Reference Design using the HC5503PRC SLIC and the Texas Instruments TP3057A Combined PCM CODEC and Filter

Authors: Don LaFontaine, Chris Ludeman

Features

The network requirements of many countries require the analog subscriber line circuit (SLIC) to terminate the subscriber line with an impedance for voiceband frequencies which is complex, rather than resistive (e.g. 600 2). This requires that the physical resistance that is situated between the SLIC and the subscriber line, comprised of protection and/or sensing resistors, and the output resistance of the SLIC itself, be adapted to present an impedance to the subscriber line that varies with frequency. This is accomplished using feedback around the SLIC.

The purpose of this application note is to show a means of accomplishing this task for the HC5503PRC and Texas Instruments TP3057A Combo.

Discussed in this application note is the following:

- 2-wire 600Ω impedance matching.
- 2-wire complex impedance matching.
- Receive gain (4-wire to 2-wire) and transmit gain (2-wire to 4 -wire) calculations.
- Transhybrid balance calculations.
- Reference design for 600Ω 2-wire load.
- Reference design for China complex 2-wire load.

Impedance Matching

Impedance matching of the HC5503PRC to the subscriber load is important for optimization of 2 wire return loss, which in turn cuts down on echoes in the end to end voice

FIGURE 1. IMPEDANCE MATCHING BLOCK DIAGRAM
communication path. It is also important for maintaining voice signal levels on long loops. Consider the equivalent circuit shown in Figure 1.

The circuitry inside the dotted box is representative of the SLIC feed and transmit amplifiers. The feed and transmit amplifiers pass the voice signals in the receive and transmit directions respectively. Without the feedback block $f\left(Z_{0}\right)$, the termination resistance at $\mathrm{V}_{2} \mathrm{~W}$ would equal the two protection resistors (R_{P}) and the two sense resistors (R_{S}), as the feed amplifiers present a very low output impedance to the subscriber line. The desired termination impedance at $V_{2 W}$ is Z_{0}. The feedback block $f\left(Z_{0}\right)$ matches the SLICs output impedance ($Z_{\text {SLIC }}$) plus the two protection resistors $\left(R_{P}\right)$ and the two sense resistors $\left(\mathrm{R}_{\mathrm{S}}\right)$ to the load $\left(\mathrm{Z}_{0}\right)$.
Impedance matching of the HC5503PRC is accomplished by making the SLIC's impedance ($Z_{\text {SLIC }}$, Figure 2) equal to the

FIGURE 2. IMPEDANCE MATCHING
desired terminating impedance Z_{0}, minus the value of the protection and sense resistors. The desired impedance at the input to the SLIC is given in Equation 1.
$Z_{\text {SLIC }}=Z_{0}-2 \times R_{P}-2 \times R_{S}$

The AC loop current required to satisfy this condition is given in Equation 2.
$\Delta \mathrm{I}_{\mathrm{L}}=\frac{\mathrm{V}_{\mathrm{TR}}}{\left(\mathrm{Z}_{0}-2 \times \mathrm{R}_{\mathrm{P}}-2 \times \mathrm{R}_{\mathrm{S}}\right)}$ at matching

The current calculated in Equation 2 is used as feedback to match the impedance of the SLIC and both protection and sense resistors to the load Z_{0}.

The output voltage of the SLIC $\left(\mathrm{V}_{\mathrm{TX}}\right)$ is defined by design and given in Equation 3.
$V_{T X}=4 R_{S} I_{L}$

Substituting for Δ_{L} from Equation 2 into Equation 3 results in the voltage at the V_{TX} output that will be used to generate the required feedback.
$V_{T X}=\frac{4 R_{S} \times V_{T R}}{\left(Z_{0}-2 \times R_{P}-2 \times R_{S}\right)}$
By design, V_{TR} is equal to 2 times the voltage at the receive input (R_{X}) Figure 2.
$V_{T R}=2 \times V_{R X}$
Substituting Equation 5 into Equation 4.
$V_{T X}=\frac{4 R_{S} \times 2 \times V_{R X}}{\left(Z_{0}-2 \times R_{P}-2 \times R_{S}\right)}$

Solving Equation 6 for the voltage at V_{RX} as a function of V_{TX} (when matching the $\mathrm{Z}_{\text {SLIC }}$, the two protection resistors $\left(R_{P}\right)$ and the two sense resistors $\left(R_{S}\right)$ to the load $\left.Z_{O}\right)$ is given in Equation 7.
$\frac{V_{R X}}{V_{T X}}=\frac{\left(Z_{0}-2 \times R_{p}-2 \times R_{S}\right)}{8 \times R_{S}}$

Equation 7 is the gain of the feedback circuit (output/input = $\left.\mathrm{V}_{\mathrm{RX}} / \mathrm{V}_{\mathrm{TX}}\right)$ used to match the impedance of the SLIC and both protection and sense resistors. Note: In Equation 7 it seemed logical to simplify the numerator by trying to combine Z_{0} and the two subsequent terms together. In practice however, the impedance of the network you want to match $\left(Z_{0}\right)$ cannot easily have $2^{*} R_{p}$ and $2^{*} R_{S}$ subtracted from it since the sum of these resistors is often larger than the value of the series resistance of the complex network.

Equation 7 is therefore rewritten in Equation 8.

$$
\begin{equation*}
\frac{\mathrm{V}_{\mathrm{RX}}}{\mathrm{~V}_{\mathrm{TX}}}=\frac{\mathrm{Z}_{0}}{8 \times \mathrm{R}_{\mathrm{S}}}-\frac{2 \times\left(\mathrm{R}_{\mathrm{P}}+\mathrm{R}_{\mathrm{S}}\right)}{8 \times \mathrm{R}_{\mathrm{S}}} \tag{EQ.8}
\end{equation*}
$$

Analysis of EQ. 8 yields a 2 OpAmp feedback network. The first term has Z_{O} and no phase inversion. This requires the path to flow through 2 opamps and makes the matching of different complex loads easy. (i.e. can set Z_{O} in feedback network equal to the Z_{O} you want to match). The second term has a phase inversion and requires only one OpAmp in the feedback path.
Figure 2 shows the circuit required to achieve matching of the SLIC's impedance to the load Z_{O}. The voltage at V_{RX} is a function of $\mathrm{V}_{\mathrm{TX}}, \mathrm{V}_{\mathrm{GSX}}\left(\mathrm{V}_{\mathrm{TX}} \mathrm{R}_{\mathrm{ZO} 1 /} \mathrm{R}_{\mathrm{a} 2}\right)$ and V_{IN}.

The voltage at $V_{R X}$ is determined via superposition. The circuit equation for the feedback network is given in Equation 9.

$$
\begin{equation*}
V_{R X}=-V_{T X} \frac{R_{f}}{R_{a 1}}+\frac{V_{T X} R_{Z O 1} R f}{R_{a 2} R_{a 3}}-\frac{V_{I N} R_{f}}{R_{a 4}} \tag{EQ.9}
\end{equation*}
$$

For impedance matching of the two wire side, we set V_{IN} equal to zero. This reduces Equation 9 to that shown in Equation 10.

$$
\begin{equation*}
V_{R X}=-V_{T X} \frac{R_{f}}{R_{a 1}}+\frac{V_{T X} R_{Z O 1} R f}{R_{a 2} R_{a 3}} \tag{EQ.10}
\end{equation*}
$$

To achieve the desired matching of the circuit to the line impedance Z_{O}, we set our design Equation 8 equal to our circuit Equation 10. By inspection of the correct phase in Equations 8 and 10, we have Equations 11 and 12.

$$
\begin{align*}
& \frac{Z_{0}}{8 \times R_{S}}=\frac{R_{\mathrm{ZO} 1} R_{f}}{R_{\mathrm{a} 2} R_{\mathrm{a} 3}} \tag{EQ.11}\\
& \frac{2 \times\left(R_{P}+R_{S}\right)}{8 \times R_{S}}=\frac{R_{f}}{R_{\mathrm{a} 1}} \tag{EQ.12}
\end{align*}
$$

Given: $R_{f}=R, R_{a 3}=2_{R}, R_{Z O 1}=Z_{O}$ Note: by making $R_{a 3}=$ $2_{R f}$, the value of $R_{a 2}$ becomes $4 R_{S}$ (EQ. 13). This results in the 2-wire to 4 -wire gain being equal to 1 (EQ. 24 and EQ.25)

From Equation 11.

$$
\begin{equation*}
\mathrm{R}_{\mathrm{a} 2}=4 \mathrm{R}_{\mathrm{S}} \tag{EQ.13}
\end{equation*}
$$

From Equation 12.

$$
\begin{equation*}
R_{a 1}=\frac{R \times 4 R_{S}}{R_{P}+R_{S}} \tag{EQ.14}
\end{equation*}
$$

Receive Gain (VIN to $V_{2 W}$)

4-wire to 2 -wire gain is equal to the $\mathrm{V}_{2 \mathrm{~W}}$ divided by the input voltage V_{IN}, reference Figure 3. The gains through the CODEC are not considered at this point.
$A_{4 W-2 W}=\frac{V_{2 W}}{V_{I N}}$

The 2-wire voltage $\mathrm{V}_{2} \mathrm{~W}$ is determined by a loop equation and is given in Equation 16.
$V_{2 W}=\left(2 R_{P}+2 R_{S}\right) \Delta I_{L}+V_{T R}$
Combining EQ. 5 and EQ.9, gives and expression for $V_{T R}$ in terms of V_{RX}, as shown in EQ.17.

$$
\begin{equation*}
\mathrm{V}_{\mathrm{TR}}=2 \mathrm{~V}_{\mathrm{RX}}=2\left(-\mathrm{V}_{\mathrm{TX}} \frac{\mathrm{R}_{\mathrm{f}}}{\mathrm{R}_{\mathrm{a} 1}}+\frac{\mathrm{V}_{\mathrm{TX}} \mathrm{R}_{\mathrm{ZO} 1} \mathrm{Rf}}{\mathrm{R}_{\mathrm{a} 2} \mathrm{R}_{\mathrm{a} 3}}-\frac{\mathrm{V}_{\mathrm{IN}} \mathrm{R}_{\mathrm{f}}}{\mathrm{R}_{\mathrm{a} 4}}\right) \tag{EQ.17}
\end{equation*}
$$

The voltage at $\mathrm{V}_{T R}$ is therefore a function of V_{TX} and $\mathrm{V}_{I N}$. Note: contribution from $\mathrm{V}_{\mathrm{GSX}}$ (middle term in EQ.17) is zero due to the transhybrid circuit, reference section titled "Transhybrid Balance G(4-4)".
This reduces Equation 17 to Equation 18.
$V_{T R}=2 V_{R X}=-2\left(V_{T X} \frac{R_{f}}{R_{a 1}}+\frac{V_{I N} R_{f}}{R_{a 4}}\right)$
Substituting 4R $\mathrm{R}_{\mathrm{S}} \mathrm{I}_{\mathrm{L}}$ (EQ. 3) for V_{TX} in EQ. 18 and combining this with EQ. 16, results in an equation for $\mathrm{V}_{2 W}$ in terms of: $\Delta \mathrm{I}_{\mathrm{L}}$, the external resistors and the input voltage V_{IN} (Equation 19).

$$
\begin{equation*}
V_{2 W}=\left(2 R_{P}+2 R_{S}\right) \Delta I_{L}-8 R_{S} \Delta I_{L} \frac{R_{f}}{R_{a 1}}-2 \frac{V_{I N} R_{f}}{R_{a 4}} \tag{EQ.19}
\end{equation*}
$$

Ohms law defines $\Delta \mathrm{I}_{\mathrm{L}}$ as being equal to $-\mathrm{V}_{2 \mathrm{~W}} / \mathrm{Z}_{\mathrm{O}}$.
Substituting $-\mathrm{V}_{2} \mathrm{~W} / \mathrm{Z}_{\mathrm{O}}$ for $\Delta \mathrm{I}_{\mathrm{L}}$ in EQ. 19 gives Equation 20.
$V_{2 W}=-\left(2 R_{P}+2 R_{S}\right) \frac{V_{2 W}}{Z_{O}}+8 R_{S} \frac{V_{2 W}}{Z_{O}} \frac{R_{f}}{R_{a 1}}-2 \frac{V_{I N} R_{f}}{R_{a 4}}$
EQ. 20 can be rearranged to solve for the 4-wire to 2-wire gain $\mathrm{V}_{2 \mathrm{~W}} / \mathrm{V}_{\mathrm{IN}}$, as shown in EQ.21.
$A_{4 W-2 W}=\frac{V_{2 W}}{V_{I N}}=-\left(\frac{2 R_{f}}{R_{a 4}}\right) \times \frac{R_{a 1} Z_{O}}{R_{a 1}\left(2 R_{P}+2 R_{S}\right)+R_{a 1} Z_{O}-8 R_{S} R_{f}}$

Given: $\mathrm{R}_{\mathrm{f}}=100 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{a} 4}=200 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{a} 1}=267 \mathrm{k} \Omega, \mathrm{Z}_{\mathrm{O}}=600 \Omega$, $R_{S}=100 \Omega, R_{P}=50 \Omega$.
Note: by making Ra4 equal to 2 Rf the 4 -wire to 2 -wire gain becomes -1 .

Transmit Gain across HC5503PRC ($V_{2 W}$ to $\left.V_{T X}\right)$

The output voltage of the SLIC $\left(\mathrm{V}_{\mathrm{TX}}\right)$ was defined in EQ. 3 as being equal to $4 R_{S} \Delta I_{\mathrm{L}} . \Delta \mathrm{I}_{\mathrm{L}}$ is equal to twice the input voltage $\left(2 \mathrm{~V}_{\mathrm{RX}}\right)$ divided by the total loop resistance as shown in Figure 4. If the load impedance is 600Ω, then the gain across the HC5503PRC is $2 / 3$ the input voltage $V_{R X}$. Likewise, if the load impedance is 811Ω, (next example with a complex load) then the gain across the HC5503PRC is $400 / 811$ times the input voltage V_{RX}.

Transmit Gain ($V_{2 W}$ to $V_{G S X}$)

2-wire to 4-wire gain is equal to the $\mathrm{V}_{\mathrm{GSX}}$ voltage divided by the 2-wire voltage $\mathrm{V}_{2 \mathrm{~W}}$, reference Figure 3 .
$A_{2 W-4 W}=\frac{V_{G S X}}{V_{2 W}}$

FIGURE 3. RECEIVE GAIN G(4-2), TRANSMIT GAIN (2-4) and TRANSHYBRID BALANCE (feedback circuit only)
$A_{2-4}=\frac{V_{2 W}}{V_{T R}}$
$\mathrm{V}_{\mathrm{TX}}=4 \mathrm{R}_{\mathrm{S}} \Delta \mathrm{I}_{\mathrm{L}}$
$\Delta \mathrm{I}_{\mathrm{L}}=\frac{2 \mathrm{~V}_{\mathrm{RX}}}{\mathrm{R}_{\mathrm{TOTAL}}}$
$\Delta L_{L}=\frac{V_{R X}}{600 \Omega}$
$\mathrm{V}_{\mathrm{TX}}=4 \mathrm{R}_{\mathrm{S}} \Delta \mathrm{l}_{\mathrm{L}}=400 \frac{\mathrm{~V}_{\mathrm{RX}}}{600 \Omega}$
$V_{T X}=\frac{2}{3} V_{R X}$

FIGURE 4. TRANSMIT GAIN ACROSS HC5503PRC ($\mathrm{V}_{2 \mathrm{~W}}$ to $\left.\mathrm{V}_{\mathrm{TX}}\right)$
$\mathrm{V}_{\mathrm{GSX}}$ is only a function of V_{TX} and the feedback resistors $R_{a 2}$ and $R_{Z O 1}$ EQ.23. This is because $V_{I N}$ is considered ground for this analysis, thereby effectively grounding the positive terminal of the GSX OpAmp.
$\mathrm{V}_{\mathrm{GSX}}=-\mathrm{V}_{\mathrm{TX}} \frac{\mathrm{R}_{\mathrm{ZO} 1}}{\mathrm{R}_{\mathrm{a} 2}}$
(EQ. 23)

Substituting EQ. 3 for V_{TX} and Δ_{L} for $-\mathrm{V}_{2 \mathrm{~W}} / \mathrm{Z}_{\mathrm{O}}$ into EQ . 23, $V_{G S X}$ equals:
$\mathrm{V}_{\mathrm{GSX}}=4 \mathrm{R}_{\mathrm{S}} \frac{\mathrm{V}_{2 \mathrm{~W}}}{\mathrm{Z}_{\mathrm{O}}}\left(\frac{\mathrm{R}_{\mathrm{ZO} 1}}{\mathrm{R}_{\mathrm{a} 2}}\right)$
Z_{O} is equal to $\mathrm{R}_{\mathrm{ZO} 1}$ (actual values of $\mathrm{R}_{\mathrm{ZO} 1}$ and $R a 2$ were multiplied by 1000 to reduce loading effects on the opamps). Simplifying EQ. 24 and assuming $R_{a 2}=4 R S$ from EQ. 13 results in EQ.25.
$A_{2 W-4 W}=\frac{V_{G S X}}{V_{2 W}}=\left(\frac{4 R_{S}}{4 R_{S}}\right)=1$
The transmit gain 2-wire to 4 -wire is equal to one.

Transhybrid Balance G(4-4)

Transhybrid balance is a measure of how well the input signal is canceled (that being received by the SLIC) from the transmit signal (that being transmitted from the SLIC to the CODEC). Without this function, voice communication would be difficult because of the echo.

The signals at $\mathrm{V}_{I N}$ and $\mathrm{V}_{T X}$ (Figure 3) are in phase. If $\mathrm{V}_{I N}$ and $V_{T X}$ are summed together with the correct magnitudes at the input to the Combo transmit GSX OpAmp, they will cancel out and not be present at the $\mathrm{V}_{\mathrm{GSX}}$ output.

The circuit in Figure 5 has been set up so that the SLIC matches the load impedance and that both $G(4-2)$ and $G(2-4)$ are adjusted to be 1.0 and flat over frequency.

The GSX OpAmp in the CODEC is configured as a differential amplifier with its output defined in EQ. 26.
$V_{\mathrm{GSX}}=\mathrm{V}_{\mathrm{IN}} \frac{R_{\mathrm{a} 5}}{\mathrm{R}_{\mathrm{a} 5}+R_{\mathrm{Z} 02}}\left(\frac{R_{\mathrm{a} 2}+R_{\mathrm{Z} 01}}{R_{\mathrm{a} 2}}\right)-\mathrm{V}_{\mathrm{TX}} \frac{R_{\mathrm{Z} 01}}{R_{\mathrm{a} 2}}$
The values of $R_{a 2}, R_{a 5}, R_{Z O 1}$ and $R_{Z O 2}$ should be scaled by 1000 to minimize the effects of parallel resistance on the gain adjustment resistor R2 (Figure 5). Resistors R1 and R2 adjust the gain of the input signal from the TP3057A to account for the +4 dB gain in the receive path. Scaling of a complex load is shown in EQ 27.
$\mathrm{R}_{\text {ZO1 }}$ orR $\mathrm{R}_{\text {ZO2 }}=100($ Resistive $)+\frac{\text { Reactive }}{100}$
Note: When matching a complex impedance some impedance models ($900+2.15 \mu \mathrm{~F}, \mathrm{~K}=100$) will cause the OpAmp feedback to be open at DC currents, bringing the OpAmp to an output rail. A resistor with a value of about 10 times the reactance of the capacitor $(21.6 \mathrm{nF})$ at the low frequency of interest (200 Hz for example) can be placed in parallel with the capacitor in order to solve the problem ($368 \mathrm{k} \Omega$ for a 21.6 nF capacitor).

Reference Design of the HC5503PRC and the TP3057A with a 600 Load Impedance

The design criteria is as follows:

- 4-wire to 2-wire gain (DR to $\mathrm{V}_{2 \mathrm{~W}}$) equal 0 dB .
- 2-wire to 4-wire gain $\left(\mathrm{V}_{2 \mathrm{~W}}\right.$ to $\left.\mathrm{D}_{\mathrm{X}}\right)$ equal 0 dB .
- Two Wire Return Loss greater than $-30 \mathrm{~dB}(200 \mathrm{~Hz}$ to 4kHz).
$R_{p}=50, R_{s}=100$.
Figure 5 gives the reference design using the Intersil HC5503PRC SLIC and the Texas Instruments TP3057A combined PCM CODEC and filter. Also shown in Figure 5 are the voltage levels at specific points in the circuit. These voltages will be used to adjust the gains of the network.

Impedance Matching

For impedance matching of the 2-wire side we set the input voltage at DR equal to zero. This effectively grounds the VFXI+ input of the GSX amplifier. To achieve a 2-wire to 4wire gain $\left(V_{2 W}\right.$ to $\left.D X\right)$ of $0 d B$ we need to increase the gain of the GSX amplifier to overcome the -4 dB loss in the TP3057A. The required gain is found by using EQ. 24, repeated here for convenience in EQ. 28.

$$
\begin{equation*}
\mathrm{v}_{\mathrm{GSx}}=4 \mathrm{R}_{\mathrm{S}} \frac{\mathrm{~V}_{2 \mathrm{~W}}}{\mathrm{Z}_{\mathrm{O}}}\left(\frac{\mathrm{R}_{\mathrm{ZO} 1}}{\mathrm{R}_{\mathrm{a} 2}}\right) \tag{EQ.28}
\end{equation*}
$$

FIGURE 5. Reference Design of the HC5503PRC and the TP3057A with a 600Ω Load Impedance

Substituting the required voltage levels (Figure 5) for $\mathrm{V}_{\mathrm{GSX}}$ (1.2276) and $\mathrm{V}_{2 \mathrm{~W}}(0.7745)$ and rearranging to solve for $\mathrm{R}_{\mathrm{a} 2}$ results in EQ . 29. Where: $\mathrm{V}_{\mathrm{GSX}} / \mathrm{V}_{2 \mathrm{~W}}=1.585$, and $\mathrm{Z}_{0}=\mathrm{R}_{\mathrm{Z} 01}$
$R_{a 2}=\frac{400}{1.585}=252.3$
The value of $R_{a 2}$ needs to be scaled by 1000 to minimize the effects of the parallel resistance $R_{\mathrm{Z} 02}$ and $\mathrm{R}_{\mathrm{a} 5}$ on the gain adjustment resistor R2.
The nearest standard value for $R_{a 2}$ is $255 \mathrm{k} \Omega$.
$R_{a 3}$ needs to increase by (1.585) to maintain the same feedback for impedance matching EQ. 30.
$R_{a 3}=(200 \mathrm{k} \Omega)(1.585)=317 \mathrm{k} \Omega$

The closest standard value is for $R_{a 3}$ is $316 \mathrm{k} \Omega$.
To achieve a 4-wire to 2-wire gain (DR to $\mathrm{V}_{2 \mathrm{~W}}$) equal to 0 dB we need to decrease the input to the feedback circuit from the VFRO pin to account for the +4 dB increase in the TP3057A. A simple voltage divider will decrease the 1.2276 volt input down to the required 0.7745 volts EQ. 31 .
$0.7745=\frac{R_{2}}{R_{2}+R_{1}} 1.2276$
(EQ. 31)

Rearranging to solve for R_{2} results in EQ. 32.
$R_{2}=R_{1}(1.709)$

If R_{1} equals $1 k \Omega$ then R_{2} equals $1.709 k \Omega$. Notice however that $R 2$ is in parallel with $R_{3}, R_{Z 02}+R_{a 5}$ and $R_{a 1}$.
Therefore, the correct value of R_{2} must consider this parallel combination to achieve $0 \mathrm{dBm}_{(600 \Omega)}$ at the load. This calculation results in a value of $1.73 \mathrm{k} \Omega$. The closest standard value for R_{2} is $1.74 \mathrm{k} \Omega$.

Transhybrid Balance ($Z_{L}=600 \Omega$)

The internal GSX amplifier of the TP3057A is used to perform the transhybrid balance function. For discussion purpose, the GSX amplifier is redrawn with the external resistors in Figure 6. The transfer function of the amplifier is given in EQ. 33 and EQ.34.
$V_{\text {OUT }}=V 2 \frac{R_{a 5}}{R_{a 5}+R_{\mathrm{Z} 02}}\left(\frac{R_{\mathrm{Z} 01}+R_{\mathrm{a} 2}}{R_{\mathrm{a} 2}}\right)-\mathrm{V} 1 \frac{R_{\mathrm{Z} 01}}{R_{\mathrm{a} 2}}$
$\mathrm{V}_{\text {OUT }}=\mathrm{V} 2 \frac{\mathrm{R}_{\mathrm{a} 5}}{\mathrm{R}_{\mathrm{a} 5}+600 \mathrm{~K} \Omega}\left(\frac{600 \mathrm{~K} \Omega+255 \mathrm{~K} \Omega}{255 \mathrm{~K} \Omega}\right)-\mathrm{V} 1 \frac{600 \mathrm{~K} \Omega}{255 \mathrm{~K} \Omega}$
(EQ. 34)

FIGURE 6. TRANSHYBRID BALANCE CIRCUIT

V 1 is equal to $\left(0.7745 \mathrm{~V}_{\mathrm{RMS}}\right)(2 / 3) . \mathrm{V} 2$ is equal to $0.7745 \mathrm{~V}_{\mathrm{RMS}}\left(\mathrm{ddBm}_{(600 \Omega)}\right)$. The results of rearranging EQ. 34 to solve for Ra5 and substituting in the values for V_{1} and V_{2} are shown in EQ. 35.

$$
\begin{equation*}
\mathrm{R}_{\mathrm{a} 5}=\frac{941.17 \mathrm{k} \Omega}{(3.352-1.568)}=527.47 \mathrm{k} \Omega \tag{EQ.35}
\end{equation*}
$$

Closest standard value for Ra5 is $525 \mathrm{k} \Omega$.

Specific Implementation for China

The design criteria for a China specific solution are as follows:

- Desired line circuit impedance is $200+680 / / 0.1 \mu \mathrm{~F}$.
- Receive gain $\left(\mathrm{V}_{2 \mathrm{~W}} / \mathrm{V}_{\mathrm{DR}}\right)$ is -3.5 dB .
- Transmit gain $\left(\mathrm{V}_{\mathrm{DX}} / \mathrm{V}_{2 \mathrm{~W}}\right)$ is 0 dB .
- 0 dBm 0 is defined as 1 mW into the complex impedance at 1020 Hz .
$R_{p}=50, R_{S}=100$.

Figure 7 gives the reference design using the Intersil HC5503PRC SLIC and the Texas Instruments TP3057A combined PCM CODEC and filter. Also shown in Figure 7 are the voltage levels at specific points in the circuit. These voltages will be used to adjust the gains of the network.

Adjustment to get -3.5dBm0 at the load Referenced to 600Ω

The voltage equivalent to $0 \mathrm{dBm0}$ into $811 \Omega\left(0 \mathrm{dBm} 0_{(811 \Omega)}\right)$ is calculated using EQ. 36.
$0 \mathrm{dBm}_{(811 \Omega)}=10 \log \frac{\mathrm{~V}^{2}}{811(0.001)}=0.90055 \mathrm{~V}_{\mathrm{RMS}}$
The gain referenced back to $0 \mathrm{dBm}_{(600 \Omega)}$ is equal to:

GAIN $=20 \log \frac{0.90055 \mathrm{~V}_{\text {RMS }}}{0.7745 \mathrm{~V}_{\text {RMS }}}=1.309 \mathrm{~dB}$
(EQ. 37)

The adjustment to get -3.5 dBm 0 at the load referenced to 600Ω is:

Adjustment $=-3.5 \mathrm{dBm0}+1.309 \mathrm{dBm0}=-2.19 \mathrm{~dB}$

The voltage at the load (referenced to 600Ω) is given in EQ 39.
$-2.19 \mathrm{dBm}_{(600 \Omega)}=10 \log \frac{\mathrm{~V}^{2}}{600(0.001)}=0.60196 \mathrm{~V}_{\mathrm{RMS}}$

FIGURE 7. Reference Design of the HC5503PRC and the TP3057A with China Complex load Impedance

Impedance Matching

For impedance matching of the 2-wire side we set the input voltage at DR equal to zero. This effectively grounds the VFXI+ input of the GSX amplifier. To achieve a 2-wire to 4wire gain ($\mathrm{V}_{2 \mathrm{~W}}$ to DX) of OdB we need to increase the gain of the GSX amplifier to overcome the -4 dB loss in the TP3057A. The required gain is found by using EQ. 24, repeated here for convenience in EQ. 40.
$\mathrm{V}_{\mathrm{GSX}}=4 \mathrm{R}_{\mathrm{S}} \frac{\mathrm{V}_{2 \mathrm{~W}}}{\mathrm{Z}_{\mathrm{O}}}\left(\frac{\mathrm{R}_{\mathrm{ZO} 1}}{\mathrm{R}_{\mathrm{a} 2}}\right)$
Substituting the required voltage levels (Figure 7) for $\mathrm{V}_{\mathrm{GSX}}$ (0.82049) and $\mathrm{V}_{2 \mathrm{~W}}(0.60196)$ and rearranging to solve for $\mathrm{R}_{\mathrm{a} 2}$ results in EQ. 41. Where: $\mathrm{V}_{\mathrm{GSX}} / \mathrm{V}_{2 \mathrm{~W}}=1.363$, and $Z_{0}=R_{Z 01}$
$R_{a 2}=\frac{400}{1.363}=293.47$
The value of $R_{a 2}$ needs to be scaled by 1000 to minimize the effects of parallel resistance on the gain adjustment resistor $R 2$. The nearest standard value for $\mathrm{R}_{\mathrm{a} 2}$ is $294 \mathrm{k} \Omega$.
$R_{a 3}$ needs to increase by (1.363) to maintain the same feedback for impedance matching EQ. 42.
$R_{\mathrm{a} 3}=(200 \mathrm{k} \Omega)(1.363)=272.6 \mathrm{k} \Omega$
The closest standard value is for $\mathrm{R}_{\mathrm{a} 3}$ is $274 \mathrm{k} \Omega$.
To achieve a 4-wire to 2-wire gain ($D R$ to $V_{2 W}$) equal to 0 dB we need to decrease the input to the feedback circuit from the VFRO pin to account for the +4 dB increase in the TP3057A. A simple voltage divider will decrease the 1.2276 volt input down to the required 0.60196 volts EQ. 43 .
$0.60196=\frac{R_{2}}{R_{2}+R_{1}} 1.2276$
Rearranging to solve for R_{2} results in EQ .44 .
$R_{2}=R_{1}(0.9621)$

If R_{1} equals $1 \mathrm{k} \Omega$ then R_{2} equals 962.1Ω. Notice however that $R 2$ is in parallel with $R_{3}, R_{Z 02}+R_{a 5}$ and $R_{a 1}$.
Therefore, the correct value of R_{2} must consider this parallel

FIGURE 9. TRANSHYBRID BALANCE CIRCUIT
combination to achieve $0 \mathrm{dBm}_{(600 \Omega)}$ at the load. This calculation results in a value of $968.57 \mathrm{k} \Omega$.

The closest standard value for R_{2} is 976Ω.

Transhybrid Balance ($Z_{L}=200+$ 680//0.1 $\mu \mathrm{F}$)

The internal GSX amplifier of the TP3057A is used to perform the transhybrid balance function. For discussion purpose, the GSX amplifier is redrawn with the external resistors in Figure 9. The transfer function of the amplifier is given in EQ. 45 and EQ. 46.

$$
\begin{equation*}
\mathrm{V}_{\mathrm{OUT}}=\mathrm{V} 2 \frac{\mathrm{R}_{\mathrm{a} 5}}{\mathrm{R}_{\mathrm{a} 5}+\mathrm{R}_{\mathrm{Z} 02}}\left(\frac{\mathrm{R}_{\mathrm{Z} 01}+\mathrm{R}_{\mathrm{a} 2}}{\mathrm{R}_{\mathrm{a} 2}}\right)-\mathrm{V} 1 \frac{\mathrm{R}_{\mathrm{Z} 01}}{\mathrm{R}_{\mathrm{a} 2}} \tag{EQ.45}
\end{equation*}
$$

The impedance of the series parallel complex China load is equal to:
$R_{Z 01}=R_{Z 02}=772 k-j 250=811 \angle-17.9^{\circ}$

Setting $\mathrm{V}_{\text {OUT }}$ equal to zero, best transhybrid balance, and rearranging the equation we get EQ. 47.
$\mathrm{V} 2 \frac{\mathrm{R}_{\mathrm{a} 5}}{\mathrm{R}_{\mathrm{a} 5}+772 \mathrm{k}-\mathrm{j} 250 \mathrm{k}}\left(\frac{772 \mathrm{k}-\mathrm{j} 250 \mathrm{k}+294 \mathrm{~K} \Omega}{294 \mathrm{~K} \Omega}\right)=\mathrm{V} 1 \frac{772 \mathrm{k}-\mathrm{j} 250 \mathrm{k}}{294 \mathrm{~K} \Omega}$
(EQ. 47)
V1 is equal to $\left(0.60196 \mathrm{~V}_{\mathrm{RMS}}\right)(400 / 811)$ and V 2 is equal to $0.60196 \mathrm{~V}_{\text {RMS }}$. The results of rearranging EQ. 47 to solve for Ra5 and substituting in the values for V1 and V2 is shown in EQ. 48.
$R_{a 5}=\frac{274 \mathrm{k}-\mathrm{j} 114 \mathrm{k}}{0.636-\mathrm{j} 0.0302}=421 \mathrm{k}-\mathrm{j} 200 \mathrm{k}=466 \mathrm{k} \angle-25.4^{\circ}$
Closest standard value for Ra5 is $464 \mathrm{k} \Omega$.

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site www.intersil.com

Sales Office Headquarters

Intersil Corporation
P. O. Box 883, Mail Stop 53-204

Melbourne, FL 32902
TEL: (321) 724-7000
FAX: (321) 724-7240

EUROPE

Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05

ASIA

Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 227169310
FAX: (886) 227153029

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.
In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Tl's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

