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ABSTRACT

Although it may seem that evaluation of high-speed circuit operation can be more quickly performed with
computer simulation, full bench evaluation cannot be supplanted. By integrating both of these
complementary tools, the cycle time from component selection to finalized design can be reduced.
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1 Introduction

High-speed analog system design can often be a daunting task. Typically, after the initial system definition
and the design approach is established, the task of component selection commences. Unfortunately,
simple reliance on data sheet parameters provides only a partial feel for the device's actual operating
nuances. This is unfortunately true no matter how complete a high-speed amplifier data sheet is written.
Only by experimenting, that is, spending some time on the bench with the part, will the requisite
experience be obtained for reliably using high-speed amplifiers. The high-speed demonstration board,
described herein, can be effectively used to accelerate this process. In developing the LM6181 application
program, the key focus areas for making high-speed design a little easier included:

• Designing a product that is more forgiving—for example it can directly drive backmatched cables (a
heavy dc load), and significant capacitive loads (without oscillating).

• Developing a high-speed demonstration board that is easily reconfigurable for either inverting or non-
inverting amplifier operation.

• Incorporate a highly accurate SPICE macromodel of the LM6181 into Ti's macromodeling library. This
macromodel can be used in conjunction with bench results to more quickly converge on a reliable high-
speed design.

2 Some Background Information on the LM6181

The LM6181 is a high-speed current feedback amplifier with typical slew rates of 2000 V/µs, settling time
of 50 ns for 0.1%, and is fully specified and characterized for ±5 V, and ±15 V operation. Current feedback
operational amplifiers, like the LM6181, offer two significant advantages over the more popular voltage
feedback topology. These advantages include a bandwidth that is relatively independent of closedloop
gain (see Figure 1), and a large signal response that is closer to ideal. “Ideal” specifically means that the
large signal response is not overtly dominated by non-linear slewing behavior (see [1]), as is typically
found for voltage feedback amplifiers. An obvious consequence is dramatic improvement in distortion
performance versus the signal amplitude, and settling time.

The high-speed demonstration board can be used to either examine the time domain, or frequency
domain. However, the discussion will focus on using this board for the purpose of compensating the time
domain response of the LM6181 for popular applications.

Figure 1. LM6181 Closed-Loop Frequency Response
VS = ±15V; Rf = 820Ω; RL = 1 kΩ

Unlike voltage feedback amplifiers that directly trade bandwidth for gain, current feedback amplifiers
provide consistently wideband performance regardless of moderate closed-loop gain levels.

Examples of this includes driving cables, dealing with capacitive loads, and generally obtaining a user
specified fidelity to the pulse response. Essentially, the demonstration board simplifies the evaluation of
high speed operational amplifiers in either the inverting, or the non-inverting circuit configurations.
Appendix A includes the board schematic with the associated configuration options. Layout of the board
included a host of mandatory high speed design considerations. These principles have been summarized
in Appendix B (also see through [4]).
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A popular application for high speed amplifiers includes driving backmatched cables as illustrated in
Figure 2. Due to loading and typical bandwidth requirements this particular application places heavy
demands on an amplifier. The LM6181 output stage incorporates a high-current-gain output stage that
provides a lower output impedance into heavy loads, such as 100Ω and 15Ω. This enhances the
amplifier's ability to drive backmatched cables (±10V, into 100Ω) since the internal current drive to the
amplifiers output stage is used more efficiently. Additionally, the benefits of the current feedback topology
of the LM6181 allows for wideband operation of 100 MHz, even when configured in closed-loop gain
configuration of +2.

Figure 2. Backmatching of a Cable is a Clean Way of Terminating the Source to the Characteristic
Impedance

The LM6181 can deliver ±10V into the resulting dc load of 100Ω, at 100 MHz, typically.

3 Experimenting with the Time Domain

Some consideration needs to be addressed for the test signal chosen to evaluate the transient response
of a linear system. By the properties of Laplace transforms, if a unit impulse input is used and the
measured output response is integrated, the result of applying an inverse Laplace transform will yield the
systems frequency response. This approach is not typically useful since pulse generators do not generate
impulses and the integration becomes unduly complex. Additionally, this technique does not serve to
establish an intuitive feel. Alternatively, if a slowly time-varying input signal is used as the test input, the
high-frequency components in the system are not significantly excited. The step response often provides a
meaningful evaluation of amplifier performance, and represents a more practical signal. Other advantages
of using a step response is that it directly provides the dc gain, and the high-frequency nature of the step
excites the high-frequency poles in the amplifier's system transfer function.

When evaluating step response performance of wideband amplifiers it is important to use a pulse
generator that provides a sufficiently fast risetime. A step response, in relation to the system that is being
evaluated, must have a risetime relationship of:

(1)

Therefore, evaluating the step response of the LM6181 amplifier, where the typical bandwidth for gains of
+2 is 100 MHz, will require a step input signal with a maximum risetime of 3.5 ns. Since there will always
be a certain amount of risetime degradation due to the oscilloscope probe and the oscilloscope, use the
same measurement equipment for evaluating both the integrity of the input signal and for measuring the
output response of the system. Figure 3 illustrates a satisfactory input pulse for evaluating the LM6181.
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Figure 3. Always Start the Dynamic Characterization of High-Speed Amplifiers With an Input Signal That
Maintains Adequate Speed, With Little Aberration

Measuring the input signal, from a fast pulse generator, (a Hewlett-Packard 8082A pulse generator was
used), also provides a check of correct terminations of the probe—oscilloscope combination.

Probably the largest area of difficulty in high-speed design is when amplifiers drive capacitive loads.
Unfortunately, many amplifiers on the marketplace are specified to handle a maximum of a meager 20 pF
of capacitive load before oscillation occurs. This maximum limitation equivalently implies that the
amplifiers pulse response will be sensitive to typical oscilloscope capacitance—the probe becomes an
integral part of the overall circuit, which makes meaningful judgements on measurements very difficult.

Although direct capacitive loading should typically be minimized in general practice, Figure 4 illustrates
that for moderate values of capacitive load, due to the oscilloscope probe, the LM6181 is still very well
behaved. Figure 5 illustrates the simulation using SPICE and the LM6181 macromodel. The LM6181
SPICE macromodel has superb ac and transient response characteristics. For availability information
concerning the complete macromodeling library, including the LM6181, along with an outline of the
model's capabilities, see Appendix C.

Figure 4. Output Response of a Real LM6181, AV = +2, Rf = RG = 820Ω. Output Load is Oscilloscope
Probe, Tektronix P6106A, 10 MΩ, 8.7 pF.
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Figure 5. Simulated Output Response of the Circuit in Figure 3

Using the LM6181 macromodel. For more information regarding the LM6181 macromodel and Ti's
Macromodel library, see Appendix C.

4 Compensating the Pulse Response

Degradation in the phase margin, due to direct capacitive loading of high-speed amplifiers can potentially
induce oscillation. The output impedance of the amplifier, coupled with the load capacitance, forms a lag
network in the loop transmission of the amplifier. Since this network delays the feedback, phase margin is
reduced such that even when a system is not oscillating excessive ringing can occur, as illustrated in
Figure 6 where the capacitive load is 48 pF.

A direct solution to reducing the ringing for driving capacitive loads is to indirectly drive the load i.e.,
isolate the load with a real impedance, such as a moderately small value of resistance. In Figure 7 a 47Ω
resistor was used to isolate the capacitor's complex impedance from the amplifier's output, thereby
preserving the amplifier's phase margin. An obvious trade-off exists between taming the time domain
response, and maintaining the amplifier's bandwidth, since this form of compensation directly slows down
the amplifier's response.
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Figure 6. Direct Capacitive Loading Reduces the Phase Margin and Resulting Pulse Fidelity of any
Amplifier

A pole is created by the combination of the op amp's output impedance and the capacitive load. This
results in delaying the feedback or loop transmission. In this example the LM6181 is directly driving a 48
pF load. High-speed current-feedback amplifiers can handle capacitive loads, and maintain pulse fidelity,
by indirectly driving them. This is illustrated in Figure 7.

Figure 7. A Small Resistor can be Used, Such as 47Ω, at the Output of the Amplifier to Indirectly Drive
Capacitive Loads

For general applications of the LM6181, the suggested feedback resistance, Rf, is 820Ω. However, a
characteristic unique to current-feedback amplifiers is that they will have different bandwidths depending
on the feedback resistor Rf. This results in current-feedback amplifiers maintaining a net closed-loop
bandwidth that remains (this is of course an approximation; second order effects do take their toll, of
course) the same for moderate variations of closed-loop gain. This feature of current feedback amplifiers
actually makes them relatively easy to compensate. By simply scaling the gain setting and the feedback
impedance, the appropriate bandwidth can be obtained at the desired value of closed-loop gain. Figure 8
was cut from the LM6181 data sheet, and describes this relationship.
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Figure 8. By Scaling Both RF and RS the Closed-Loop Gain Stays Constant but the Bandwidth Changes

A practical application of using altered feedback values for compensating the LM6181 when driving a 100
pF capacitive load is illustrated in Figure 9. By reducing the open-loop bandwidth of the amplifier, the
resulting degradation of phase margin is reduced, thereby improving the pulse response fidelity.

Figure 9. Normally, if RF = RS = 820Ω

The LM6181 would oscillate with 100 pF of capacitive load. In this example the feedback, RF and RS

values are scaled to 1.2 kΩ so that the closed-loop gain is AV = +2, but the open-loop band width
decreases, maintaining adequate phase margin.
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An often overlooked factor in dynamically understanding high-speed amplifiers is the effect that dc loading
has on amplifier speed. When driving backmatched cables, for example, the Thevenin equivalent load is
usually either 100Ω, or 150Ω. Figure 10 (from the LM6181 100 mA, 100 MHz Current Feedback Amplifier
Data Sheet (SNOS634)) provides bandwidth versus dc load information. Figure 11 illustrates the step
response for the LM6181 in a gain of +2, with a dc equivalent load of 100Ω. When the step response is
compared against Figure 4 it is obvious that dc loading will affect amplifier bandwidth. Additionally, since
amplifier dynamics is also affected by supply voltage, the LM6181 is fully characterized for both ±5V and
±15V operation.
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Inverting Gain Frequency Response
VS = ±15V; AV = −1; RF = 820Ω

Non-Inverting Gain Frequency Response
VS = ±15V; AV = +2; Rf = 820Ω

Inverting Gain Frequency Response
VS = ±15V; AV = −10; RF = 820Ω

Figure 10. DC Loading of a High-Speed Amplifier Will Affect Bandwidth

For ±5V bandwidth vs loading characteristic curves, see the LM6181 100 mA, 100 MHz Current Feedback
Amplifier Data Sheet (SNOS634).
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Figure 11. Output Step Response of LM6181 When Driving Backmatched Cables

Comparing this step response to Figure 4 illustrates the bandwidth reduction due to the 100Ω resistive
load.

5 Compensating Non-Inverting CF Amplifiers

Often, for the inverting amplifier configuration, simply scaling the feedback and gain setting resistor is the
easiest way of compensating for peaking and overshoot in the step response. The non-inverting
configuration, however, can alternatively be compensated by adding a series input resistor, as shown in
Figure 12. This resistor, in combination with the input and stray input capacitances of the amplifier
bandwidth limit the input step response, and accordingly reduce peaking in the output response. This
effect is equivalent to increasing the risetime of the leading edge of the input pulse (some pulse
generators have this adjustment).

Figure 12. Peaking and Ringing for Non-Inverting Amplifier Configurations

These can be reduced by adding a series input resistor, Rseries. This resistor interacts with the amplifiers
input capacitance to provide a low pass bandwidth limit for the input pulse. If more bandwidth reduction is
required Coptional can be used.

(2)
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Figure 13. Resulting Pulse Response for LM6181 Using Rseries = 680Ω, AV = +2, RS = RF = 820Ω, CLOAD ≈ 8.7
pF

Compare this response with Figure 4, overshoot and ringing has been dramatically reduced.

6 Snake Oil and Spice Macromodels Cure All Evils

Not all amplifier macromodels are created equal. For example, driving capacitive loads with high-speed
amplifiers is a good way of evaluating and comparing op-amp macromodels. Capacitive loading directly
affects the loop dynamics of a closed-loop amplifier system. And since this capacitive load interacts with
the output impedance of the amplifier to delay the feedback (or loop transmission), the phase margin is
reduced, as stated earlier.

Simulating high-speed systems when driving capacitive loads places a demand on the amplifier's
macromodel. Constructing an accurate macromodel is not simple. Unfortunately, parameterized models
(an efficient method of using a computer to generate many inaccurate models per a typical workday) lack
the extensive software testing and bench measurement analysis required for sophisticated simulation
work. The amplifier's output stage, the frequency response, and the input parasitic structures need to be
carefully measured on the bench, then accurately mimicked in the macromodel. The moral is to be aware,
and:

ALWAYS TEST YOUR MACROMODEL! (3)

Compare the similarity between results in Figure 14 with the bench results of Figure 6. Increased
confidence in using a specific high-speed amplifier macromodel can be obtained by corresponding bench
results of driving capacitive loads with simulation results.

Driving reactive loads, such as capacitive loads, can be used not only to indicate limitations for the
associated SPICE macromodel, but also to reveal some of the amplifier's high-speed personality. Never
assume that a macromodel of an operational amplifier includes characteristics that are germane to your
particular simulation.

7 Summing Things Up

The focus has been on high-speed analog design methodology, as opposed to generating a plethora of
varied application circuits. By establishing a foundation—understanding the amplifier, referring to the
typical characterization curves, using correct high-speed layout techniques, knowing the SPICE
macromodels limitations, and adopting some basic compensation techniques, a large fraction of everyday
highspeed design challenges can be addressed confidently.
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Figure 14. Simulation of LM6181 Step Response with AV = +2, RF = RS = 820Ω, and Cload = 48 pF
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Appendix A LM6181 High-Speed Demonstration Board

The LM6181 high speed demonstration board can be configured for either inverting or non-inverting
amplifier configurations. This board was intentionally embellished with options so that it can be used as a
general-purpose 8-pin op-amp evaluation board.
(1) (2) (3) (4)

(1) Terminate this BNC connection with the appropriate connector. Otherwise ringing due to high-frequency reflections will occur.
(2) Do not lead compensate current feedback amplifiers—oscillation will result. Lead compensation uses a feedback capacitor, C4.
(3) C3 and R7 are optional lag-compensation network points.
(4) R6 is for back matched driving of cables.
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Appendix B High Speed Board Design Caveats

1. Good high frequency termination is always required for the input signal. It is important, for evaluating
any amplifier, to check the integrity of the input signal.

2. RF quality, ceramic capacitors are used for bypassing and are placed close to the amplifiers supply
pins.

3. The feedback network is placed in close proximity to the amplifier.

4. The entire top side of the board is ground planed. This lowers the high-frequency impedance for
ground return signals.

5. The amplifier inputs have ground plane voids since these amplifier nodes are sensitive to parasitic
stray capacitance. This is specifically a key issue for the non-inverting amplifier configuration.

6. All leads are kept as short as possible, using the most direct point-point wiring techniques.
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Appendix C Features Modeled for LM6181 Macromodel

Supply-Voltage-Dependent Input Offset Voltage (VOS)

Temperature-Dependent Input Offset Voltage (TCVOS)

Supply-Voltage-Dependent Input Bias Current (Ib+ & Ib− PSR)

Temperature-Dependent Input Bias Current (TCIB+ & TCIB−)

Input-Voltage-Dependent Input Bias Current (Ib− CMRR)

Non-Inverting Input Resistance

Asymmetrical Output Swing

Output Short Circuit Current (ISC)

Supply-Voltage-Dependent Supply Current

Quiescent and Dynamic Supply Current

Input-Voltage-Dependent Input Slew Rate

Input-Voltage-Dependent Output Slew Rate

Multiple Poles and Zeroes in Open-Loop Transimpedance (Zt)

Supply-Voltage-Dependent Input Buffer Impedance

Supply-Voltage-Dependent Open-Loop Voltage Gain (AVOL)

Feedback-Resistance-Dependent Bandwidth

Accurate Small-Signal Pulse Response

Large-Signal Pulse Response

DC and AC Common Mode Rejection Ratio (CMRR)

DC and AC Power Supply Rejection Ratio (PSRR)

White and 1/f Voltage Noise (en)

White and 1/f Current Noise (in)

For information related to obtaining TI's SPICE macromodeling library, including the LM6181, call a TI
sales office.
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