
Application Report
SNVA715–July 2014

LP8501 Programming Considerations

Sami Kotijarvi

Introduction
This document describes LP8501 programming instructions with examples. Most of the programs are
presented with command compiler syntax. Command compiler is described in more detail in Using the
LP8501 Evaluation Kit (SNVU451). Compiler software is available with the evaluation kit.

Programs here consist of directives, labels, instructions and comments. The machine code, which is
loaded into LP8501 SRAM memory, consists of 16–bit instructions. These instructions are written into
registers from 50h to 6Fh. In register 4Fh is a page selector with 6 possible pages to choose from (bits '0'
to '101' [0:2]). Instructions must be written to two consecutive addresses, like for example 50h and 51h in
page 0. These addresses correspond to SRAM address 00h. The paging of SRAM memory is only for I2C
communication. When developing the code one can treat the whole memory as a whole. This means that
the program code can continue to different SRAM pages. The paging needs to be taken into consideration
only when the program code is uploaded via I2C. The paging does not affect program code execution.

Instructions are described also in LP8501 datasheet (SNVS548). In Simple Program Example is an
example of a simple program that blinks LED output 1 endlessly. Note that in compiler syntax engines are
selected in that order that they appear in the text editor.

Simple Program Example

Defining LED outputs
There are two ways of defining which LED outputs the lighting engines use. One way is to use mux_sel
instruction, which selects directly one and only one LED output. The other way is to use LED mapping
table. Mapping table is defined with mux_ld_start and mux_ld_end.

Mux_sel instruction
This instruction maps one and only one LED output to an engine. In command compiler syntax this
instruction has one parameter, which is the selected LED output. In Simple Program Example LED output
1 is selected for engine 1. Instruction mux_sel 1 in hexadecimal is 9D01h, where 9D is the instruction and
01 means the LED output 1. Parameter 1–9 correspond to LED output 1–9 accordingly, 16 corresponds to
GPO.

Defining a mapping table
Creating a mapping table starts with defining a table, where each row defines which LED outputs are
mapped at that time. In compiler syntax each row, which is referred later in the program, needs a label. At
least mapping table start and end need to be labeled. Labeling is needed especially with mux_set
instruction, since with this instruction one can select a specific row from the mapping table. In Example of
Mapping Table is defined a mapping table, where the starting point and ending point are labeled
(begin_mux 1 and end_mux1). Directive dw defines which LED outputs are mapped. Here in this example
only one LED output at a time is mapped. In the example data is represented in binary, but it can also be

All trademarks are the property of their respective owners.
1SNVA715–July 2014 LP8501 Programming Considerations

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SNVU451
http://www.ti.com/lit/pdf/SNVS548
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNVA715

www.ti.com

defined with hexadecimal or with decimal numbers. In each row there is a comment telling which LED
output is mapped. If GPO would have been mapped, it would have corresponded the MSB bit. In Second
Example of Mapping Table each row is labeled. This is needed when using the mux_set instruction. Note
that the mapping table can be located anywhere in the SRAM memory. In the examples shown in this
document, mapping table is located to the beginning of the SRAM memory.

Example of Mapping Table

Second Example of Mapping Table

In machine code labeling is not needed, since the mux_set, mux_ld_start and mux_ld_end instructions
refer to a certain address in SRAM. With machine code mapping table is defined by writing 16–bit word
telling which LED outputs are mapped into consecutive SRAM addresses. See Machine Code vs Compiler
Syntax for example.

Machine Code vs Compiler Syntax
Machine Code (in hex) Corresponding Data In Compiler Syntax Description
0001h dw 0000000000000001b Map LED output 1
0002h dw 0000000000000010b Map LED output 2
0040h dw 0000000001000000b Map LED output 7
8101h dw 1000000100000001b Map LED outputs 1, 9 and GPO
00FFh dw 0000000011111111b Map LED outputs 1–8

Declaring mapping table for engine
For the engines mapping table start address is declared with mux_ld_start instruction. In compiler syntax
this instruction needs the labeled address from the mapping table. For example mux_ld_start
begin_mux1 (referring to Example of Mapping Table). In machine code 7 LSB bits define the SRAM
address and 9 MSB bits define the instruction. For example if mapping table starts from SRAM address
01, the instruction is 9C01h. The ending of the mapping table is declared likewise with mux_ld_end. For
example mux_ld_end row9 (referring to Second Example of Mapping Table). Example of machine code
ending to SRAM address 08, the instruction is 9C88h.

Different engines can refer to same mapping table, partly or totally. If different engines use same mapping
table and they use same LED output at the same time, engine 1 has the highest priority to control the LED
outputs over other engines. Engine 2 has higher priority than engine 3.

2 LP8501 Programming Considerations SNVA715–July 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNVA715

LED1 = Green1

LED3 = Green2

LED5 = Green3

LED6 = Blue3

LED4 = Blue2

LED2 = Blue1

LED7 = Red1

LED8 = Red2

Led9 = Red3

www.ti.com

Moving through mapping table
Going through the mapping table is managed with mux_inc, mux_dec and mux_set instructions.
Mux_inc instruction sets the next row active in the mapping table. Mux_dec instruction on the other hand
sets the previous row active in the mapping table. In the compiler syntax, these instructions are written as
is without any parameters. In machine code mux_inc is 9D80 and mux_dec 9DC0. If the mapping table
end is reached, activation will roll to the start address next time mux_inc instruction is called. If the
mapping table start is reached, activation will roll to the end address next time mux_dec is reached.

Mux_set instruction has the address of the mapping table as a parameter. For example in compiler syntax
mux_set row6 sets the mapping row labeled with row6 active, like in Second Example of Mapping Table).
In machine code 7 LSB bits define the SRAM address and 9 MSB bits the instruction. For example to refer
to SRAM address 06 the instruction would be 9F86h.

Below are two longer examples of using mux_inc, mux_dec and mux_set. These examples are created
for the RGB LEDs in the evaluation board. The lighting sequence goes back and forth through RGB LEDs
changing the color at each end. The sequence is as follows: G1 → G2 → G3 → B3 → B2 → B1 → R1 →
R2 → R3 → G3 → G2 → G1 → B1 → B2 → B3 → R3 → R2 → R1 → G1 → ... See Sequence for
Mux_inc, Mux_dec and Mux_set Examples for graphical illustration. First example describes the sequence
with one engine and the second example with two engines. Note that when using two engines, you need
to have the mux_clr in the first engine. Otherwise when the sequence goes to engine two, R2 (LED8) is
mapped to engine one, which has higher priority and controls the R2.

Notes
One must note with these mapping instructions engines will not push a new PWM value to the LED output
before set_PWM or ramp instruction is executed. If the mapping has been released from a LED output,
the value in the PWM register will still control the LED brightness. If mapping is released from the GPO
pin, serial bus control takes over the GPO state. One way to release mapping is to use mux_clr
instruction. In compiler syntax instruction is given as it is, without any parameters. In machine code
instruction is 9D00h. The other way to release mapping is to disable engines.

Sequence for Mux_inc, Mux_dec and Mux_set Examples

Example of using mux_inc, mux_dec and mux_set with one engine
0001 row1: dw 0000000000000001b ;LED1 on evaluation program, D4 Green
0004 row2: dw 0000000000000100b ;LED3 on evaluation program, D5 Green
0010 row3: dw 0000000000010000b ;LED5 on evaluation program, D6 Green
0020 row4: dw 0000000000100000b ;LED6 on evaluation program, D6 Blue

3SNVA715–July 2014 LP8501 Programming Considerations
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNVA715

www.ti.com

0008 row5: dw 0000000000001000b ;LED4 on evaluation program, D5 Blue
0002 row6: dw 0000000000000010b ;LED2 on evaluation program, D4 Blue
0040 row7: dw 0000000001000000b ;LED7 on evaluation program, D4 Red
0080 row8: dw 0000000010000000b ;LED8 on evaluation program, D5 Red
0100 row9: dw 0000000100000000b ;LED9 on evaluation program, D6 Red.
segment engine1
9C00 mux_ld_start row1 ;load mapping table
9C88 mux_ld_end row9
9F80 loop1: mux_set row1 ;select mapped LED from row1, LED1
04FF ramp 0.2,255 ;ramp LED1 up
9D80 mux_inc ;move to next mapped LED, LED3
04FF ramp 0.2,255 ;ramp LED3 up
9DC0 mux_dec ;move back to previous LED, LED1
05FF ramp 0.2, -255 ;ramp LED1 down
9F82 mux_set row3 ;select mapped LED from row3, LED5
04FF ramp 0.2,255 ;ramp up LED5
9DC0 mux_dec ;move back to previous LED, LED3
05FF ramp 0.2, -255 ;ramp LED3 down
9F83 mux_set row4 ;select mapped LED from row4, LED6
04FF ramp 0.2,255 ;ramp up LED6
9DC0 mux_dec ;move to previous LED, LED5
05FF ramp 0.2, -255 ;ramp down LED5
9F84 mux_set row5 ;select mapped LED from row5, LED4
04FF ramp 0.2, 255 ;ramp up LED4
9DC0 mux_dec ;move back to previous LED, LED6
05FF ramp 0.2, -255 ;ramp down LED6
9F85 mux_set row6 ;select mapped LED from row6, LED2
04FF ramp 0.2, 255 ;ramp up LED2
9DC0 mux_dec ;move back to previous LED, LED4
05FF ramp 0.2 -255 ;ramp down LED4
9F86 mux_set row7 ;select mapped LED from row7, LED7
04FF ramp 0.2, 255 ;ramp up LED7
9DC0 mux_dec ;move back to previous LED, LED2
05FF ramp 0.2, -255 ;ramp down LED2
9F87 mux_set row8 ;select mapped LED from row8, LED8
04FF ramp 0.2, 255 ;ramp up LED8
9DC0 mux_dec ;move back to previous LED, LED7
05FF ramp 0.2, -255 ;ramp down LED7
9F88 mux_set row9 ;select mapped LED from row9, LED9
04FF ramp 0.2, 255 ;ramp up LED9
9DC0 mux_dec ;move back to previous LED, LED8
05FF ramp 0.2, -255 ;ramp down LED8
9F86 mux_set row7 ;select mapped LED from row7, LED7
05FF ramp 0.2, -255 ;ramp down LED7
9F88 mux_set row3 ;select mapped LED from row3, LED5
04FF ramp 0.2,255 ;ramp up LED5
9F88 mux_set row9 ;select mapped LED from row9, LED9
05FF ramp 0.2, -255 ;ramp down LED9
9F81 mux_set row2 ;select mapped LED from row2, LED3
04FF ramp 0.2,255 ;ramp up LED3
9D80 mux_inc ;move to next LED, LED5
05FF ramp 0.2, -255 ;ramp down LED5
9F80 mux_set row1 ;select mapped LED from row1, LED1
04FF ramp 0.2,255 ;ramp up LED1
9D80 mux_inc ;move to next LED, LED3
05FF ramp 0.2, -255 ;ramp down LED3
9F85 mux_set row6 ;select mapped LED from row6, LED2
04FF ramp 0.2,255 ;ramp up LED2
9F80 mux_set row1 ;select mapped LED from row1, LED1
05FF ramp 0.2, -255 ;ramp down LED1
9F84 mux_set row5 ;select mapped LED from row5, LED4
04FF ramp 0.2, 255 ;ramp up LED4
9D80 mux_inc ;select next LED, LED2
05FF ramp 0.2, -255 ;ramp down LED2
9F83 mux_set row4 ;select mapped LED from row4, LED6
04FF ramp 0.2, 255 ;ramp up LED6

4 LP8501 Programming Considerations SNVA715–July 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNVA715

www.ti.com

9D80 mux_inc ;select next LED, LED4
05FF ramp 0.2 -255 ;ramp down LED4
9F88 mux_set row9 ;select mapped LED from row9, LED9
04FF ramp 0.2, 255 ;ramp up LED9
9F83 mux_set row4 ;select mapped LED from row4, LED6
05FF ramp 0.2, -255 ;ramp down LED6
9F87 mux_set row8 ;select mapped LED from row8, LED8
04FF ramp 0.2, 255 ;ramp up LED8
9F88 mux_set row9 ;select next LED, LED9
05FF ramp 0.2, -255 ;ramp down LED9
9F86 mux_set row7 ;select mapped LED from row7, LED7
04FF ramp 0.2, 255 ;ramp up LED7
9D80 mux_inc ;select next LED, LED8
05FF ramp 0.2, -255 ;ramp down LED8
9DC0 mux_dec ;select previous LED, LED7
05FF ramp 0.2,-255 ;ramp down LED7
A002 branch 0, loop1 ;loop endlessly
C000 end

Example of using mux_inc, mux_dec and mux_set with two engines
0001 row1: dw 0000000000000001b ;LED1 on evaluation program, D4 Green
0004 row2: dw 0000000000000100b ;LED3 on evaluation program, D5 Green
0010 row3: dw 0000000000010000b ;LED5 on evaluation program, D6 Green
0020 row4: dw 0000000000100000b ;LED6 on evaluation program, D6 Blue
0008 row5: dw 0000000000001000b ;LED4 on evaluation program, D5 Blue
0002 row6: dw 0000000000000010b ;LED2 on evaluation program, D4 Blue
0040 row7: dw 0000000001000000b ;LED7 on evaluation program, D4 Red
0080 row8: dw 0000000010000000b ;LED8 on evaluation program, D5 Red
0100 row9: dw 0000000100000000b ;LED9 on evaluation program, D6 Red
.segment engine1
9C00 mux_ld_start row1 ;load mapping table
9C88 mux_ld_end row9
9F80 loop1: mux_set row1 ;select mapped LED from row1, LED1
04FF ramp 0.2,255 ;ramp LED1 up
9D80 mux_inc ;move to next mapped LED, LED3
04FF ramp 0.2,255 ;ramp LED3 up
9DC0 mux_dec ;move back to previous LED, LED1
05FF ramp 0.2, -255 ;ramp LED1 down
9F82 mux_set row3 ;select mapped LED from row3, LED5
04FF ramp 0.2,255 ;ramp up LED5
9DC0 mux_dec ;move back to previous LED, LED3
05FF ramp 0.2, -255 ;ramp LED3 down
9F83 mux_set row4 ;select mapped LED from row4, LED6
04FF ramp 0.2,255 ;ramp up LED6
9DC0 mux_dec ;move to previous LED, LED5
05FF ramp 0.2, -255 ;ramp down LED5
9F84 mux_set row5 ;select mapped LED from row5, LED4
04FF ramp 0.2, 255 ;ramp up LED4
9DC0 mux_dec ;move back to previous LED, LED6
05FF ramp 0.2, -255 ;ramp down LED6
9F85 mux_set row6 ;select mapped LED from row6, LED2
04FF ramp 0.2, 255 ;ramp up LED2
9DC0 mux_dec ;move back to previous LED, LED4
05FF ramp 0.2 -255 ;ramp down LED4
9F86 mux_set row7 ;select mapped LED from row7, LED7
04FF ramp 0.2, 255 ;ramp up LED7
9DC0 mux_dec ;move back to previous LED, LED2
05FF ramp 0.2, -255 ;ramp down LED2
9F87 mux_set row8 ;select mapped LED from row8, LED8
04FF ramp 0.2, 255 ;ramp up LED8
9DC0 mux_dec ;move back to previous LED, LED7
05FF ramp 0.2, -255 ;ramp down LED7
9F88 mux_set row9 ;select mapped LED from row9, LED9
04FF ramp 0.2, 255 ;ramp up LED9
9DC0 mux_dec ;move back to previous LED, LED8
05FF ramp 0.2, -255 ;ramp down LED8

5SNVA715–July 2014 LP8501 Programming Considerations
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNVA715

www.ti.com

9D00 mux_clr ;clear mapped LEDs
E004 trigger s{2} ;send trigger to engine2
E100 trigger w{2} ;wait for trigger from engine2
9F86 mux_set row7 ;select mapped LED from row7, LED7
05FF ramp 0.2, -255 ;ramp down LED7
A002 branch 0, loop1 :loop endlessly
C000 end
.segment engine2
9C00 mux_ld_start row1 ;define LED mapping
9C88 mux_ld_end row9
E080 loop2: trigger w{1} ;wait trigger from engine 1
9F82 mux_set row3 ;select mapped LED from row3, LED5
04FF ramp 0.2,255 ;ramp up LED5
9F88 mux_set row9 ;select mapped LED from row9, LED9
05FF ramp 0.2, -255 ;ramp down LED9
9F81 mux_set row2 ;select mapped LED from row2, LED3
04FF ramp 0.2,255 ;ramp up LED3
9D80 mux_inc ;move to next LED, LED5
05FF ramp 0.2, -255 ;ramp down LED5
9F80 mux_set row1 ;select mapped LED from row1, LED1
04FF ramp 0.2,255 ;ramp up LED1
9D80 mux_inc ;move to next LED, LED3
05FF ramp 0.2, -255 ;ramp down LED3
9F85 mux_set row6 ;select mapped LED from row6, LED2
04FF ramp 0.2,255 ;ramp up LED2
9F80 mux_set row1 ;select mapped LED from row1, LED1
05FF ramp 0.2, -255 ;ramp down LED1
9F84 mux_set row5 ;select mapped LED from row5, LED4
04FF ramp 0.2, 255 ;ramp up LED4
9D80 mux_inc ;select next LED, LED2
05FF ramp 0.2, -255 ;ramp down LED2
9F83 mux_set row4 ;select mapped LED from row4, LED6
04FF ramp 0.2, 255 ;ramp up LED6
9D80 mux_inc ;select next LED, LED4
05FF ramp 0.2 -255 ;ramp down LED4
9F88 mux_set row9 ;select mapped LED from row9, LED9
04FF ramp 0.2, 255 ;ramp up LED9
9F83 mux_set row4 ;select mapped LED from row4, LED6
05FF ramp 0.2, -255 ;ramp down LED6
9F87 mux_set row8 ;select mapped LED from row8, LED8
04FF ramp 0.2, 255 ;ramp up LED8
9F88 mux_set row9 ;select next LED, LED9
05FF ramp 0.2, -255 ;ramp down LED9
9F86 mux_set row7 ;select mapped LED from row7, LED7
04FF ramp 0.2, 255 ;ramp up LED7
9D80 mux_inc ;select next LED, LED8
05FF ramp 0.2, -255 ;ramp down LED8
E002 trigger s{1} ;send trigger to engine 1
A002 branch 0, loop2 ;loop endlessly
C000 end ;end program

Controlling LED outputs
Set PWM instruction
Set_pwm instruction adjusts PWM level with 8-bit control from 0 to 255. PWM level is adjusted to new
value in 0.488 ms (typ.). In compiler syntax set_pwm instruction has one parameter, which is the PWM
value. Parameter can be set in decimal or hexadecimal. For example set_pwm 127 (or set_pwm 7F) sets
the PWM to 50% (in linear mode i.e. log not enabled). In machine code 8 LSB bits define the PWM value.
For example 407Fh .

Ramp instruction

6 LP8501 Programming Considerations SNVA715–July 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNVA715

PWM = 0

PWM = 255

ENGINE 1
LEDs 7,8,9 mapped

Wait
0.48 s

Loop endlessly

Ramp
0.5 s

Wait
0.48 s

Ramp
0.5 s

Program code in compiler syntax: Program code in machine code:
mapping_leds: dw 0000000111000000b 01C0

.segment example1
mux_ld_start mapping_leds 9C00

loop1: ramp 0.5, 255 08FF
wait 0.48 7E00
ramp 0.5, -255 09FF
wait 0.48 7E00
branch 0, loop1 A001
end C000

www.ti.com

Ramp instruction generates either increasing or decreasing PWM ramp, which execution time and number
of steps can be defined. In one ramp instruction PWM value can be incremented or decremented up to
255 steps from the present PWM value. Maximum PWM value is 255 which can be interpreted, that
channel's current source is constantly active. In compiler syntax ramp instruction has two parameters,
time and PWM step number. The maximum time is 31(step time)*15.6ms (prescale)*255(maximum PWM
steps) = 123 s, although the compiler allows to feed maximum time of 127s. When using the compiler user
does not need to calculate step times and prescales. For example ramp 0.5, 255, which ramps up the
mapped LED output(s) to full PWM value in 0.5 seconds in 255 steps (see ... if PWM value is different
than 0 in this case). In PWM parameter, there can be minus sign to state that the ramp is decreasing. For
example ramp 0.5, —127, which ramps down the mapped LED output(s) 127 steps. With machine code,
user has to decide prescale value (0 = 0.49 ms cycle time, 1 = 15.6 ms cycle time) and step time
(maximum step time is 31). So maximum step time span would be 15.6 ms * 31 = 484 ms/step. The whole
ramp time consists of this step time span times the number of PWM increment/decrement steps. For
example 08FF has prescale value 0 –> 0.49 ms cycle time, step time 4, which leads to that step time span
4*0.49 is 1.96 ms, which then gets multiplied by 255, which results 499,8 ms so the whole ramp time 0.5
seconds in compiler syntax. For example 09FF would do the same as previous example with the
exception that the ramp is decreasing. Note that if all the step time bits are set to zero, instruction is
considered as set_PWM instruction.

Example below (Ramp Instruction Example) shows how LED outputs 7–9 are mapped to engine 1 and
their PWM values are ramped up and down in 0.5 seconds. Here also is used wait instruction with
maximum wait time 0.48s. In compiler syntax maximum wait time is 0.48 seconds. Also with machine code
this is maximum, since with wait instruction there is available prescale and time. Prescale value 0 = 0.49
ms and 1 = 15.6 ms cycle time. Maximum time is 31. This results to 15.6 ms * 31 = 484 ms.

Ramp Instruction Example

In case ramp instruction reaches the full or zero PWM value before all the ramp time has passed, the rest
of the ramp time will saturate to wait time. In example Ramp and Wait Combined the program first sets the
PWM value of the mapped LED outputs to 127 and after that starts to ramp up. When the maximum PWM
value is reached, after 128 steps, the rest of the ramp will saturate to wait time. Used by this way the
ramp instruction can be used as a wait also, reducing the need of extra wait instructions. In case where
PWM value is already full or zero, ramp instruction produces wait for the ramp time period.

7SNVA715–July 2014 LP8501 Programming Considerations
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNVA715

PWM = 0

PWM = 255

ENGINE 1
LEDs 7,8,9 mapped

Wait
0.48 s

Loop endlessly

Ramp 2 s Ramp
0.5 s

Program code in compiler syntax: Program code in machine code:
mapping_leds: dw 0000000111000000b 01C0

.segment example1
mux_ld_start mapping_leds 9C00

loop1: set_pwm 127 407F
ramp 2, 255 20FF
ramp 0.5, -255 09FF
wait 0.48 7E00
branch 0, loop1 A001
end C000

PWM = 127

Ramp turns into wait after reaching
255 PWM value

(dotted line represents how the
ramp would have gone)

Ramp 1 s Wait 1 s

www.ti.com

Ramp Instruction Example (continued)

Ramp and Wait Combined

Looping
Branch Instruction
Branch instruction can be used to loop certain sequences in program. Branch instruction has two
parameters, the loop count and the step number to be loaded into program counter. In compiler syntax the
starting point of the loop must be labeled. For example loop1: ramp 0.5, 255 (labeling the loop start
address) and later on in the code branch 10, loop1, which executes the code starting from loop1 labeled
row to the branch instruction 10 times. One must notice that the program executes the sequence first time
as normally and then do the 10 loops, so basically the code is executed 11 times. 0 in loop count
parameter means endless loop. The maximum loop count is 63 in one branch command, but LP8501
supports loop inside loop i.e. nested looping.

In machine code 7 LSB bits are for defining the loop step count. The step count defines the steps needed
from engine Start Address to the start of the loop. Loop count is defined with bits 7–12. For example
A504h set to loop count bit 1010b, which is 10 in decimals. The program counter is set to start 4 steps
from engine start address. See Example of Nested Loop, which also shows the nested loop example.
Example of Nested Loop is almost the as Ramp Instruction Example with the exception that the wait
instruction is now inside a loop allowing longer waiting period. In example Internal Trigger Example one
can see the step number is the same (01) for all of the loops in different engines. This means that the start
address of the loop is one step from the engine start address. Also in External Trigger Example example
one can see how the steps change when loop is later on in the program.

8 LP8501 Programming Considerations SNVA715–July 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNVA715

PWM = 0

PWM = 255

ENGINE 1
LEDs 7,8,9 mapped

Wait
0.48 s

Loop endlesslyRamp
0.5 s

Wait
0.48 s

Ramp
0.5 s

Program code in compiler syntax: Program code in machine code:
mapping_leds: dw 0000000111000000b 01C0

.segment example1
mux_ld_start mapping_leds 9C00

loop1: ramp 0.5, 255 08FF
wait 0.48 7E00
ramp 0.5, -255 09FF

loopwait: wait 0.48 7E00
branch 10, loopwait A504
branch 0, loop1 A001
end C000

Wait
0.48 s

Wait
0.48 s

Wait
0.48 s

Wait for 0.48 s looped 10
times

www.ti.com

Example of Nested Loop

Go to Start Instruction
Go to start instruction resets program counter and program execution will be started from the beginning
of the program. Go to start can be interpreted as infinite loop. By default all program memory locations are
reset to zeros which implies to Go to start instruction. In command compiler syntax this instruction is rst. If
program memory is fully occupied, and last instruction is ramp, wait, set_pwm or trigger, program
execution will be continued from the beginning of the program.

Triggering
Triggering is an efficient way of controlling program execution between LP8501 engines or getting an
external trigger to start program execution. Trigger signal can also be connected to processor. All engines
can send and wait for trigger from other engines or from external trigger. In compiler syntax trigger has as
a parameter s{x}, for sending a trigger, w{x}, for waiting a trigger, where x is value from 1–3 (engine
number) or e (external trigger). The parameter value can consist also from multiple values separated by
point. For example triggerss{2.3} instruction can be with engine 1, which sends trigger to engines 2 and
3. For example triggerw{e} can be set to engine to wait external trigger. In machine code bit 1–6 define
sending trigger, bits 7–12 define wait for trigger. For example E008h sends a trigger to engine 3.

See Internal Trigger Example for internal triggering example. In this example engine sends trigger to
engines 2 and 3. LED outputs 7–9 are mapped to engine 1, LED outputs 1,3 and 5 to engine 2 and LED
outputs 2,4 and 6 to engine 3. With triggering all LED outputs are set to full PWM at the same time, since
all have ramps up of 1 second. On the other hand ramping down is not done in same time and with
triggering ramping up the LED outputs again can be set to start simultaneously.

9SNVA715–July 2014 LP8501 Programming Considerations
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNVA715

PWM = 0

PWM = 255

ENGINE 1
LEDs 7,8,9 mapped

Wait
0.48 s

Loop endlessly

Ramp 1 s Ramp
0.5 s

Program in compiler syntax: Program in machine code:
;Three LEDs muxed into three engines
begin_mux1: dw 0000000111000000b ;map LED7,LED8 and LED9 to first mux 01C0
begin_mux2: dw 0000000000010101b ;map LED1,LED3 and LED5 to second mux 0015
begin_mux3: dw 0000000000101010b ;map LED2,LED4 and LED6 to third mux 002A
.segment program1 ;Beginning of the segment 1.
 mux_ld_start begin_mux1 ;load first mux 9C00
loop1: trigger s{2.3} E00C
 ramp 1, 255 ;beginning of a ramp, in 1 seconds ramp to full scale 10FF
 wait 0.48 ;wait for 0.48 seconds. 7E00
 ramp 0.5, -255 ;ramp PWM down to zero in 0.5 seconds 09FF
 trigger w{2.3} E300
 branch 0, loop1 ;jump to the beginning loop1, repeat endlessly A001
.segment program2 ;beginning of the segment 2
 mux_ld_start begin_mux2 ;load second mux 9C01
loop2: trigger w{1} E080
 ramp 1, 255 ;ramp to full PWM in 1 second 10FF
 wait 0.48 ;wait for 0.48 seconds 7E00
 ramp 2, -255 ;ramp PWM down to zero in 1 second 21FF
 trigger s{1} E002
 branch 0, loop2 ;jump to the beginning of loop2, repeat endlessly A001
.segment program3 ;beginning of the segment 3, same as segment 2
 mux_ld_start begin_mux3 9C02
loop3: trigger w{1} E080
 ramp 1, 255 10FF
 wait 0.48 7E00
 ramp 3, -255 31FF
 trigger s{1} E002
 branch 0, loop3 A001

PWM = 0

PWM = 255

Wait
0.48 s

Loop endlessly

Ramp 1 s Ramp 2 s

PWM = 0

PWM = 255

ENGINE 3
LEDs 2,4,6 mapped

Wait
0.48 s

Loop endlessly

Ramp 1 s Ramp 3 s

Engine1 sends trigger to engines
2 and 3

Wait for trigger from
engine3

Wait for trigger
from engine3

Engine3 sends trigger to engines
1 and 2

After receiving trigger from
engine3

Engine1 sends trigger to engines
2 and 3

Ramp 1 s

Ramp 1 s

Ramp 1 s

ENGINE 2
LEDs 1,3,5 mapped

www.ti.com

Internal Trigger Example

See External Trigger Example for external trigger example. Program will start after receiving an external
trigger. LED outputs 1,3 and 5 are mapped first and they are set to full PWM value and ramped down in 1
second 20 times. After this loop there is wait in loop that lasts for 10.08 seconds. After this wait there is a
loop, where three external triggers are expected. After getting all the triggers, LED outputs 7–9 are
mapped and their PWM set to full and ramped down in 3 seconds in endless loop.

10 LP8501 Programming Considerations SNVA715–July 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNVA715

PWM = 0

PWM = 255

ENGINE 1
LEDs 1,3, 5 mapped

Loop 20 times
1s ramp down.

Wait
0.12 s

Ramp 1 s

Program in compiler syntax Program in machine code
row1: dw 0000000000010101b 0015
row2: dw 0000000111000000b 01C0

.segment program1
 trigger w{e} F000
 mux_ld_start row1 9C00
loop1: set_pwm FFH 40FF
 ramp 1, -255 11FF
 wait 0.12 5000
 branch 20, loop1 AA02
loopwait: wait 0.48 7E00
 branch 20, loopwait AA06
looptrigger: trigger w{e} F000
 branch 2, looptrigger A108
 mux_ld_start row2 9C01
loop2: set_pwm 255 40FF
 ramp 3, -255 31FF
 wait 0.12 5000
 branch 0, loop2 A00B

External trigger

Wait in
loop for

21*048 =
10.08 s

Ramp 1 s Wait
0.12 s

Wait for External trigger to
be sent 3 times

ENGINE 1
LEDs 7,8, 9 mapped

Ramp 3 s

Endless loop

Wait
0.12 s

www.ti.com

Internal Trigger Example (continued)

External Trigger Example

Note that if all the engines have external triggering in the beginning, they will start all from one external
triggering. External trigger input signal must stay low for at least two 32 kHz clock cycles to be executed.
Trigger output signal is three 32 kHz clock cycles long. External trigger signal is active low, i.e. when
trigger is send/received the pin is pulled to GND. If send and wait external trigger are used on the same
instruction, the send external trigger is executed first, then the wait external trigger. Sent external trigger is
masked, i.e. the device which has sent the trigger will not recognize it. If send and wait external trigger are
used on the same instruction, the send external trigger is executed first, then the wait external trigger.
Note also if engine tries to send a trigger to itself, send trigger alone will not have any effect but with wait
trigger the engine will be stuck (waiting for trigger which will not come).

Sending interrupt and ending program
Interrupt
Interrupt instruction can be used to notify the processor. Interrupt pulls INT pin low and status bits in
register address 3Ah informs which engine has caused the interrupt. Interrupt pin state and status bits will
be cleared when status register 3Ah is read. In compiler syntax simply write int without any parameters.

End instruction
End instruction stops program execution. There are two parameters which can be defined with end
command: interrupt and reset. Interrupt can be used to notify processor that program execution is at the
end. Interrupt pulls INT pin low, and status bits in register address 3Ah informs which engine has caused
the interrupt. Interrupt pin state and status bits will be cleared when status register 3Ah is read. Reset
parameter resets program counter to 0 of the mapped LED outputs, changes channel to hold from run
mode, and sets PWM output to 0. If no parameters are defined, channel will be changed to hold mode and
PWM value will remain. It is preferred that every program ends with end instruction. In compiler syntax
end instruction has optional parameter i (for interrupt) or r (reset). In machine code Int corresponds to bit
12 and reset to bit 11, for example D000h correspond to end instruction with interrupt.

11SNVA715–July 2014 LP8501 Programming Considerations
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNVA715

www.ti.com

Instruction Tables

LED DRIVER INSTRUCTIONS
Inst. Bit[15] Bit[1 Bit[1 Bit[1 Bit[11 Bit[1 Bit[9 Bit[8] Bit[7 Bit[6 Bit[5] Bit[4 Bit[3 Bit[2 Bit[1] Bit[0

4] 3] 2]] 0]]]]]]]]
Ramp 0 pres Step time Sign # of increments

cale
Set PWM 0 1 0 0 0 0 0 0 PWM value
Wait 0 pres Time 0 0 0 0 0 0 0 0 0

cale

LED MAPPING INSTRUCTIONS
Inst. Bit[1 Bit[1 Bit[1 Bit[1 Bit[1 Bit[1 Bit[9] Bit[8] Bit[7] Bit[6] Bit[5] Bit[4] Bit[3] Bit[2] Bit[1] Bit[0]

5] 4] 3] 2] 1] 0]
mux_l 1 0 0 1 1 1 0 0 0 SRAM address 0–95
d_sta
rt
mux_l 1 0 0 1 1 1 0 0 1 SRAM address 0–95
d_en
d
mux_ 1 0 0 1 1 1 0 1 0 LED select
sel
mux_ 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0
clr
mux_i 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0
nc
mux_ 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0
dec
mux_ 1 0 0 1 1 1 1 1 1 SRAM address 0–95
set

MISCELLANEOUS INSTRUCTIONS
Inst. Bit[1 Bit[1 Bit[1 Bit[1 Bit[1 Bit[1 Bit[9] Bit[8] Bit[7] Bit[6] Bit[5] Bit[4] Bit[3] Bit[2] Bit[1] Bit[0]

5] 4] 3] 2] 1] 0]
Go 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
to
Start
Bran 1 0 1 Loop count Step number
ch
Int 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
End 1 1 0 Int Reset X X X X X X X X X X X
Trig 1 1 1 Wait for trigger Send trigger X
ger Ext. X X Engin Engin Engin Ext. X X Engin Engin Engin X

trig e3 e2 e1 trig e3 e2 e1

12 LP8501 Programming Considerations SNVA715–July 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNVA715

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	LP8501 Programming Considerations
	Important Notice

