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Designing DC/DC converters based on  
ZETA topology

Introduction
Similar to the SEPIC DC/DC converter topology, the ZETA 
converter topology provides a positive output voltage from 
an input voltage that varies above and below the output 
voltage. The ZETA converter also needs two inductors 
and a series capacitor, sometimes called a flying capacitor. 
Unlike the SEPIC converter, which is configured with a 
standard boost converter, the ZETA converter is config-
ured from a buck controller that drives a high-side PMOS 
FET. The ZETA converter is another option for regulating 
an unregulated input-power supply, like a low-cost wall 
wart. To minimize board space, a coupled inductor can be 
used. This article explains how to design a ZETA converter 
running in continuous-conduction mode (CCM) with a 
coupled inductor.

Basic operation
Figure 1 shows a simple circuit diagram of a 
ZETA converter, consisting of an input capac
itor, CIN; an output capacitor, COUT; coupled 
inductors L1a and L1b; an AC coupling 
capacitor, CC; a power PMOS FET, Q1; and a 
diode, D1. Figure 2 shows the ZETA con-
verter operating in CCM when Q1 is on and 
when Q1 is off.

To understand the voltages at the various 
circuit nodes, it is important to analyze the 
circuit at DC when both switches are off and 
not switching. Capacitor CC will be in parallel 
with COUT, so CC is charged to the output 
voltage, VOUT, during steady-state CCM. 
Figure 2 shows the voltages across L1a and 
L1b during CCM operation.

When Q1 is off, the voltage across L1b 
must be VOUT since it is in parallel with COUT. 
Since COUT is charged to VOUT, the voltage 
across Q1 when Q1 is off is VIN + VOUT; 
therefore the voltage across L1a is –VOUT  
relative to the drain of Q1. When Q1 is on, 
capacitor CC, charged to VOUT, is connected 
in series with L1b; so the voltage across L1b 
is +VIN, and diode D1 sees VIN + VOUT.
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Figure 2. ZETA converter during CCM operation
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The currents flowing through various  
circuit components are shown in Figure 3. 
When Q1 is on, energy from the input supply 
is being stored in L1a, L1b, and CC. L1b also 
provides IOUT. When Q1 turns off, L1a’s cur-
rent continues to flow from current provided 
by CC, and L1b again provides IOUT.

Duty cycle
Assuming 100% efficiency, the duty cycle, D, 
for a ZETA converter operating in CCM is 
given by

	

OUT

IN OUT

V
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V V
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+
	 (1)

This can be rewritten as

	
= =
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Dmax occurs at VIN(min), and Dmin occurs at 
VIN(max).

Selecting passive components
One of the first steps in designing any PWM 
switching regulator is to decide how much 
inductor ripple current, ∆IL(PP), to allow. Too 
much increases EMI, while too little may 
result in unstable PWM operation. A rule of 
thumb is to assign a value for K between 0.2 
and 0.4 of the average input current. A desired 
ripple current can be calculated as follows:

	

L(PP) IN
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Desired I K I

DK I .
1 D

∆ = ×

= × ×
−

	 (3)

In an ideal, tightly coupled inductor, with each inductor 
having the same number of windings on a single core, the 
coupling forces the ripple current to be split equally 
between the two coupled inductors. In a real coupled 
inductor, the inductors do not have equal inductance and 
the ripple currents will not be exactly equal. Regardless, 
for a desired ripple-current value, the inductance required 
in a coupled inductor is estimated to be half of what would 
be needed if there were two separate inductors, as shown 
in Equation 4:

	

IN
min min
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1 V D
L1a L1b

2 I f
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To account for load transients, the coupled inductor’s 
saturation current rating needs to be at least 1.2 times the 
steady-state peak current in the high-side inductor, as 
computed in Equation 5:

	
L

L1a(PK) OUT
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I I
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= × +

−
	 (5)

Note that IL1b(PK) = IOUT + ∆IL/2, which is less than IL1a(PK).

Like a buck converter, the output of a ZETA converter 
has very low ripple. Equation 6 computes the component 
of the output ripple voltage that is due solely to the capac-
itance value:

	

∆
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× ×OUT
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C (PP)
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where fSW(min) is the minimum switching frequency. 
Equation 7 computes the component of the output ripple 
voltage that is due solely to the output capacitor’s ESR:

	
∆ = ∆ ×

OUT OUTESR _C (PP) L1b(PP) IN(max) CV I  [at V ] ESR 	 (7)

Note that these two ripple-voltage components are phase-
shifted and do not directly add together. For low-ESR 
(e.g., ceramic) capacitors, the ESR component can be 
ignored. A minimum capacitance limit may be necessary 
to meet the application’s load-transient requirement.

The output capacitor must have an RMS current rating 
greater than the capacitor’s RMS current, as computed in 
Equation 8:
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Figure 3. ZETA converter’s component currents during CCM
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The input capacitor and the coupling capacitor source 
and sink the same current levels, but on opposite switching 
cycles. Similar to a buck converter, the input capacitor 
and the coupling capacitor need the RMS current rating,

	
IN C

OUT
C (RMS) C (RMS) OUT

IN(min)

V
I I I .

V
= = 	 (9)

Equations 10a and 10b compute the component of the 
output ripple voltage that is due solely to the capacitance 
value of the respective capacitors:
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Equations 11a and 11b compute the component of the 
output ripple voltage that is due solely to the ESR value of 
the respective capacitors:
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Again, the two ripple-voltage components are phase-shifted 
and do not directly add together; and, for low-ESR capaci-
tors, the ESR component can again be ignored. A typical 
ripple value is less than 0.05 times the input voltage for 
the input capacitor and less than 0.02 times the output 
voltage for the coupling capacitor.

Selecting active components
The power MOSFET, Q1, must be carefully selected so 
that it can handle the peak voltage and currents while 
minimizing power-dissipation losses. The power FET’s  
current rating will determine the ZETA converter’s maxi-
mum output current.

As shown in Figure 3, Q1 sees a maximum voltage of 
VIN(max) + VOUT. Q1 must have a peak-current rating of

Q1(PK) L1a(PK) L1b(PK) IN OUT LI I I I I I .= + = + + ∆ 	 (12)

At the ambient temperature of interest, the FET’s power-
dissipation rating must be greater than the sum of the 
conductive losses (a function of the FET’s rDS(on)) and the 
switching losses (a function of the FET’s gate charge) as 
given in Equation 13:
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	(13)

where QGD is the gate-to-drain charge, QG is the total gate 
charge of the FET, IGate is the maximum drive current, and 
VGate is the maximum gate drive from the controller. Q1’s 
RMS current is
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The output diode must be able to handle the same peak 
current as Q1, IQ1(PK). The diode must also be able to with
stand a reverse voltage greater than Q1’s maximum voltage 
(VIN(max) + VOUT) to account for transients and ringing. 
Since the average diode current is the output current,  
the diode’s package must be capable of dissipating up to 
IOUT × VFWD, where VFWD is the Schottky diode’s forward 
voltage at IOUT.

Loop design
The ZETA converter is a fourth-order converter with 
multiple real and complex poles and zeroes. Unlike the 
SEPIC converter, the ZETA converter does not have a 
right-half-plane zero and can be more easily compensated 
to achieve a wider loop bandwidth and better load- 
transient results with smaller output-capacitance values. 
Reference 1 provides a good mathematical model based on 
state-space averaging. The model excludes inductor DC 
resistance (DCR) but includes capacitor ESR. Even though 
the converter in Reference 1 uses ceramic capacitors, for 
the following design example, the inductor DCR was sub
stituted for the capacitor ESR so that the model would 
more closely match measured values. The open-loop gain 
bandwidth (i.e., the frequency where the gain crosses zero 
with an acceptable phase margin of typically 45º), should 
be greater than the resonant frequency of L1b and CC so 
that the feedback loop can dampen the nonsinusoidal  
ripple on the output with fundamental frequency at that 
resonant frequency.

Design example
For this example, the requirements are for a 12-V, 1-W 
supply with η = 0.9 peak efficiency. The load is steady-
state, so few load transients are expected. The 2-A input 
supply is 9 to 15 V. A nonsynchronous voltage-mode con-
troller, the Texas Instruments TPS40200, was selected, 
running with a switching frequency between 340 and  
460 kHz. The maximum allowed ripple at the input and 
flying capacitor is respectively 1% of the maximum voltage 
across each. The maximum output ripple is 25 mV, and 
the maximum ambient temperature is 55ºC. Because EMI 
is not a concern, an inductor with a lower inductance 
value was selected by using the minimum input voltage. 
Table 1 on the next page summarizes the design calcula-
tions given earlier. Equations 7 through 9 and Equation 11 
were ignored because low-ESR ceramic capacitors with 
high RMS current ratings were used.
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Table 1. Computations for example ZETA-converter design

BASED ON  
DESIGN EQUATION

COMPUTATION  
(ASSUMING η = 1) ADJUSTED FOR η = 0.9 SELECTED COMPONENT/RATING

Passive Components

(1) = =
+max

12 V
D 0 .57

12 V 9 V
N/A N/A

(1) = =
+min

12 V
D 0 .44

12 V 15 V
N/A N/A

(2) = × =
−IN(max)
0 .57

I 1A 1 .33 A
1 0 .57

=
1 .33 A

1 .48 A
0 .9

N/A

(3) ∆ = × =L(PP) IN(min)Desired I  [at V ] 0 .3 1 .33 A 0 .4 A =
0 .4 A

0 .44 A
0 .9

N/A

(4) using VIN(min)
×

= = × =
×

1 9 V 0 .57
L1a L1b 18 .9 µH

2 0 .40 A 340 kHz
× =18 .9 µH 0 .9 17 .0 µF

Coilcraft MSD1260: 22 µH – IRMS = 
1.76 A in each winding simultane-
ously, ISAT = 5 A

(4) at VIN(min)
×

∆ = × =
×L(PP)

1 9 V 0 .57
Actual I 0 .34 A

2 22 µH 340 kHz
N/A

(5) = + =L1a(PK)
0 .34 A

I 1 .33 A 1 .50 A
2

+ =
0 .34 A

1 .48 A 1 .65 A
2

(4) at VIN(max)
×

∆ = × =
×L(PP)

1 15 V 0 .44
Actual I 0 .45 A

2 22 µH 340 kHz
N/A N/A

(6) = =
× ×OUT(min)

0 .44 A
C 6 .5 µF

8 0 .025 V 340 kHz
N/A

Two 10-µF, 25-V X5R ceramics and 
one 4.7-µF, 25-V X5R ceramic to pro
vide good load-transient response 
and to accommodate ceramic 
capacitor derating

(10a) for CIN
×

= =
× ×IN(min)

0 .57 1A
C 11 .2 µF

0 .01 15 V 340 kHz
=

11 .2 µF
12 .4 µF

0 .9

Two 10-µF, 25-V X5R ceramics and 
one 4.7-µF, 25-V X5R ceramic to 
accommodate ceramic capacitor 
derating

(10b) for CC
×

= =
× ×C(min)

0 .57 1A
C 14 µF

0 .01 12 V 340 kHz
=

14 µF
15 .6 µF

0 .9

Three 10-µF, 25-V X5R ceramics to 
accommodate ceramic capacitor 
derating

Active Components

(12) = + + =Q1(PK)I 1 .33 A 1A 0 .34 A 2 .67 A + + =1 .48 A 1A 0 .34 A 2 .82 A N/A

(14)
×

= =
×Q1(RMS)

1A 12 V
I 1 .77 A

9 V 0 .57
=

1 .77 A
1 .96 A

0 .9
Fairchild FDC365P: –35-V, –4.3-A, 
55-mΩ PFET

(13)

= × Ω

+ + × × ×
+ × × =

2
D_Q1P (1 .96 A) 55 m

(15 V 12 V) 2 .82 A 2 .2 nC / 0 .3 A 460 kHz
8 V 15 nC 460 kHz 0 .54 W

Included

— = × =D_D1P 1A 0 .5 V 0 .5 W N/A MBRS340: 40 V, 3 A, SMC

http://www.ti.com/aaj


Texas Instruments Incorporated

20

Analog Applications JournalHigh-Performance Analog Products	 www.ti.com/aaj	 2Q 2010

Power Management

Figure 4 shows the schematic and Figure 5 the 
efficiency of the ZETA converter. On the next page, 
Figure 6 shows the converter’s operation in deep 
CCM, and Figure 7 shows the loop response.

Conclusion
Like the SEPIC converter, the ZETA converter is 
another converter topology to provide a regulated 
output voltage from an input voltage that varies 
above and below the output voltage. The benefits of 
the ZETA converter over the SEPIC converter 
include lower output-voltage ripple and easier com-
pensation. The drawbacks are the requirements for a 
higher input-voltage ripple, a much larger flying 
capacitor, and a buck controller (like the TPS40200)  
capable of driving a high-side PMOS.
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Figure 4. ZETA-converter design with 9- to 15-V VIN and 12-V VOUT at 1 A
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