
1

Viterbi Implementation on the TMS320C5x for
V.32 Modems

Mansoor A. Chishtie
Digital Signal Processing Applications — Semiconductor Group

Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright 1996, Texas Instruments Incorporated

1

Introduction

Error-control coding plays an increasingly important role in today’s communication systems. Described
concisely, error-control coding involves the addition of redundancy to transmitted data so as to provide
the means for detecting and correcting errors that inevitably occur in any real communications process [1].

Such coding techniques are particularly useful for transmission over limited-power channels like
general-switched telephone network (GSTN). Adding redundancy to the transmitted data and making use
of soft-decision decoding, the bit-error rate can be reduced considerably without increasing transmission
power. These coding techniques have proved very useful in the past decade, and many of them have been
standardized for modems and other communication devices.

CCITT recommendation V.32 is one such standard that uses trellis-coded modulation and Viterbi decoding
to achieve forward error correction at a data transmission rate of 9600 bits per second (bps). This
application report deals with the general theory and implementation of the encoding and decoding
algorithms required for the V.32 family of modems.

The architecture of the fifth generation of Texas Instruments digital signal processors (DSPs) is especially
suited for soft-decision encoding and decoding algorithms. These dynamic programming algorithms often
make use of looped code, conditional execution, min-max searches, and pointer-addressing techniques.
The enhanced TMS320C5x core CPU allows zero-overhead looping, multiple-condition branches,
delayed jumps and calls to minimize execution time, min-max instructions to implement efficient search
algorithms, and postmodified indirect addressing (which includes indexed, circular, and bit-reversed
addressing modes). These algorithms can be executed very rapidly since almost all ’C5x instructions take
only one machine cycle (25 ns) to execute.

Introduction to the V.32 Standard

V.32 modems are designed for use on connections on GSTNs and on point-to-point 2-wire leased
telephone-type circuits. The full-duplex mode of operation is supported using echo-cancelation techniques
for channel separation. Each channel uses quadrature amplitude modulation (QAM) with a synchronous
line-transmission rate of 2400 symbols per second (baud).

QAM is a modulation technique that allows two independent information channels to be modulated into
a single carrier signal. These two channels are commonly referred to as real and imaginary (or I and Q)1
components of the signal. A constellation diagram illustrates this concept (see Figure 1). Each point on the
constellation has a unique set of real and imaginary components. For a 16-point constellation, four bits are
required to uniquely represent each point.

If the input data stream is grouped into quad bits (also called symbols), each quad bit can be mapped to a
constellation point, and corresponding I and Q values are modulated into a QAM signal. V.32 modems have
a data-transmission rate of either 4800 bps or 9600 bps. At the rate of 9600 bps, either a 16-point or a
32-point constellation can be used (see Figure 1). Obviously, 5-bit-long symbols are required to map each
point of a 32-point constellation.

1 I and Q components are also referred to as X and Y in literature. Both notations are used interchangeably in this paper.

2

The V.32 standard recommends two alternative modulation schemes at 9600 bps: one using a 16-point
constellation, and the other using trellis (convolutional) coding with a 32-point constellation. When using
the trellis coding, the input data stream to be transmitted is divided into groups of four consecutive data
bits. The first two bits of each group are first differentially encoded and then convolutionally encoded to
generate a set of three bits. The other two bits are not encoded but are passed to the output stage. Thus, each
output group consists of five bits. These five bits are then mapped into a 32-point (diamond-type)
constellation. On the receiver end, a maximum-likelihood decoding algorithm (due to Viterbi) is used to
estimate the transmitted data.

This report deals with the encoding and decoding algorithms as required for the 9600-bps 32-point
constellation transmission. The basic encoding algorithm is known as a convolutional encoding scheme,
and the decoding algorithm scheme is based on the Viterbi algorithm. Although the 32-point constellation
is used extensively to help decode the signals, the actual modulation/demodulation scheme is not
implemented in software.

3

Figure 1. V.32 Modems

32-Point QAM16-Point QAM
With Trellis Modulation

For 9600 bps
Without Trellis Modulation

For 9600 bps

(a) V.32 Modems Constellations

Real

Im

Real

Im

a 5-bit output symbol.
Each point corresponds to

(b) V.32 Modems Constellation Regions

IV

III II

I

3
2

1

71154

6

10

8
9

12

13

1101111100

011000000101110

10110100011011110000

0010001011001100100100111

11101110101111011001

0001101101000100111100000

10100100111010110010

010100000101000

1100011111

Real

Im

4

Standard V.32 Encoder

The V.32 encoder (see Figure 2) is divided into two functional blocks:

• Differential encoder

• Convolutional encoder

The input data stream to the encoder is divided into 4-bit long symbols (Q1, Q2, Q3, Q4). Each symbol
is processed by the encoder, and the resulting output symbol is 5 bits long (Y0, Y1, Y2, Q3, Q4). The output
symbol is larger than the input symbol because it contains error-correction information in addition to the
transmit data.

Figure 2. V.32 Encoder

Y2n = (Q1n �Y1n –1) � Y2n –1 � Q2n
Y1n = Q1 n � Y1n –1

Q1
Q2

Q3

Q4

Y0

Y1

Y2

Q3

Q4

Q

I

Mapping
Element
Signal

Convolutional Encoder

&&Z –1

DIF

+

+ + + +Z –1 Z –1 Z –1

Z –1

Encoder
Differential

S0

S2

S1

The V.32 standard recommends the QAM technique to transmit data over the channel. Without any error
correction information, each symbol has four bits, requiring a 16-point constellation as shown in Figure
2. If a convolutional encoding scheme is employed, each symbol has five bits, and a 32-point constellation
is required.

In general, for the same average power, a modulation scheme using a 32-point constellation has higher
bit-error rate (BER) when compared with a 16-point constellation scheme. This is because the minimum
Euclidean distance between any two points on a 32-point constellation is relatively small, which decreases
the noise margin. However, convolutional encoding introduces constraints in transforming an input symbol
to a 5-bit output symbol. Specifically, it does not allow two consecutive output symbols to be in the eight
neighborhood positions of each other, as seen on the constellation diagram. The minimum distance
between two consecutive output symbols is thereby increased, thus providing an overall performance gain
of 3 dB.

5

The differential encoder provides protection against 180� phase ambiguity in the channel. The following
two equations describe the differential encoding algorithm:

Y1n = Q1n Y1n–1

Y2n = (Q1n • Y1n–1) Y2n–1 Q2n+ +

+ (1)

(2)

Notice in Figure 3 that only two input bits are differentially encoded. Because of differential encoding,
errors caused by phase reversal in the channel are not allowed to propagate, and the information sequence
is reconstructed by the receiver except for the errors at points where phase reversal has occurred [1].

Figure 3. Viterbi Encoder — Convolutional Encoding Scheme

Definitions: Convolutional Encoder

Bit
Redundant

Encoder
From Differential

Y0

Y2

Y1

3 Bits of Memory

S2S1S0

– S0, S1, and S2 are called delay states
– Y0, Y1, and Y2 are called path states

Constraint condition:

– Given a particular set of delay states (S0, S1, S2),
not all path states (Y0, Y1, Y2) are possible.

The convolutional encoder takes the two differentially encoded bits (Y1, Y2) and generates an output bit
Y0. Y0 is often called the redundant bit because it carries only the forward error-correction information.
Functionally, the convolutional encoder is a 3-bit shift register interconnected by AND and XOR logic. A
simplified diagram of a convolutional encoder is shown in Figure 3. By convention, the three bits of
encoder memory (S0, S1, and S2) are called delay states, and the set of output bits (Y0, Y1, and Y2) are
known as path states. The idea behind this terminology will become obvious later when the trellis structure
is considered. The size of encoder memory is sometimes referred to as its constraint length.

One important constraint is imposed by the encoder. Given a particular set of delay states (S0, S1, and S2),
not all path states are possible in that time interval. For instance, given a delay state (0, 0, 1) for the encoder,
only four path states (0, 0, 0), (0, 1, 0), (1, 0, 0), and (1, 1, 0) are allowed in next time interval.

This leads to the concept of trellis structure. Since the encoder is essentially a finite-state machine, a
finite-state diagram may be used to represent it. There are eight possible delay states of the encoder. At any
given time, only one delay state (S0, S1, or S2) represents the encoder. In the next instant, only four delay
states are possible instead of eight. The particular path chosen at that time depends on the current path state
of the encoder (hence, the name path state). The trellis diagram (Figure 4) concisely illustrates all possible
transformations from one delay state to another, along with their corresponding path states.

6

Figure 4. V.32 Modem Trellis Diagram

Path States
Y0, Y1, Y2

NOTE: Finite-state diagram for the convolutional encoder showing the relationship between delay and path states. Not
all delay states can be reached from a previous delay state.

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

P
as

t D
el

ay
 S

ta
te

S
0,

 S
1,

 S
2

N
ew

 D
el

ay
 S

ta
te

S
0,

 S
1,

 S
2

7

Viterbi Decoder

The Viterbi algorithm is based on a soft-decision maximum-likelihood decoding technique. The main
function of any decoder is to select the most likely output. A simple hard-decision decoder selects a code
word that differs from the received sequence in the smallest number of positions. In other words, the code
word is chosen that minimizes distance between the received signal and the code word. A soft-decision
decoding scheme makes use of past history and reliability information to decode incoming data. A
necessary ingredient of any soft-decision decoder is a suitable distance (or cost) function.

A cost function may be unique to each modulation technique. Two widely used cost functions are the
Hamming distance and the Euclidean distance functions [2]. The standard Viterbi algorithm does not
specify any particular cost function. The Hamming distance function is suitable for binary signals. For PSK
and QAM signals, the Euclidean distance function on their respective constellations is appropriate. For an
added white gaussian noise (AWGN) channel, the farther the received signal from a point on the
constellation, the less likely that it corresponds to that point. Therefore, the distance between the received
signal (as it is mapped on the constellation) and a hypothesized output point on the constellation makes a
good cost function for any QAM signal. Since V.32 uses QAM modulation, the distance estimate on its
constellation is used as the cost function.

8

Figure 5. Viterbi Decoding — Output Tracking and Cost Function

on the constellation.
the Euclidean distance function
appropriate cost function is
For QAM modulation, one

discarded.
cost value is chosen. The rest are
states, the one that has the minimum
Out of the four possible path

Between the Actual Input
and a Constellation Point

Euclidean Distance

Y0, Y1, Y2

000

010

011

001
S0, S,1 S2S0, S1, S2S0, S1, S2S0, S1, S2

Time

Imaginary

Real

Figure 7 shows an expanded trellis diagram over several symbol time intervals with the x axis representing
time and the y axis representing the eight possible delay states of the encoder. The encoder may attain only
one delay state at any given time, but the decoder keeps track of all the possible states until it decides which
one to select. This is the essence of soft-decision algorithms in which the actual decision is delayed until
more information is available. Ideally, the maximum-likelihood method looks at the entire stream of input
before making any decision about the output. Clearly, this approach is not feasible for real-time
applications due to two factors:

• Prohibitive memory requirements, even for relatively small blocks of data

• Inherent time delay before the decoder selects an output

The more practical approach taken by Viterbi is to consider only a finite length of input data before making
a decision about the output. The decision-making process relies heavily on the cost function.

To understand this algorithm, consider the expanded trellis diagram as shown in Figure 7. At each time
interval, there are eight possible delay states. Since the decoder must keep an “open mind” until it is time

9

to select the most likely output, all eight states are considered as possible representations of the encoder
in that time interval. A particular delay state can be approached only by four states from the previous time
interval (see Figure 5). The decoder selects only one of these four states so as to establish a link between
the previous time interval and the current one. Note that each link is identified by the path state it represents.

Each path state consists of three bits of a 5-bit symbol. Therefore, one path state uniquely identifies a set
of four constellation points. The V.32 signal space mapping is defined in such a way that each set of four
points is symmetrically arranged and equally spaced on the constellation, as shown in Figure 6.
Furthermore, each set of points is spaced as far apart as possible on the constellation. At the beginning of
each sample interval, the decoder compares the received signal with each set and selects the point from each
set that is closest to the signal. Essentially, this is a form of hard decoding, but its effect on the quality of
the decoder performance is not significant. This is because each set of four points is widely spaced on the
constellation so that any noise perturbation is less likely to affect these estimates.

Figure 6. V.32 Modem — Signal Element Mapping

Bit Sequence = Y0, Y1, Y2, Q3, Q4

Y0, Y1, Y2 = 101Y0, Y1, Y2 = 010

Y0, Y1, Y2 = 000Y0, Y1, Y2 = 110

RealReal

RealReal

Imaginary

Imaginary

Imaginary

Imaginary

Eight constellation points are selected, and their respective distances from the received signal are
computed. Each point corresponds to a different path state. Since each link in Figure 5 is identified by a
path state, these computed distance values are associated with each link.

By selecting all eight links, connections are established between the delay states at the current time and the
previous time (see Figure 7). In this way, eight independent path traces are stored in memory. The cost
function is now updated for each of these path traces. The cost function is the sum of distances associated
with each link of a path trace.

10

Figure 7. Viterbi Decoding — Dynamic Programming

S0 S1 S2S0 S1 S2S0 S1 S2S0 S1 S2

Time

• For every time increment, the minimum cost line is
chosen for each of the eight delay states.

• Eight independent path traces are stored in memory.
• For each track, current cost is accumulated as it hops over

the delay states.
• The state with the minimum accumulated distance is

selected to receive output.

Of the eight path traces, the one that has minimum cost (or accumulated distance) is selected as the most
likely path to receive the output. The selected path is traced back, and the 3-bit path state value (Y0, Y1,
Y2) that is associated with the last link stored in memory is the result of the Viterbi algorithm. Note that
this 3-bit result does not uniquely identify a 5-bit output symbol. The four constellation points that
correspond to the 3-bit result are compared with the input corresponding to that time interval, and the 5-bit
value associated with the point that is closest to the input is the output of the decoder. Since the output of
the decoder corresponds to the time period of the last link, it lags the input of the decoder by the length of
the path history maintained by the decoder. It is experimentally determined that the optimal length of a
Viterbi decoder is four or five times the constraint length of the convolutional encoder [1]. The V.32
encoder has a constraint length of 3, and the decoder keeps a path history of the past 16 time intervals.

Algorithm Implementation on the TMS320C5x
The three most useful features of TMS320C5x for the Viterbi algorithm are circular buffers,
minimum-maximum instructions, and zero-overhead loops. Circular addressing is used extensively
throughout the decoder algorithm to access the distance tables, stepping through the path and delay states,
and tracing back the past path states to get output. Minimum-maximum value instructions are used in search
algorithms to compute minimum Euclidean distance for each state and to find minimum accumulated
distance at each time interval. Since the algorithm is based on a dynamic programming technique, it tends
to have a multiple looped structure. The zero-overhead loops of TMS320C5x are frequently used by the
decoder program.

Encoder Implementation
The V.32 encoder block diagram is shown in Figure 2. As previously explained, it has two functional
blocks: the differential encoder and the convolutional encoder. The encoder program flow is shown in
Figure 8.

11

Figure 8. V.32 Encoder Program Flow

PACK

ENCODE

DIFF

UNPACK

START

INIT

No

Yes

?
of Input

End

Stop

Pack 5 Output Bits

Encoder
the Output of the Differential

Conventionally Encode

Two Input Bits Q1, Q2
Differentially Encode

Input Bits
Unpack

Symbol
Get Input

Variables
Initialize

Start

The initialization routine INIT sets up auxiliary registers to point to input and output tables and resets the
delay states (S0, S1, S2) to 0. This ensures that the initial state of the encoder is known beforehand. It is
useful from the decoder point of view because the decoder initializes the cost of delay state 0 to 0 so that
this state is always selected in the very first time interval.

The encoder expects the input symbols to be stored in the table PCKD_IP with each element of the table
containing a right-justified 4-bit symbol. The table input method is employed because of its simplicity. For
real-time applications, other techniques can easily replace the default method. If the input data is coming
from an ADC, a simple approach is to create two buffers. One is read by the encoding algorithm, while the
other is filled with incoming data by an interrupt service routine. In case the encoding process is required
to be synchronous with incoming data, no data buffer is needed. At every symbol time, the input symbol
is read from a peripheral device, and the resulting 5-bit output symbol is sent to another external device.

The encoding algorithm operates on binary inputs. Therefore, each input symbol is unpacked into four
words (which correspond to each bit) before any processing is done. The UNPACK section uses a
zero-overhead block-repeat loop and PLU instructions to perform the unpacking operation.

UNPACK: LACC LOCATE ;Get packed input bits

RPTB LOOP1 ;For i=0;i<=3;++i

SACL * ;Save the word

APL * – ;Keep LSB only

LOOP1: SFR ;Shift right to get next bit

The DIFF function differentially encodes two input bits according to Equation (1) and Equation (2) on page
83. Its output overwrites the original two input bits located in INPUT table. Next, the convolutional encoder
processes these two bits and generates a redundant bit Y0. The encoder state (S0, S1, S2) is stored in the
STATMEM table, and it is updated each time a new redundant bit is generated.

12

Finally, the resulting five output bits (OUTPUT + INPUT) are packed into a single word by the PACK
function. This output word contains five right-justified bits (Y0, Y1, Y2, Q3, Q4), and it is stored in the
output buffer PCKD_OP in sequential order. Note that these five output bits could be sent to a DAC or a
front-end modulator instead.

Viterbi Decoder Implementation

In contrast with the convolutional encoding algorithm, the Viterbi decoding algorithm is computationally
more complex and numerically more intensive. In general, the execution time of the decoding algorithm
is significantly greater than the execution time of the encoder algorithm. This section describes the
algorithm in detail as it is implemented on the TMS320C5x. Although the code presented here is designed
for the V.32 modem standard, it could easily be transformed for any other application of the Viterbi
algorithm.

Figure 9. Decoder Flowchart

DIFF

GET_SYM

GET_PATH

DIST
MIN_ACC_

DIST
GET_ACC_

DIST
GET_CUR_

GET_RGN

RD_DATA

INIT

No

Yes

Stop

?
of Input

End

Decode Two MSBs
of 5-Bit Output

Differentially

Symbol

That Corresponds to

State; Find Nearest
Constellation Point

That Path State

Unscramble Path

Last Time Period
Get Path State of

Selected Delay State;
Trace Back From

 Corresponding Delay State
Distance; Select

Find Minimum Accumulated

ACC_DIST Table
State; Update
for Each Delay

Accumulated Distance
Compute

Table
Update DIST

Each Path State;
Distance for

Compute Current

Constellation
Location on

Identify Input

Read Input Data

Initialize

Start

13

The decoder program flowchart is shown in Figure 9. Each process block in the flowchart corresponds to
an independent function. The modularity of each block is sacrificed somewhat to gain execution efficiency.
In other words, each block is integrated, to a certain extent, with the block that precedes it. The results of
a block are frequently passed in internal registers to the next block. However, all system variables are
defined explicitly in the beginning, and the line-by-line comments in the source code help identify where
the results are being stored.

The initialization routine INIT is called to set up tables and variables. The ACCDIST table, which holds
eight accumulated distance values for each delay state, is initialized by this function. As discussed in the
Standard V.32 Encoder section on page 82, the first state of the encoder is always (0,0,0) (that is, state 0).
To ensure that the decoder always chooses state 0 in the first time interval, the initial accumulated cost of
state 0 is set to 0 while the rest of the states are set to a cost of 0.5.

The routine RD_DATA is called once every symbol interval to read new data. This is the only routine that
needs to be rewritten to suit each application. The code presented here is not designed for any specific
hardware. It assumes that some test data has already been stored in the TST_INP table before the decoder
is invoked. The input is in the form of 5-bit symbols output by the encoder. Two look-up tables, XLOC and
YLOC, convert each symbol to its equivalent real and imaginary axis values (also called XY or IQ values).
The channel noise and distortion effects may be added to the I and Q channels independently. The resulting
values are saved in variables CURR_X and CURR_Y for later use. This approach is taken so that test data
and channel noise data may be computed independently of each other and stored in respective tables before
the decoder is invoked. Obviously, this is not a real-time approach. The front-end demodulator can provide
I and Q values directly to the device. In that case, RD_DATA is required to save only those values in
CURR_X and CURR_Y locations. Each I and Q (or X and Y) input can have a maximum resolution of
16-bits.

Once the current input is located on the constellation by X and Y values, eight constellation points
corresponding to the eight path states that are closest to this input point must be identified. Note that each
path state corresponds to four unique constellation points (see Figure 6). The brute force method of
determining these constellation points is to consider each group of four points individually, compute the
distance from each point to the input, and select the closest one. This requires all 32 points that compose
the V.32 constellation to be considered for each input symbol. Another way to make the selection is to use
a look-up table. Since the locations of the constellation points are known beforehand, it is simpler to
identify the region where the input lies and use a table to determine the eight points that are closest to that
region. As shown in quadrant I in Figure 1(b), there are 13 distinct regions in each quadrant of the
constellation. Each region has a unique set of eight constellation points (corresponding to eight path states).
A table called REGION is set up in data memory that contains 13 macro elements, each element having
four subelements corresponding to four quadrants of the constellation. Each subelement is a set of eight
pointers to the closest constellation points.

14

To identify the region where the current input lies, the following decision algorithm is used, where X,Y
is the location of the current input on the constellation shown in Figure 1(b).

If |X| <= 1 Then
If |Y| <= 1 Then

Region#1
Else

If |Y|<= 2 Then
Region#4

Else
Region#6

Else
If |X| <= 2 Then

If |Y| <=1 Then
Region#2

Else
If |Y| <=2 Then

Region#5
Else

If |Y| <= |X|+ 1 Then
Region#10

Else
Region#8

Else
If |Y| <= 1 Then

Region#3
Else

If |Y| > |X|+ 1 Then
Region#13

Else
If |Y| <= |X| – 1 Then

If |Y| <= 2 Then
Region#7

Else
Region#12

Else
If |Y| <= 2 Then

Region#11
Else

Region#9

After identifying a region, a quadrant is selected according to the polarities of X and Y.

Refer to the GET_RGN function of the decoder source code for implementation details. Note the use of
delayed conditional branches and the XC instruction to avoid flushing the pipeline. The result of the
GET_RGN function is a pointer to the REGION table.

The current cost of each path state is defined as the distance from the current input to the respective
constellation point. The result of the GET_RGN function points to a set of eight constellation points. If
(X,Y) is the input for a given time interval, and (Xk,Yk) are eight constellation points that correspond to
state k (where k = 0...7), then the current distance table is defined as:

DIST [k] � �Xk–X�2 � �Yk–Y�2 ; k � 0���7 (3)

15

The square root operation is not performed because it is time-consuming. Although the square root function
is not linear, distance values without the square root operation work well because the relationship between
x and sqrt(x) is one-to-one and monotonic. The GET_CUR_DIST routine performs this computation for
each path state.

STATE0:
LAR AR2,*+,AR2 ;Get address of 1st point out of 8
MAR *0+ ;Add XLOC, AR2 points inside XLOC
LACC * ;Get x value of 1st point
SUB CURR_X ;Subtract current x value
SACL DIFF_X ;Save (Xc–Xi)
SQRA DIFF_X ;P=(Xc–Xi) ^2
ADRK #32 ;Now AR2 points inside YLOC
LACC *,0,AR0 ;Get Y value of 1st point
SUB CURR_Y ;Subtract current y value
SACL DIFF_Y ;Save (Yc–Yi)
LACL #0
SQRA DIFF_Y ;P=(Yc–Yi) ^2, ACC=(Xc–Xi) ^2
LTA SMALL ;ACC=(Xc–Xi) ^2+(Yc–Yi) ^2
SACH DIST,4 ;Save acc. distance*2^4
MPY DIST
SPH DIST ;Save distance*0.1 in 1st location

The distance or cost values are stored in an 8-word DIST table. Each element of the DIST table corresponds
to a path state. The order of storage in the table shown in Figure 12 is not a simple ascending or descending
form. The reason for this scrambled order is explained later.

Figure 10. Delay State Linking

Current Time IntervalPrevious Time Interval

States
Delay

Current

States
Delay
Past

Path States

011

001

000

010

011

010

001

000

011

010

001

000

The next step is to accumulate the cost (or distance) for each delay state at the current time. As previously
explained, at every time interval there are eight delay states (S0, S1, S2). Each delay state at the current
time interval is linked to four delay states from the previous time interval, as shown in Figure 10. The
minimum cost link is identified, and the distance value of the selected link is added to the accumulated cost
of the delay state from which it originates. This gives the accumulated cost of the current delay state.

In addition to the accumulated cost, the following information needs to be stored for each delay state:

• The path state that identifies the link selected

• The delay state of the previous time interval that is linked to the current delay state

16

The code to perform these functions is:

STATE0:
RPTB ENDB0–1 ;For (i=0;i<=3;++i)
LACC *,0,AR2 ;Get prev. accumulated distance
ADD *,AR5 ;Add current distance
CRLT ;If acc < prev. largest
NOP ;Then
XC 2,C ;Update PAST_DLY & PAST_PTH locations
SAR AR1,*,AR6 ;Pointer to ACCDIST ––> PAST_DLY
SAR AR2,*,AR1 ;Pointer to DIST ––> PAST_PTH
MAR *,AR1 ;ARP = AR1
MAR *+,AR2 ;AR1++ (circular addressing)
MAR *+,AR1 ;AR2++ (circular addressing)

ENDB0:

Pointers to the past path and delay states are stored in the PAST_PTH and the PAST_DLY tables. Since
the decoder bases its decision on the path history of the previous 15 time periods, these two tables span 16
time periods (including the current time period). The length of each table is 128 words (16 time periods
� 8 states). At each time interval, the GET_ACC_DIST routine adds new information to the tables and
discards the oldest eight states. The format of these tables is shown below.

Figure 11. 128-Word Circular Buffers — Format of
PAST_PATH and PAST_DLY Tables

mem+120mem+112

n – 2n – 3

mem+127

state 2
state 1
state 0

state 7
state 6
state 5
state 4
state 3 state 3

state 4
state 5
state 6
state 7

state 0
state 1
state 2

Current Time Interval
n+15nn –1

mem+8mem

state 2
state 1
state 0

state 7
state 6
state 5
state 4
state 3

state 0
state 1
state 2
state 3
state 4
state 5
state 6
state 7state 7

state 6
state 5
state 4
state 3
state 2
state 1
state 0

Both tables are set up as 128-word circular buffers. Each of them is divided into 16 macro elements
corresponding to 16 time intervals. Each macro element stores the state history of one time interval. A
pointer is set up to indicate the location of the current time interval. By stepping through each macro
element, a path can be traced backward in time.

Consider the V.32 trellis diagram again (see Figure 4). Notice that all even-numbered delay states of the
current time interval have links to the first four delay states of the previous time interval. Similarly, all
odd-numbered new delay states have links to the last four delay states. For instance, the new delay state
0 can be reached from the past delay states 0 – 3, and the new delay state 1 can be reached from the past
delay states 4 – 7. So it is relatively simple to process even- and odd-numbered states in two groups.
Furthermore, even-numbered delay states can be reached only by the first four path states, and
odd-numbered delay states can be reached only by the last four path states.

17

Figure 12. DIST Table Structure

state 0state 0state 0

TEMPACC_DISTDIST

7

3

3

1

6

4

2

0

7

6

3

4

3

2

1

0

3

6

7

4

1

3

2

0

If the elements of the DIST table are set up as shown in Figure 12, all the path-state sequences can be
generated from the same table. Four-word circular buffers are set up, comprising upper and lower halves
of the DIST and ACC_DIST tables. By incrementing or decrementing through these circular buffers, path
and delay-state sequences can be generated for each new delay state. (See the GET_ACC_DIST routine
in the source code.) For each new delay state, only four past delay states and path states need to be accessed.
The table for past delay states (ACC_DIST) is set up as a circular buffer so that after accessing four
elements of the table, the pointer is automatically reset to the first element for the next iteration.

Once least-cost links to the eight delay states are identified and stored in appropriate tables by the
MIN_ACC_DIST routine, the accumulated distance table ACC_DIST is updated with new accumulated
distances. To avoid overflow, new accumulated distance is computed according to the following equation:

new acc dist = 0.9 � old acc dist + 0.1 � dist (4)

Note that this is a simple IIR implementation of a low-pass filter. The coefficients of Equation (4) can be
modified to control the decay time of this low-pass filter.

There are eight independent tracks whose path histories are maintained in the PAST_PTH and PAST_DLY
tables. The track that has the least accumulated cost (or distance) at this point is traced back for 16 time
periods to determine the decoder output at that time. This task is performed by the GET_PATH routine as
shown below. After 15 iterations, the delay state that corresponds to oldest link of the track is found.

RPTB TLOOP–1 ;for i=0,i<=15,i++
MAR *0+ ;offset by state for prev. time period
LACC *0– ;get next pointer & reset AR0 to state 0
SUB #ACCDIST ;subtract #ACCDIST to get next state
SAMM INDX ;save next state
SBRK 7 ;move AR0 7 locs back to avoid skipping CBER1
SBRK 1 ;now AR0 is correctly positioned 1 time period

TLOOP: ;back (circular addressing)

The format of the PAST_PTH table is identical to the PAST_DLY table except that it contains previous path
states instead of previous delay states. Also, the two tables are contiguous in data memory. Hence, by
adding 128 to the pointer of the PAST_DLY table, corresponding path states can be accessed in the
PAST_PTH table. The 3-bit path state (Y0, Y1, Y2) that corresponds to the oldest link is the output of the
decoder. Since the path-state table DIST is not in a simple order, a short table look-up routine performs the
descrambling of the output.

The 3-bit path state output by the Viterbi algorithm identifies a set of four points on the V.32 constellation.
Of these four points, the one that is closest to the actual input (at that time period) should be selected. A

18

table must be set up in memory that stores the decoder input for the last 16 time periods so that the oldest
input can be compared with these four constellation points. Fortunately, this cycle-consuming function can
be avoided entirely by recalling that this comparison operation was done earlier (16 time periods back, to
be exact) using the REGION table. If the pointer to the REGION table that identifies the eight closest
constellation points (for each one of the path states) is available for that time interval, it is a simple matter
to select a constellation point according to the path state number 0–7.

A 16-word circular table PATH_TBL is set up that stores pointers to the REGION table for the last 16 time
periods. Since this table is always accessed sequentially (as opposed to randomly), the bit-reversed
addressing mode is used to implement this circular buffer. The resulting 5-bit symbol (Y0, Y1, Y2, Q3, Q4)
is the actual output. Obviously, Y0, the redundant bit, does not contain useful information (as it has already
served its purpose) and can be discarded now.

Finally, the differential decoding algorithm (DIFF routine) converts Y1 and Y2 to Q1 and Q2. The
following equations describe this decoding process:

Q1n = Y1n Y1n–1

Q2n = (Q1n � Y1n–1) Y2n–1 Y2n

+

+ +

(5)

(6)

A table look-up approach is taken here to decrease the execution time of this routine. A 16-word table
DIFF_TBL is set up in memory. Each element of this table corresponds to a unique combination of bits
[Y1n–1 Y2n–1 Y1n Y2n], and it contains resulting decoded bits Q1nQ2n. Refer to the source code listing;
see the Code Availability section on page 100. These two bits combined with Q3n and Q4n result in a 4-bit
output symbol (Q1, Q2, Q3, Q4).

Performance Analysis

The V.32 encoder/decoder performance is evaluated on the TMS320C5x Software Development System
(SWDS)2. The code benchmarks are also computed with the help of TMS320C5x SWDS. The transmission
channel characteristics are simulated using the MATLAB software.

The input to the V.32 encoder is a binary data stream. As previously discussed, the stream is divided into
4-bit contiguous blocks called symbols. From the encoder standpoint, the input data is random, but the
resulting 5-bit output symbols are not entirely random. Due to the convolutional encoding done on two bits
of each 4-bit input symbol, output symbols are restricted within a subset of 32 symbols, depending on past
symbol history.

The QAM modulator modifies the amplitude and the phase angle of the transmitted carrier signal according
to each 5-bit symbol it receives. The communication channel imperfections distort the transmitted signal.
White noise, impulse noise, and phase reversals are the most commonly encountered sources of channel
distortion in telephony.

2 Since the writing of this paper, the ’C5x SWDS has been replaced with the ’C5x evaluation module (EVM) for code
 development.

19

The information is carried by the amplitude/phase of the transmitted carrier or, equivalently, by the I and
Q components of it.

S(t)� amplitude� cos (�t� phase)
� I � cos (�t) � Q � sin (�t)

(7)

(8)

The I and Q components of the signal received by a V.32 modem are corrupted with channel noise. If the
channel is modeled as an AWGN-type channel, it is simple to simulate its effect on the signal by adding
controlled Gaussian noise to the I and Q components independently. If N(t) is the zero-mean white noise
signal, the signal-to-noise ratio (SNR) of QAM modulated signal S(t) is given by

SNR(dB) � 10� log10 [
variance of S(t)
variance of N(t)

]

� 10� log10 [
E [S2(t)]
E [N2(t)]

]

(9)

(10)

With the assumption that the I and Q inputs are statistically independent of each other, the SNR equation
for the QAM modulated signal can be simplified as

SNR(dB) � 10� log10 [
variance of I

variance of Ni
]

� 10� log10 [
variance of Q
variance of Nq

]

(11)

(12)

where Ni and Nq are additive noise signals for the I and Q input signals, respectively. Fixed-length
sequences of I and Q are generated, and their sample variances are computed using the MATLAB software.
For each desired value of SNR, required variances of Ni and Nq are calculated using Equations (9) through
(12). Once the variances of Ni and Nq are determined, zero-mean Gaussian noise sequences Ni and Nq are
generated by MATLAB. The input to the decoder program consists of I and Q data added to the respective
noise sequences, Ni and Nq. This allows measuring the SNR performance of the decoder.

Figure 13 illustrates the performance of V.32 encoder/decoder code for various SNRs. These results are
based on an input data sequence length of 4000 symbols. The yardstick for the performance measurement
is symbol error rate (SER), which is defined as:

SER�
total number of symbol errors

total number of input symbols received (13)

Note that each input symbol consists of four bits.

20

Figure 13. White-Noise Impairment — Simulation Results

Symbol Error Rate (10n)

Signal/Noise Ratio (dB)

2520151050
–5

–4

–3

–1

0

’C5x V.32

–2

There are several factors that affect the performance of a Viterbi decoder in the presence of noise. One is
the length of the path history analyzed by the decoder before selecting the most likely output. In general,
it should be four or five times the encoder constraint length. Further increase in path history length gives
only marginal improvement in performance.

Another performance factor is the decay time of the low-pass filter that is used to accumulate distance. By
decreasing its time constant, the decoder can be made to respond to short noise bursts in the channel.

The table of eight accumulated distance values provides a convenient way of monitoring the performance
of the decoder (and noise activity in the channel) in the absence of any prior knowledge of incoming data.
Recall that these eight accumulated distance values allow the selection of minimum cost path at every
symbol time interval. These values are also updated as new data is processed. During the relatively
noise-free periods of transmission, it is observed that only one of the eight distance values remains
significantly smaller than the rest. This in turn forces the decoder to select one particular path at every time
interval. As the signal deteriorates, the difference between the minimum value and the rest of the table
contents decreases. At some point, all distance values become so much alike that the decoder can no longer
identify the correct path. This is the stage in which the BER increases considerably.

21

Table 1. Program Benchmarks

Speed And Memory Requirements

 Code Size
(in Words)

Data Size
(in Words)

CPU Loading
per Symbol,
Excluding

Initialization
(in Machine Cycles)

V.32
Encoder

79 10 90

V.32
Decoder

768 837 963-973

Table 1 shows the code size, data size, and CPU loading of the V.32 encoder/decoder program. This is by
no means a fully optimized implementation of V.32 on the TMS320C5x. This code is written with the basic
aims of demonstrating the capabilities of the TMS320C5x digital signal processor family and providing
system designers with a head start on V.32 modem design. Table 2 and Table 3 present memory and speed
requirements for various modules of the encoder and decoder. There are several speed-vs.-memory issues
that can best be resolved by the system designer. The following paragraphs highlight some of them.

Table 2. V.32 Encoder Code

No Function Name Code Words Machine Cycles

1 START 8 9

2 UNPACK 6 15

3 DIFF 11 12

4 ENCODE 20 21

5 PACK 12 20

Table 3. V.32 Decoder Code

No Function Name Code Words Machine Cycles

1 RD_DATA 17 22

2 GET_RGN 108 80 - 112

3 GET_CUR_DIST 136 142

4 GET_ACC_DIST 228 489

5 MIN_ACC_DIST 36 65

6 GET_PATH 12 132

7 GET_SYM 11 15

8 DIFF 21 24

22

The approach that should be taken wherever speed-vs.-memory tradeoffs exist is to optimize for speed. For
instance, the GET_RGN function uses a 416-word table to identify the eight closest constellation points.
As discussed in the Algorithm Implementation on the TMS320C5x section on page 88, an alternate
approach is to compute the distance between each constellation point and the current input and select the
minimum distance point.

In the GET_CUR_DIST routine, distances corresponding to eight path states are computed by inline code,
as opposed to looped code. This is done to facilitate the scrambled order of storage in the DIST table (see
Figure 12). A considerable amount of program space may be released (approximately 100 words) if looped
code is used here at the cost of additional machine cycles required to set up the loop and to access the DIST
table.

In contrast with the GET_CUR_DIST routine, the GET_ACC_DIST routine is very difficult to implement
in loop form. Each delay state computation itself makes use of iterative code. Furthermore, path-state
sequences are unique for each delay state.

Summary

The TMS320C5x provides a powerful DSP engine for data-communication applications. This application
report presents an efficient implementation of data encoding and decoding algorithms for V.32 modems
on the TMS320C5x.

The encoder and decoder source code is designed with a generic hardware interface in mind. System
designers can modify the input/output modules to suit their hardware requirements. The encoder algorithm
is fairly straightforward. Most of the number crunching is required by the decoder algorithm. Although the
code is written for the V.32 modem standard, a conscious effort is made to point out the V.32-specific and
general-purpose Viterbi functions for adaptation of the code to any other Viterbi decoding scheme. For the
same reason, the program flow is discussed in considerable detail.

Assembly code can be run on TMS320C50/1 in real time, without requiring any external memory. On a
35-ns TMS320C5x, the entire code only takes approximately 8% of the CPU time.

Code Availability

The associated program files are available from Texas Instruments TMS320 Bulletin Board System (BBS)
at (713) 274-2323. Internet users can access the BBS via anonymous ftp at ti.com.

23

References
1. Michelson, A. M., and Levesque, A. H., Error-Control Techniques for Digital Communications,

John Wiley & Sons, 1985.

2. Clark, G. C., and Cain, J. B., Error Correction Coding for Digital Communications, Plenum
Press, 1981.

3. Proakis, J. G., Digital Communications, McGraw-Hill Book Company, 1983.

4. Forney, G. D., Jr., “The Viterbi Algorithm”, Proceedings Of The IEEE, March 1973.

5. Viterbi, A. J., “Error Bounds for Convolutional Codes and An Asymptomatically Optimum
Decoding Algorithm”, IEEE Transactions, Infinity Theory, April 1967.

6. Lin, S., and Costello, D., Error-Control Coding: Fundamentals and Applications,
Prentice-Hall, 1983.

7. TMS320C5x User’s Guide, Texas Instruments, 1993.

8. ”Report on the Work of Study Group XVII During the Period 1981–1984 Part III: Proposed
New or Revised Recommendations in V-Series”, CCITT, Malaga-Torremolinos, 1984.

9. MATLAB User’s Guide, The Math Works, Inc., 1989.

24

