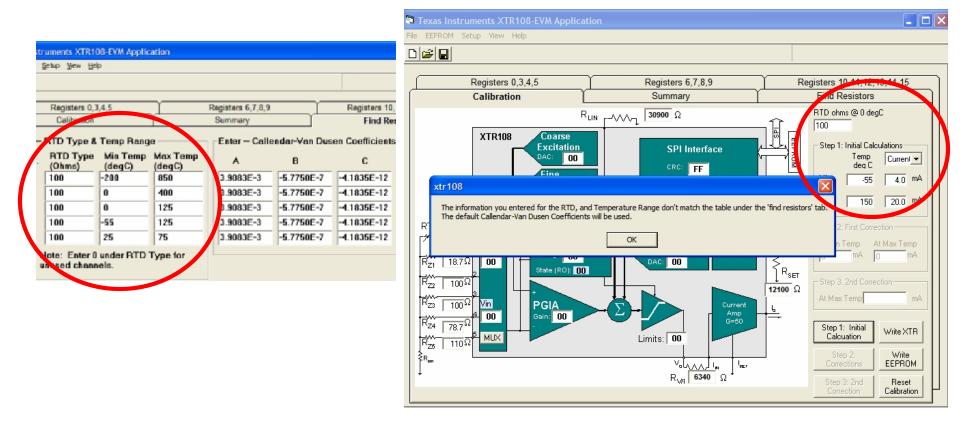
Voltage Mode

Connect the power

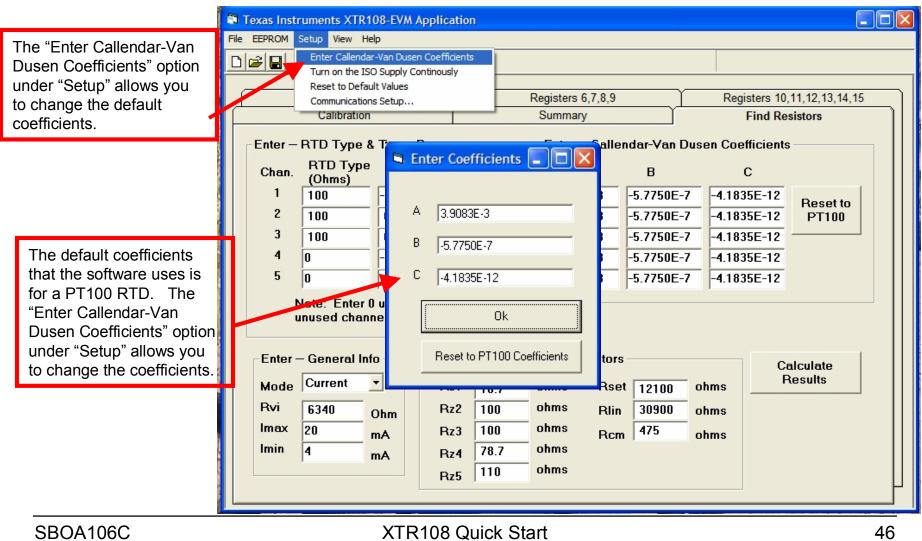


SBOA106C May 2008 XTR108 Quick Start System Reference Guide 42

Select Voltage Mode

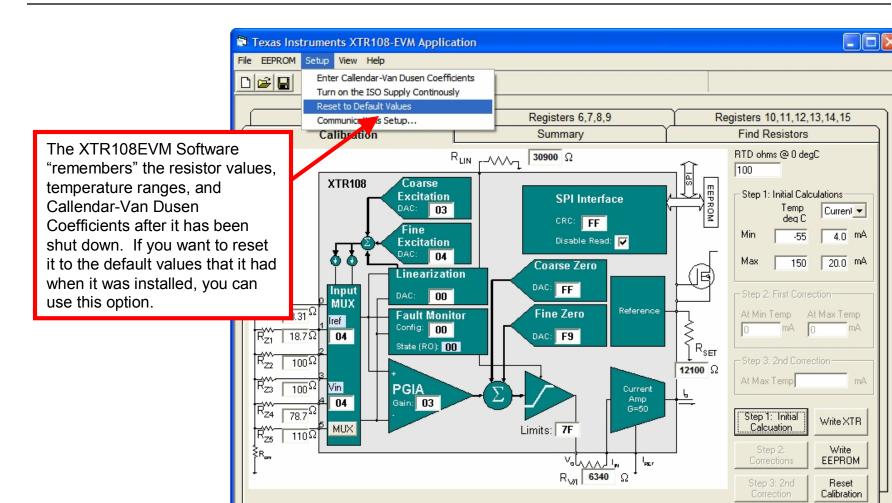


Software Note: When Ranges Don't Match the table, Use the Default Coefficients



In some cases you may wish to use the program to calibrate an RTD without using the "Find Resistors" tab. In this case, the program will display the error message shown below. The default Callendar-Van Dusen Coefficients can be entered through the "Setup" menu.

Calibration Note: When Ranges Don't Match the table, Use the Default Coefficients

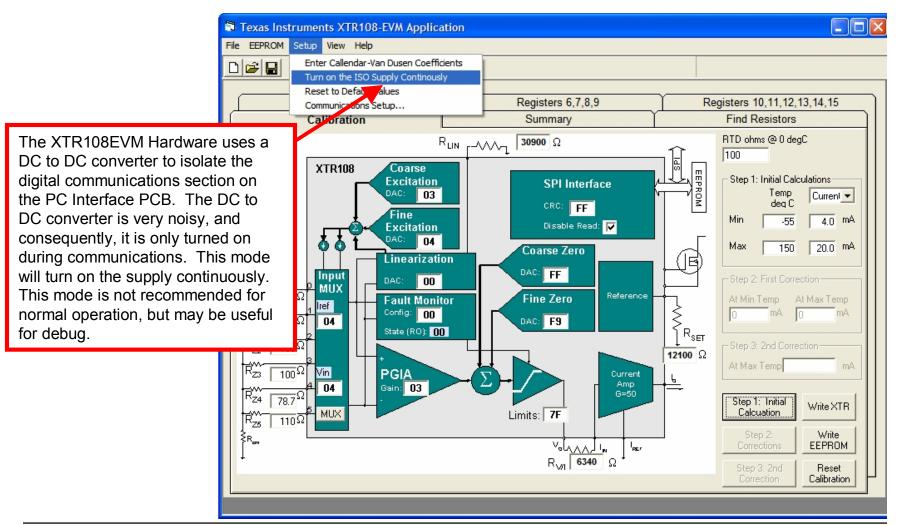


May 2008

System Reference Guide

Software Note:

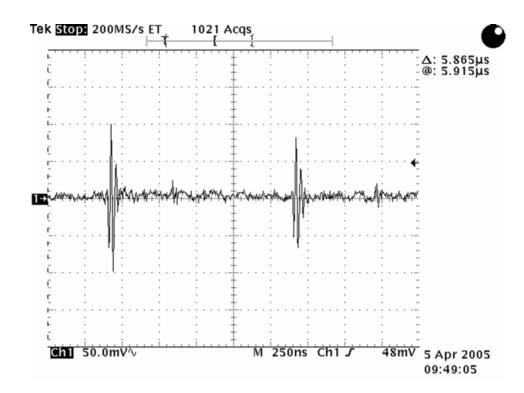
Reset to Default



SBOA106C May 2008 XTR108 Quick Start System Reference Guide

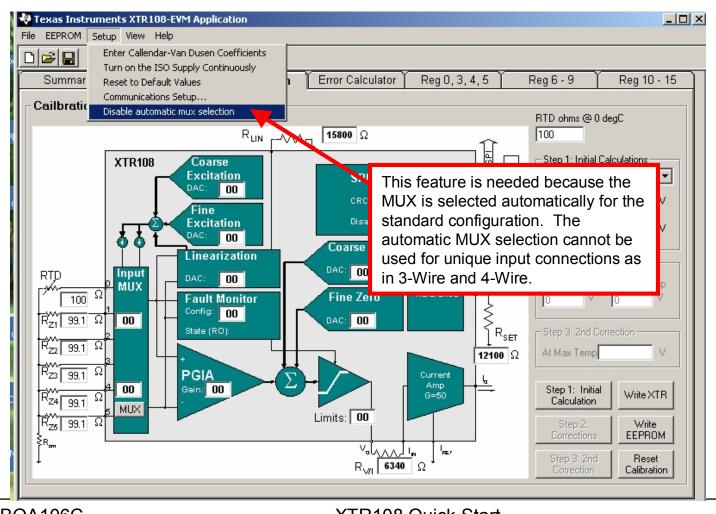
Software Note:

DC to DC Converter.



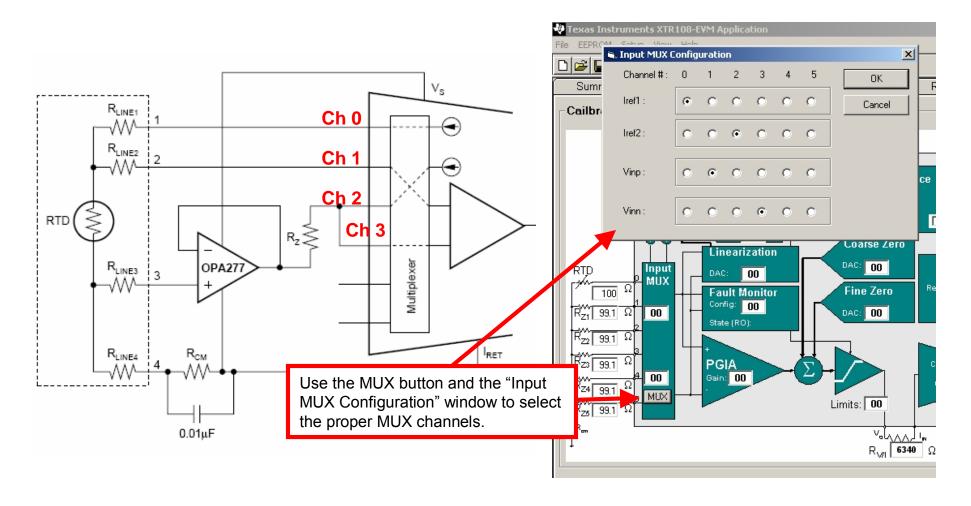
SBOA106C May 2008

XTR108 Quick Start System Reference Guide V TEXAS

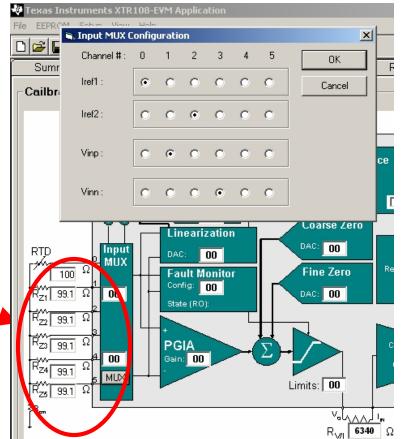


This scope shot illustrates the noise at the output of the DC/DC Converter (DCR01505P on the PC Interface Board) when turned on.

Unique MUX Settup: 3-Wire and 4-Wire



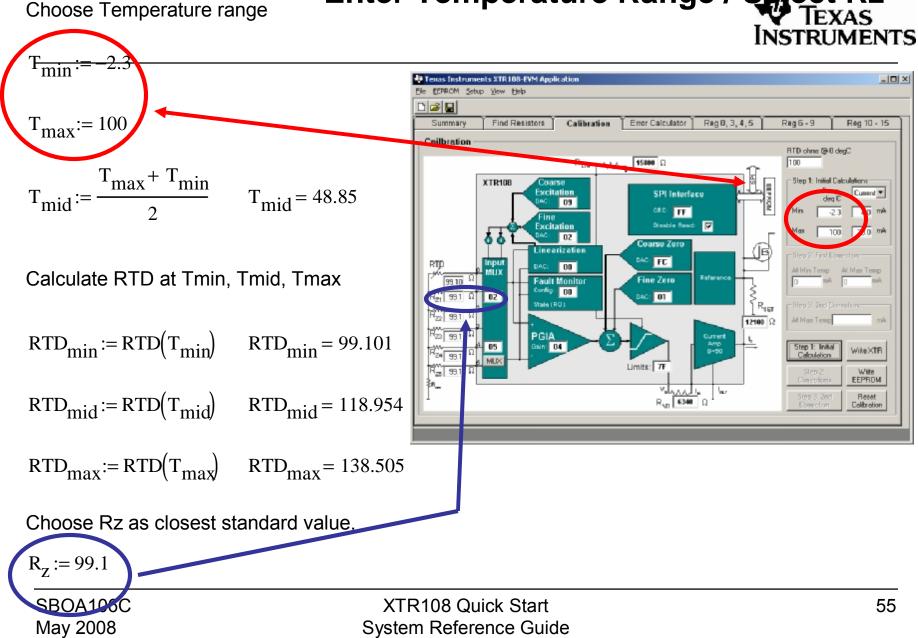
SBOA106C May 2008 XTR108 Quick Start System Reference Guide


4 – Wire Manually Select Channels

XTR108 Quick Start System Reference Guide

Rz Selection with Automatic MUX Selection Off

When automatic MUX selection is off, you must enter the same value for all values of Rz. This forces Rz to be the correct value regardless of the MUX channel used.

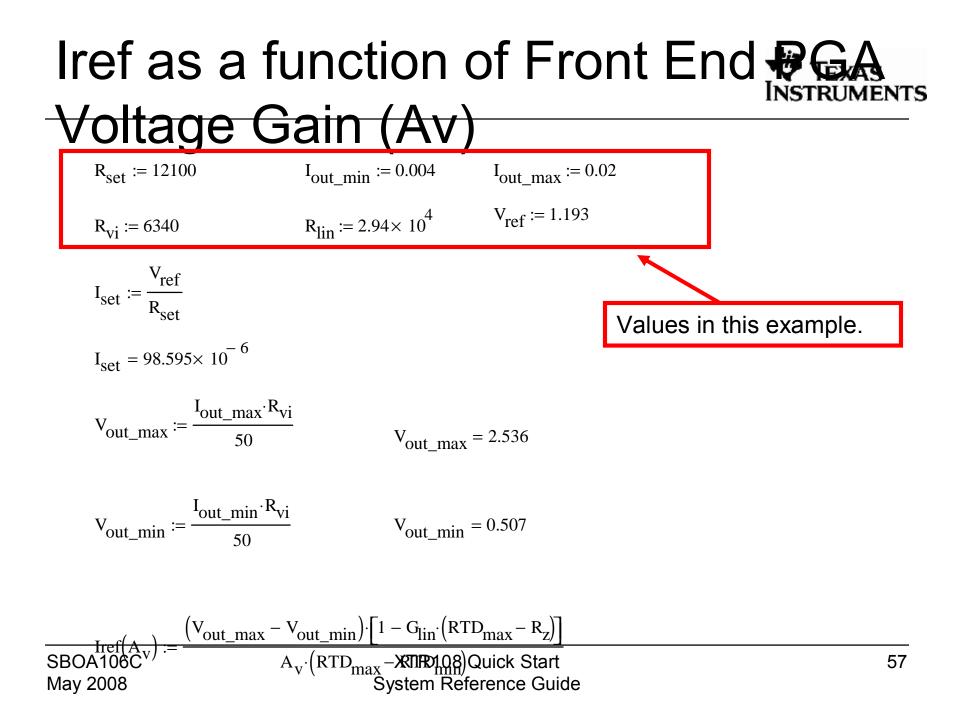


RTD resistance as a function of TEXAS Temperature in deg C

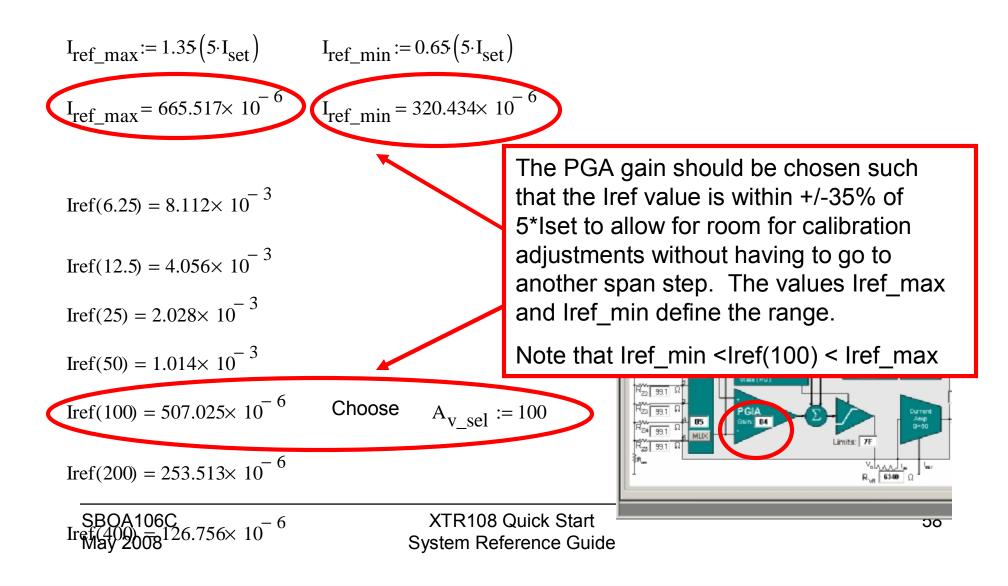
 $A_{0} := 3.908310^{-3} \qquad R_{0} := 100$ $B_{0} := -5.77510^{-7}$ $C_{0} := -4.18310^{-12}$ $RTD(T) := \begin{bmatrix} R_{0} \cdot \left[1 + A_{0} \cdot T + B_{0} \cdot T^{2} + C_{0} \cdot (T - 100) \cdot T^{3} \right] \text{ if } T < 0$ $R_{0} \cdot \left(1 + A_{0} \cdot T + B_{0} \cdot T^{2} \right) \text{ otherwise}$

Enter Temperature Range / Select Rz

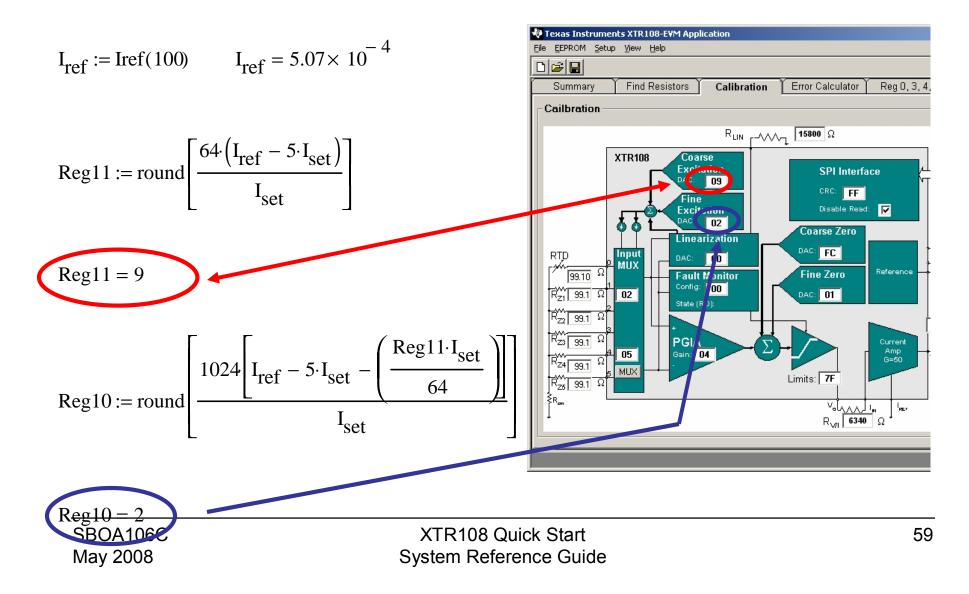
Compute Nonlinearity

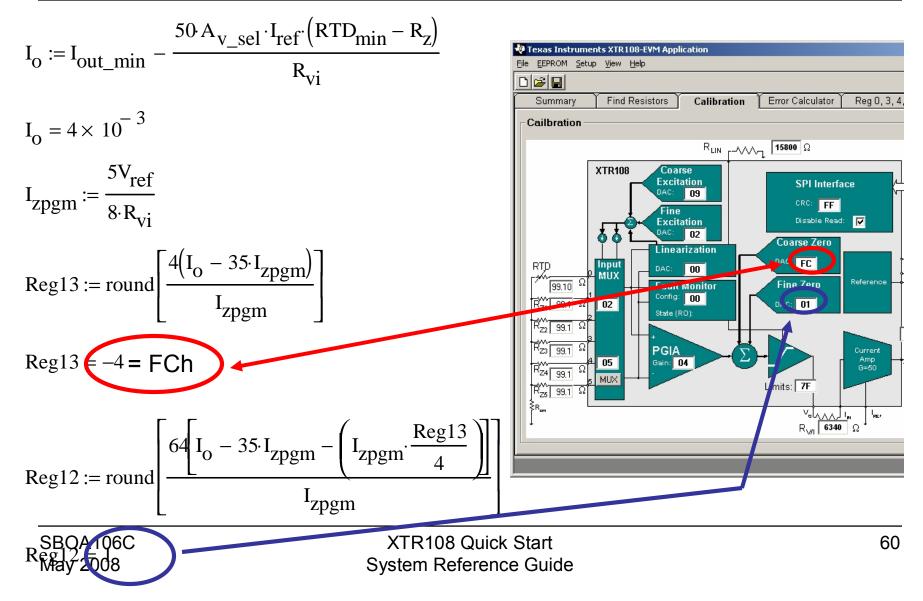


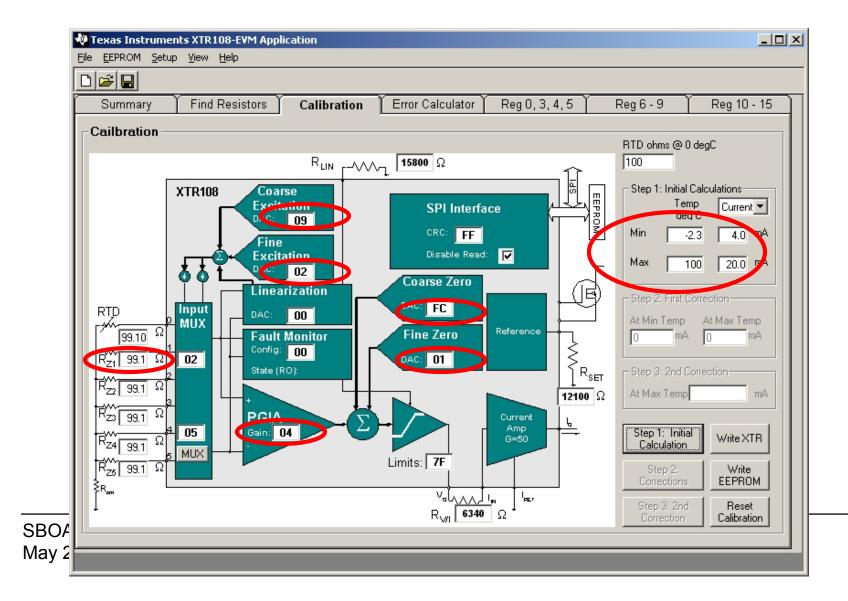
56

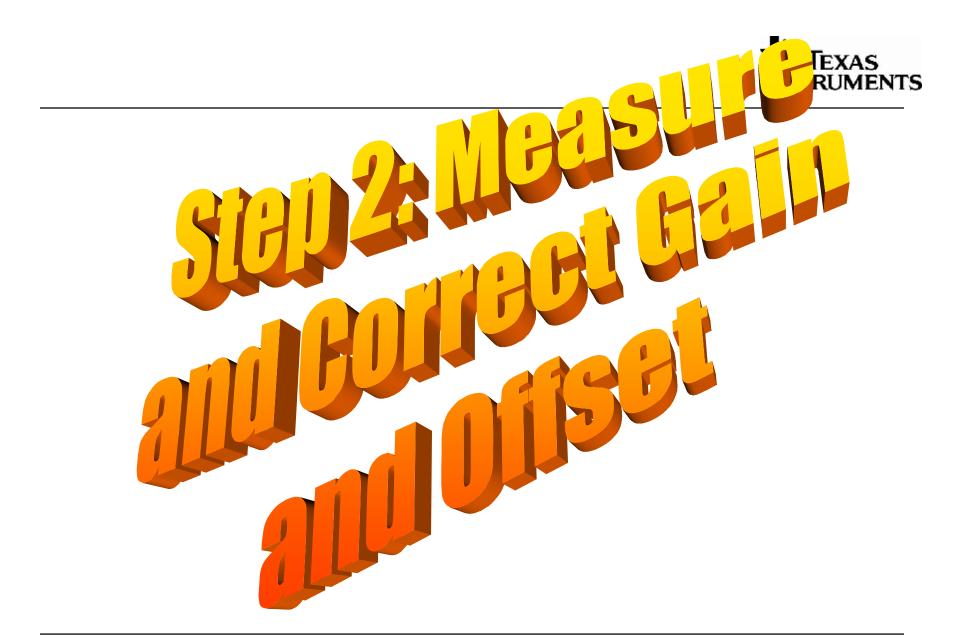

$$B_{v} := \frac{RTD_{mid} - \frac{RTD_{max} + RTD_{min}}{2}}{RTD_{max} - RTD_{min}}$$

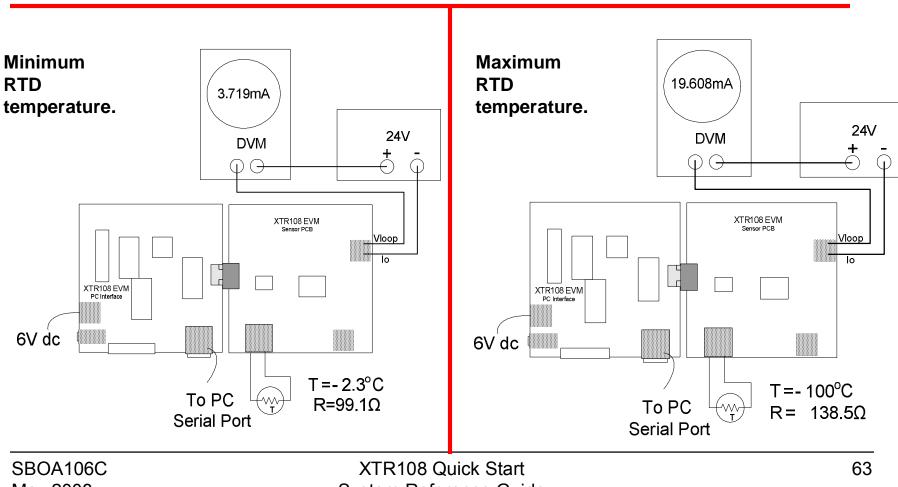
$$B_{V} = 3.834 \times 10^{-3}$$


$$G_{\text{lin}} := \frac{2 \cdot B_{\text{v}}}{\left(0.5 + B_{\text{v}}\right) \cdot \text{RTD}_{\text{max}} - \left(0.5 - B_{\text{v}}\right) \text{RTD}_{\text{min}} - 2 \cdot B_{\text{v}} \cdot R_{\text{z}}}$$


Find Av that gives good Iref Rangents

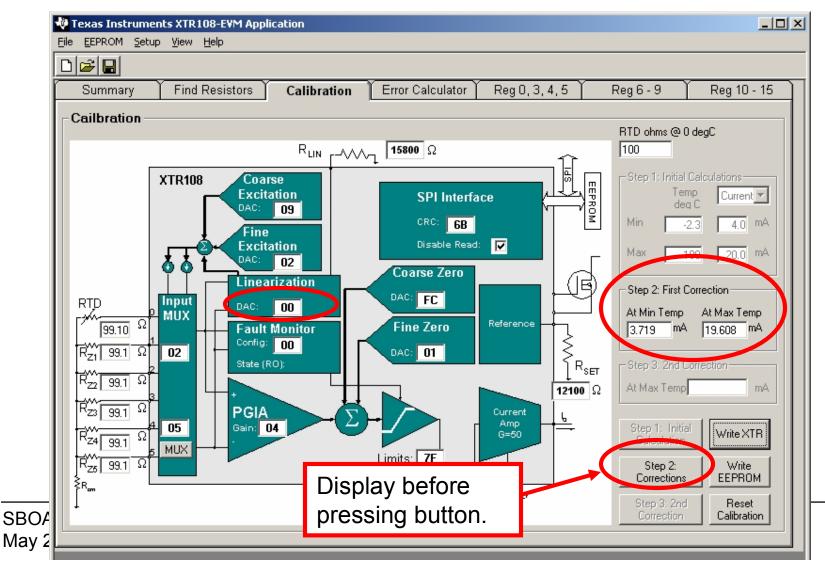

Find initial values for Reg11, and Reg


Compute Registers Reg12 and Reg13 INSTRUMENTS


Done With Step 1: See Results

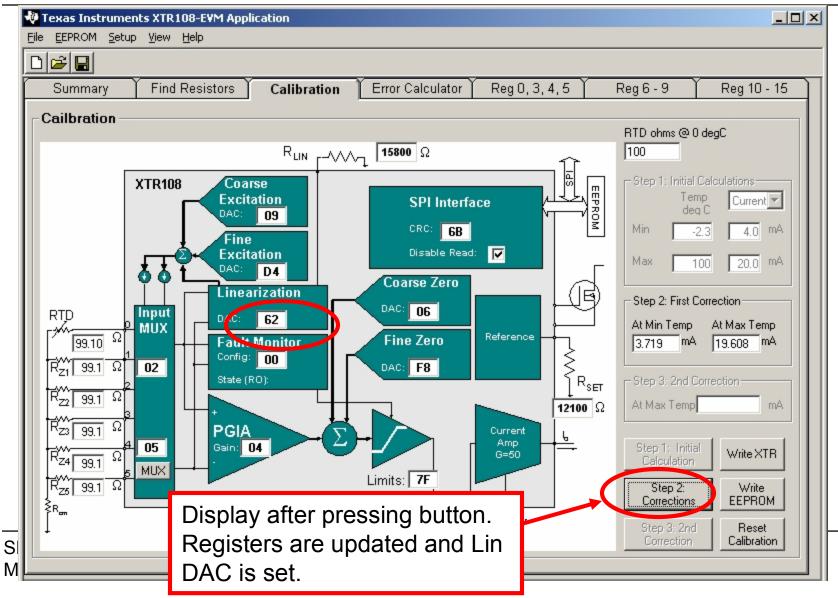
61

Step 2: Measure Output at Minimum and Maximum



TEXAS INSTRUMENTS

May 2008


System Reference Guide

Step 2: Uses Registers Calculated in Stepsal Instruments with Linearity Dac Turned off

64

This is the settings after step 2 calculations

65

Step 2: Compute IA_{refAdj}

Measure lout min and max

 $I_{out_min_meas} := 3.71910^{-3}$

 $I_{out_max_meas} := 19.60810^{-3}$

$$I_{ref_reg} := I_{set} \cdot \left(5 + \frac{Reg11}{64} + \frac{Reg10}{1024} \right)$$

$$I_{ref_reg} = 5.07 \times 10^{-4}$$
$$IA_{RefAdj} := \frac{(I_{out_max_meas} - I_{out_min_meas}) \cdot R_{vi}}{50 A_{v_sel} \cdot (RTD_{max} - RTD_{min})}$$

$$IA_{RefAdj} = 5.113 \times 10^{-4}$$

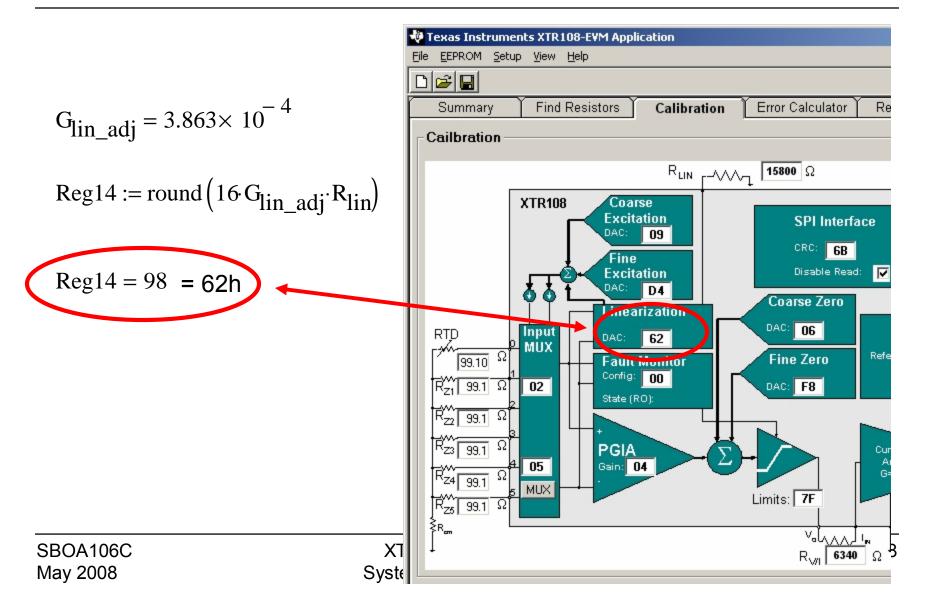
SBOA106C May 2008

$$dRz := \frac{\left(I_{o} - I_{out_min_meas}\right) \cdot R_{vi}}{50 \cdot A_{v_sel} \cdot IA_{RefAdj}}$$

dRz = 0.696

$$R_{z_{adj}} := RTD_{min} + dRz$$

 $R_{z_{adj}} = 99.797$


 $G_{\text{lin}_adj} := \frac{2 \cdot B_{\text{v}}}{\left(0.5 + B_{\text{v}}\right) \cdot \text{RTD}_{\text{max}} - \left(0.5 - B_{\text{v}}\right) \text{RTD}_{\text{min}} - 2 \cdot B_{\text{v}} \cdot R_{\text{z}_adj}}$

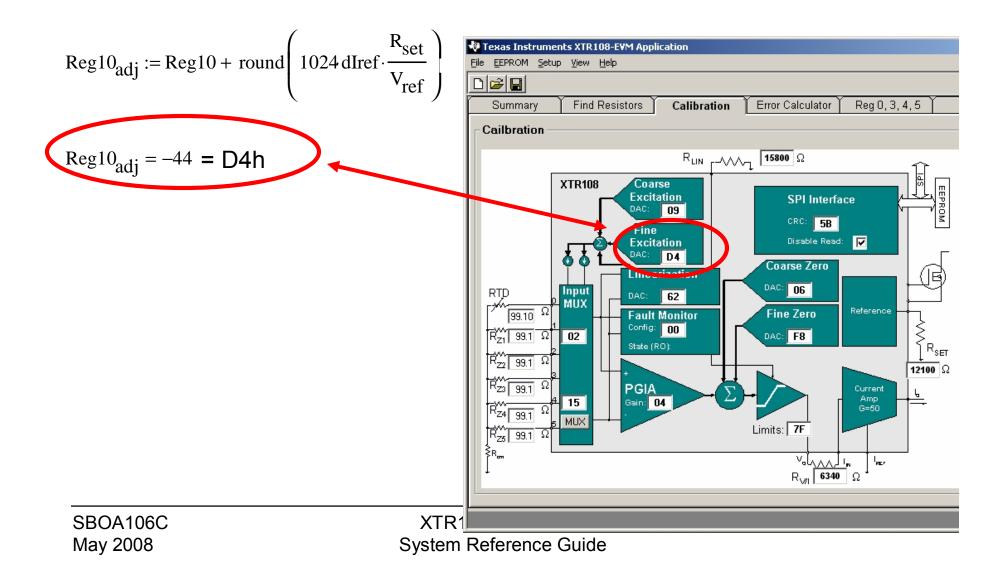
 $G_{\text{lin}_\text{adj}} = 3.864 \times 10^{-4}$

$$\operatorname{Reg14} := \operatorname{round} \left(16 \operatorname{G}_{\operatorname{lin}_{\operatorname{adj}}} \cdot \operatorname{R}_{\operatorname{lin}} \right)$$

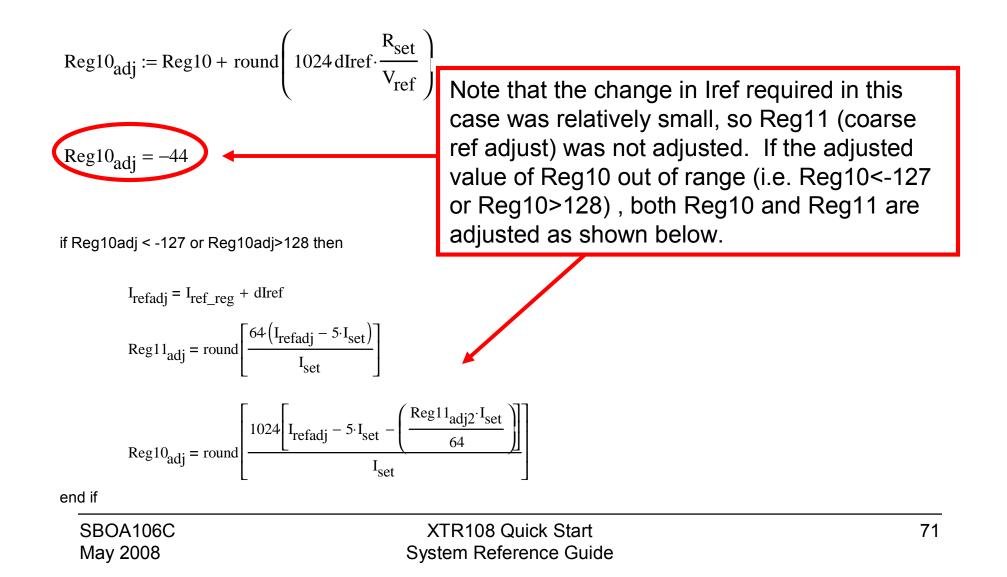
SBOA106C May 2008

Step 2: Compute I_{BrefAdj} and differents

$$IB_{RefAdj} := \frac{\left(I_{out_max} - I_{out_min}\right) \cdot \left[1 - G_{lin_adj} \cdot \left(RTD_{max} - R_{z_adj}\right)\right] \cdot R_{vi}}{50 \cdot A_{v_sel} \cdot \left(RTD_{max} - RTD_{min}\right)}$$

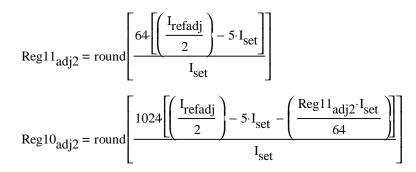

$$IB_{RefAdj} = 5.072 \times 10^{-4}$$

dIref :=
$$(I_{ref_reg} - IA_{RefAdj}) + (I_{ref_reg} - IB_{RefAdj})$$

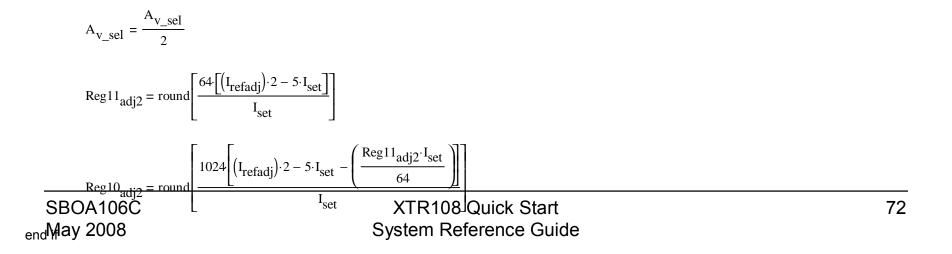

dIref =
$$-4.387 \times 10^{-6}$$

SBOA106C May 2008

Step 2: New Value for Reg


Step 2: New Value for Reg10, Red STRUMENTS

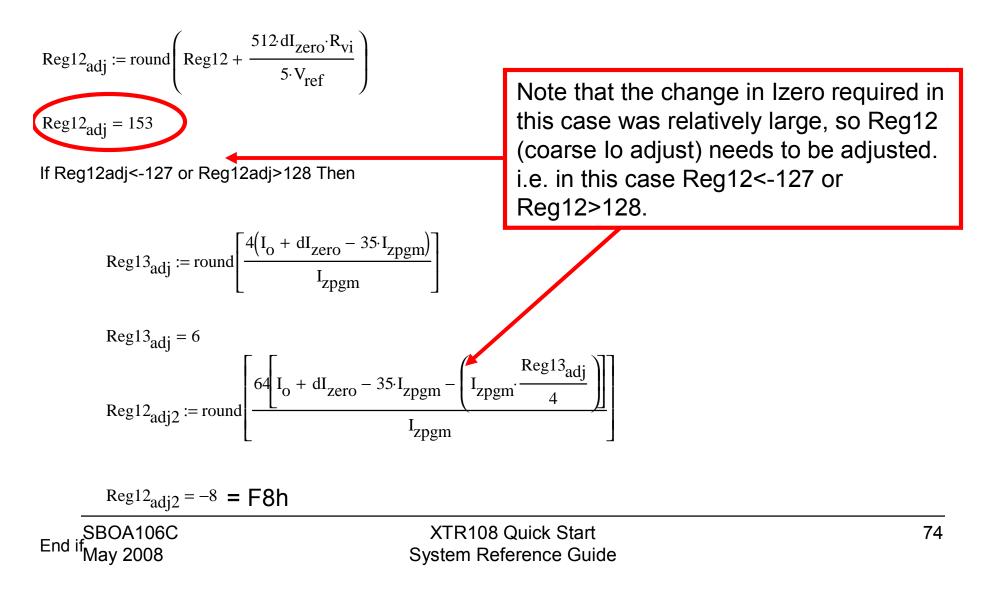
Step 2: If the R10, R11 adjustment doesn't the R10, R11 adjustment doesn't the R10, R11 adjust Gain

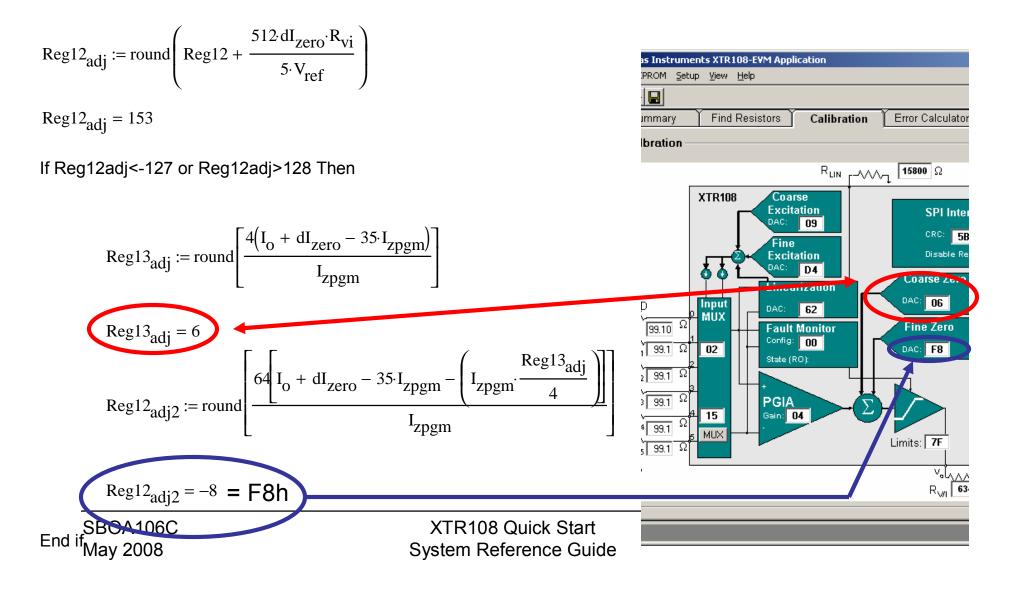

if Reg10adj>128 then

 $A_{v_sel} = (A_{v_sel}) \cdot 2$

end if

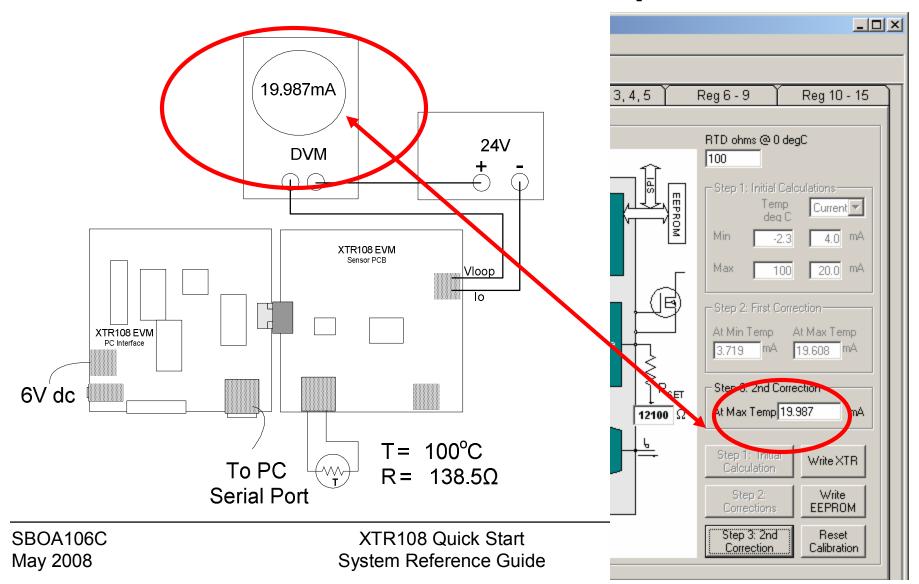
if Reg10adj<128 then


Step 2: Compute dl_{zero}


$$dI_{zero} := I_{out_min} - I_o - \frac{50 \cdot A_{v_sel} \cdot IB_{RefAdj} \cdot (RTD_{min} - R_{z_adj})}{R_{vi}}$$

 $dI_{zero} = 2.787 \times 10^{-4}$

Step 2: Compute Reg12, Regiments



Step 2: Compute Reg12, Regiments

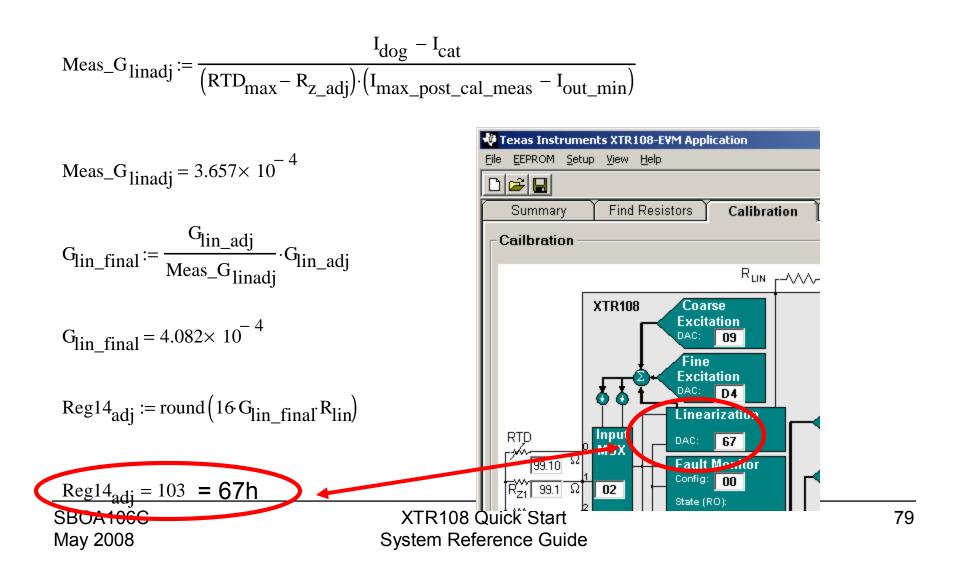
Measure Full Scale Output

Step 3: Measure lout Full Scale and <u>INSTRUMENTS</u> <u>compute factors used in Lin-Dac correction</u>

part 3 calibration

 $I_{max_post_cal_meas} := 0.019987$

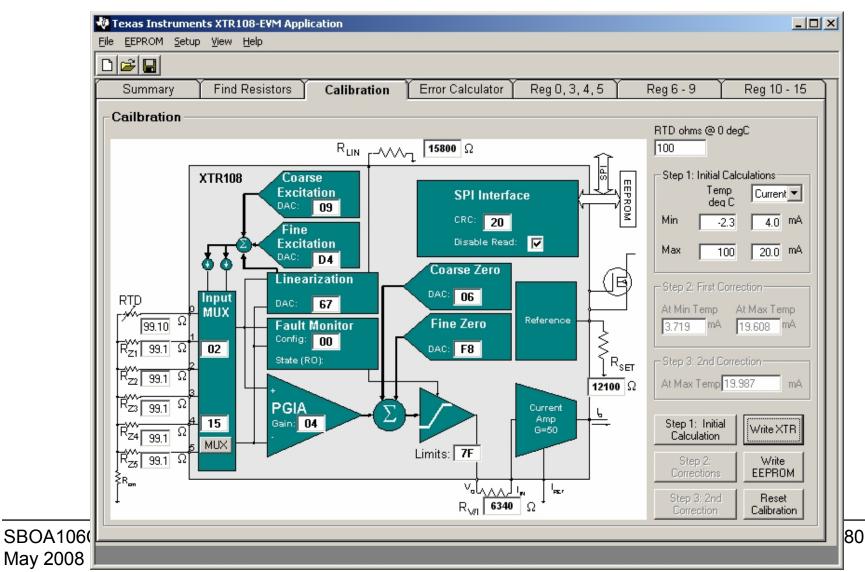
$$I_{cat} := \frac{IB_{RefAdj} \cdot A_{v_sel} \cdot 50 \cdot (RTD_{max} - RTD_{min})}{R_{vi}}$$


 $I_{cat} = 15.761 \times 10^{-3}$

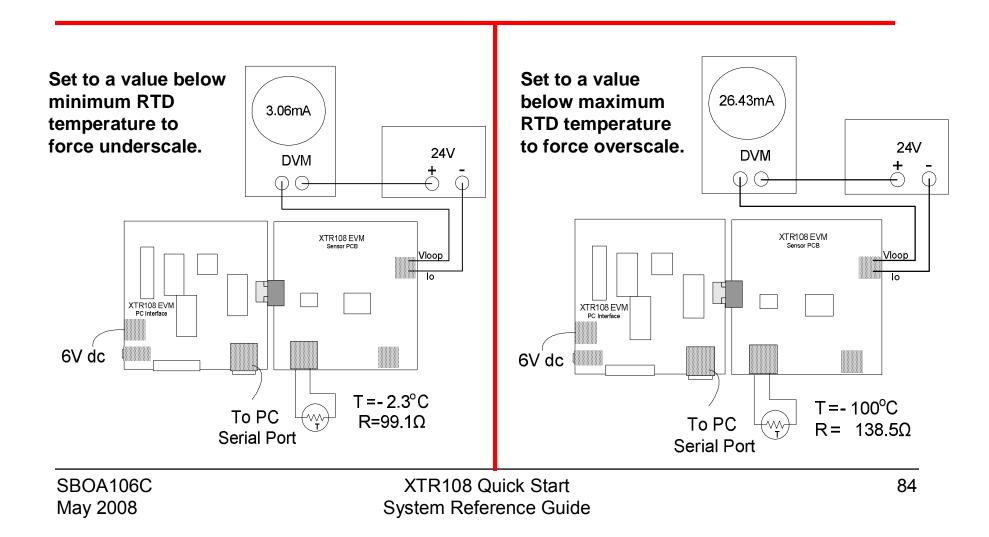
 $I_{dog} := I_{max_post_cal_meas} - I_{out_min}$

$$I_{dog} = 15.987 \times 10^{-3}$$

SBOA106C
May 2008


Step 3: Calculate Reg14

Step 3: Final Result

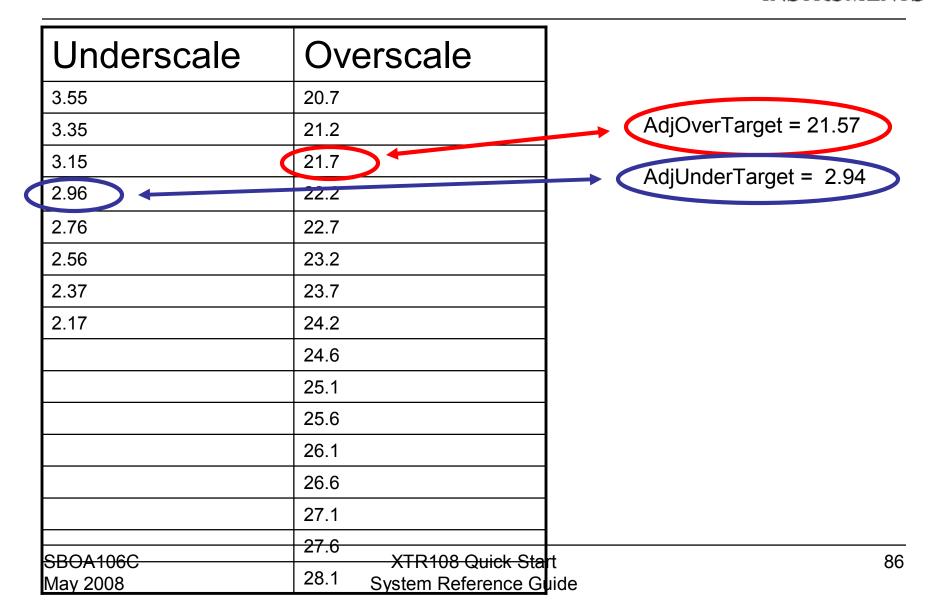

Choose Overscale and Underscale Target

🐂 Cal Over / Under Scale	
Initial Settings	
Mode Current	
Target Over Scale Limit 24	
Target Under Scale Limit 3	
Compute Over / Under Limit	
Write XTR	
Write EEPROM	
Compute Adjusted Limits	
Measured Over Scale Limit	
Measured Under Scale Limit	
Compute Adjusted Limit	
Write XTR	
Write EEPROM	

Choose Overscale and Underscale Tangartas

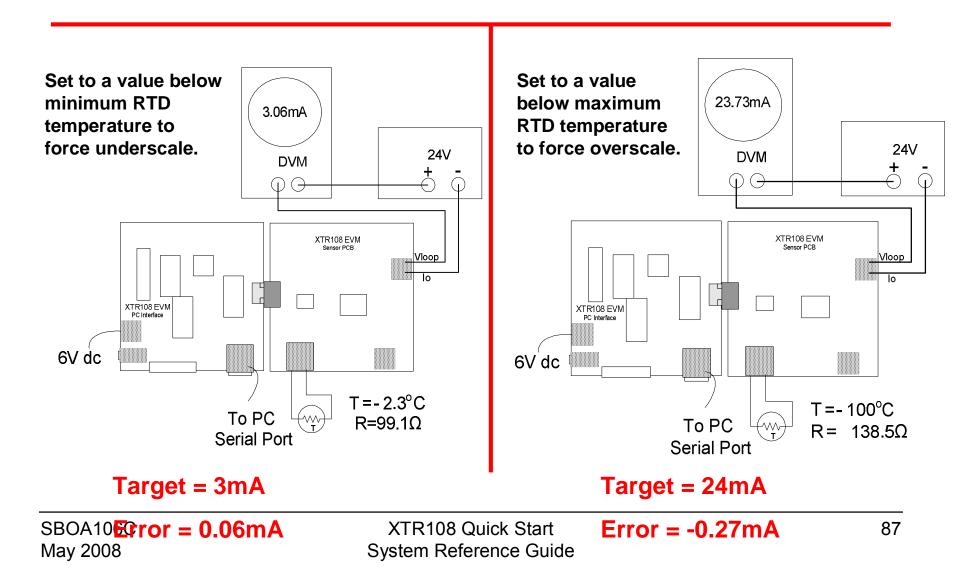
Underscale	Overscale	🐂 Cal Over / Under Scale
3.55	20.7	Initial Settings
3.35	21.2	Mode Current
3.15	21.7	Target Over Scale Limit
2.96	22.2	Target Us for Coole Like 3
2.76	22.7	Compute Over / Under Limit
2.56	23.2	Write XTR
2.37	23.7	Write EEPROM
2.17	24.2	
	24.6	Compute Adjusted Limits
	25.1	Measured Over Scale Limit
	25.6	Measured Under Scale Limit
	26.1	Compute Adjusted Limit
	26.6	Write XTR
	27.1	Write EEPROM
	27.6	
SBOA106C	XTR108 Quick S	Sta <mark>r</mark> t 83
May 2008	28.1 System Reference	Guide

Measure Overscale / Underscale



Compute the Adjusted Target RUMENTS

```
Overscale_Targ = 24
Overscale_Meas = 26.43
AdjOverTarget = Overscale_Targ - (Overscale_Meas - Overscale_Targ )
AdjOverTarget = 21.57
```


Underscale_Targ = 3 Underscale_Meas = 3.06 AdjUnderTarget = Underscale_Targ - (Underscale_Meas - Underscale_Targ) AdjUnderTarget = 2.94

Choose Overscale and Underscale Targetas

Check Error

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Clocks and Timers	www.ti.com/clocks	Digital Control	www.ti.com/digitalcontrol
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated