
Digital Voice Echo Canceler
Implementation on the TMS320C5x

Application Report

Kevin McCoy
DNA Enterprises

Mansoor A. Chishtie
Digital Signal Processing Applications — Semiconductor Group

SPRA142
October 1994

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright 1996, Texas Instruments Incorporated

1

Introduction

This voice echo canceler implementation on the TMS320C5x is based on a similar implementation on the
TMS320C2x [1]. This application report outlines the differences between the two implementations and
highlights the specific ’C5x features that support an efficient echo canceler implementation.

This application report extends the ’C2x report with a description of the ’C5x implementation of the
algorithm. It is highly recommended that you read both reports to get complete details on the theory and
the algorithm used for adaptive filtering and echo cancellation. Although the basic algorithm is the same,
the ’C5x implementation is considerably different from that of the ’C2x to take advantage of the ’C5x
architecture. These performance improvement techniques are discussed in detail in this application report.

The hardware platform used for testing the ’C5x echo canceler software consists of a ’C5x software
development system (SWDS) and an analog front end (AFE) board. The SWDS is a plug-in IBM PC AT
card, which is used to debug and run ’C5x code in real time. It has all the necessary hardware hooks to allow
an efficient message-passing scheme between the ’C5x and the host PC. The AFE board acts as an analog
interface to the ’C5x SWDS. It is made up of two codecs, two telephone hybrid transformers, and clock
generation logic for the near-end and the far-end line interfaces.

Although the software is designed to run on an SWDS-AFE platform, very little modification is required
to adapt the program to a different target board1. The current implementation simulates the following
functions in software:

• Near-end round-trip delay

• Far-end round-trip delay

• Near-end echo generation

The near-end round-trip delay directly affects the performance of the echo canceler. This is the time delay
of the tail circuit (see Table 3 for details) and is simulated in software in order to analyze the echo canceler
performance. The far-end round trip delay is the delay of the forward circuit. The echo generation is
implemented in software.

In addition to these simulations, a message-passing scheme is supported by the ’C5x to interface to the host
PC via the SWDS hardware. This allows you to monitor the echo canceler performance in real time.

These features are provided to fine-tune the software performance according to each applications
requirement. They can be turned off by using software switches (see Table 1 on page 197) during assembly
time.

’C5x Device Features Used in This Implementation

The ’C5x architecture is based on the industry-standard TMS320C25 architecture. The ’C5x assembly
language is a superset of the TMS320C25 assembly language. However, the ’C5x has an enhanced
pipelined architecture that allows it to execute instructions at 50 ns or 25 ns — more than twice the speed
of the ’C2x. In addition, the ’C5x has a more powerful set of instructions that allows highly efficient
algorithm implementation. Many of these enhanced features are used in this echo canceler implementation.

The rest of this section highlights various features of the ’C5x architecture that distinguish it from the ’C2x
family. All code examples are taken from the echo canceler software, but the general comments are equally
applicable to any DSP algorithm.

1 Editor’s note: This may be necessary since the ’C5x SWDS is no longer available from Texas Instruments Incorporated. An
alternative development platform is the ’C5x evaluation module (EVM).

2

Dual Mapping of On-Chip Memory

The ’C5x has 1056 words of on-chip dual-access memory, 512 words more than the ’C25. While this type
of memory is more efficient to use, it is expensive in terms of silicon real estate. Another type of on-chip
memory available on ’C5x devices is single-access memory. The ’C53 and ’C51 have 3K/1K words of
single-access memory, while the ’C50 has 8K words. This memory block can be mapped simultaneously
in program and data spaces. This dual-mapping feature is very useful for adaptive FIR filters, such as the
echo path transversal filter. The multiply/accumulate loops require FIR coefficients in the program space,
but the same coefficient table is also accessed in data space to update the transversal filter coefficients.
Placing this coefficient table in single-access memory and utilizing its dual-mapping feature make the
transversal filter implementation more efficient. Note that the data-move operation (DMOV instruction)
works on the single-access RAM (SARAM) block, as well.

Zero-Overhead Loops

The ’C5x features zero-overhead loops, as opposed to the 3-cycle overhead of the ’C25 BANZ (branch on
AR not zero) loops. This makes ’C5x looped code as efficient as inline implementation. The code in
Example 1 illustrates the use of block repeats in the filter taps update algorithm:

Example 1. Zero-Overhead Loops UPDATE.ASM

lacl num_a_iter_2
samm brcr ;no. of iterations
rptb $block_end–1

lacc *,16,arl ;start of loop
mpya *+,ar2
sach *0– ;end of loop

$block_end:

In the ’C25 implementation, the same algorithm was coded inline.

Dynamic Addressing of Coefficient Tables

The multiply/accumulate instruction (MAC) on ’C25/’C5x devices fetches input samples of an FIR filter
from data memory and takes the filter coefficients from the program memory. This achieves single-cycle,
multiply/accumulate operation by simultaneously fetching two operands from memory. Most ’C25/’C5x
FIR computations are carried out this way. On the ’C25, the coefficient table address can be specified only
in the direct addressing mode. This is adequate for most applications, except where the coefficient table
address is determined in runtime. For such cases, the ’C5x provides a register-indirect mode of addressing
on multiply/accumulate operations.

Example 2. Echo Estimation Routine FIR.ASM

lacl last_a ;update coefficient
samm bmar ; table address
lacc one,14
zpr ;clear preg
rpt num_a_1 ;repeat

madd *_ ;multiply/accumulate
apac ;last product
sach est_echo,1 ;save echo estimate

This feature is used in the echo estimation routine, as shown in Example 2. The block-move-address
register (BMAR), a dedicated CPU register, points to the location of the coefficient table in program

3

memory. This feature is useful when code reuse is a consideration. For the code shown in Example 2, it
is particularly important because the length and the location of the transversal filter coefficients are
determined in runtime.

Use of Nested Loops

Complex applications like voice echo cancellation often need nested loops. For instance, the block update
algorithm for echo filter taps requires two nested loops: an inner loop to compute a time-averaged
correlation error for each coefficient in the block and an outer loop to update the coefficient. This can easily
be accomplished on the ’C5x by nesting a single-instruction repeat (RPT) inside the block-repeat (RPTB)
loop.

Example 3. Coefficient Update Routine TAPINC.ASM

lt cun0 ;
lar ar2, #inc0
rptb $calc_INCs–1 :outer loop

lacc one, 15
mpy *+
rpt #14 ;inner loop

mac pun0+1,*+ ;compute error
mar *,ar2
lta cun0
sach *+,0,arl ;save coeff update

$calc_INCs:

When a single-instruction repeat (RPT) loop cannot be used, block-repeat loops can be nested with
delayed-branch loops such as branch-on-AR-not-zero-delayed (BANZD). Up to eight such BANZD loops
can be nested, each using an auxiliary register as the loop counter. In ’C25 implementation, the same
algorithm is coded in-line.

Maxima/Minima Search

The ’C5x features special instructions to efficiently find minimum (or maximum) value in a data array.
Each element in the array can be 32 or fewer bits wide. A signed comparison is made between the
accumulator and the accumulator buffer, and the smaller (or greater) of the two values updates the
accumulator buffer. This feature is advantageous in the near-end speech detection algorithm.

Example 4. Near-End Speech Detection Routine NESPDET.ASM

lacl num_m_1 ;
samm brcr ;repeat count
zap
sacb ;initialize accb for search
rptb $max

lacc *–,0,ar2 ;get partial maxima M(k)’s
sacl *–,0,ar1
crgt ;save largest M(k) in accb

$max:
sacl max_m ;largest M(k) –> max_m

4

The code loop shown in Example 4 performs two functions:

• It finds the largest far-end speech sample (or its power estimate) from a set of the num_m most
recent samples.

• It implements a time window spanning the echo path delay range.

On the TMS320C2x, the same algorithm must be implemented with conditional branches. The built-in
’C5x support for search algorithms generates faster and more elegant code.

Circular Buffers

Another ’C5x advantage over the ’C2x is its support for circular addressing. Two independent circular
buffers of any size are supported by the ’C5x address generation unit. They can be used to implement FIFO
buffers and queues. In this echo canceler application, the two circular buffers are used to hold far-end and
near-end receive samples and implement variable delay for near-to-far and far-to-near signal paths.

Another important use of circular addressing is in FIR filter implementations. The conventional way of
performing FIR computation on ’C2x/’C5x devices is via a multiply/accumulate with data-move (MACD)
operation. In the case of a ’C5x, circular addressing can replace a data-move operation to update filter taps.
This is a faster implementation if the filter taps reside in the on-chip single-access memory or the external
data memory. The echo simulation filter employs this technique, as shown in Example 5.

Example 5. Echo Simulation Filter EFILT.ASM

mar *,ar5;
lar ar5,efilt_ptr ;get echo filter taps address
zap
rpt #(filt_len–1) ;multiply/accumulate

mac echo_filt_end,*+ ; with circular addressing
apac ;add final product
add one,14 ;round output
sach sim_echo_out,1 ;save as Q15 result

Delayed Branches and Conditional Execution

The ’C2x has a three-deep instruction pipeline. This allows it to perform more operations in parallel by
overlapping various phases of instructions. The ’C5x features a four-deep instruction pipeline to attain even
higher performance. Since deeper pipelines take more cycles to flush, the ’C5x supports special types of
branches and calls to avoid this overhead. Normal ’C5x branches take four machine cycles, while a similar
instruction on a ’C2x takes only three cycles. However, all ’C5x instructions that cause a pipeline flush
support a delayed option that reduces the overhead to only two machine cycles. Moreover, in the special
case in which only one or two instructions are skipped over, you can use an even faster instruction, XC
(conditional execute), which takes only one machine cycle.

5

The code shown in Example 6 illustrates the use of delayed branches and conditional execute instructions.

Example 6. Use of Delayed Branches NESPDET.ASM

bd $chk_hang ;delayed branch
sacl max_m
lacc absy0f ;branch executes here

sub max_m
lar arl,last_m_1
xc 2,gt ;if acc<=0 then skip next two

lacc absy0f ; instructions
sacl max_m

lacc num_m_1
samm brcr

Barrel Shifters

Both the ’C2x and ’C5x DSP families support a 16-bit input prescalar and an 8-bit output postscalar in
hardware. This is necessary for efficient fractional arithmetic and bit manipulation. In addition to these
barrel-shifters at the input and output paths, the ’C5x family also features a 16-bit right barrel shifter on
the accumulator. This complements left barrel shifting provided by the input prescalar. The code in
Example 7 illustrates the use of barrel shifters.

Example 7. Code Excerpt From MULAW.ASM

.

.

.
lact temp_B2 ;Shift left biased linear into ACC
bsar 16 ;Shift right ACC by 16
add #0E0h
sub treg1,4 ;Shift left by 4 and subtract

.

.

.

The lact instruction uses the left barrel shifter to transfer data to the accumulator, and the input shift is
determined by the treg1 register. The following instruction, bsar, performs a 16-bit right barrel shift on the
accumulator contents.

Memory-Mapped Registers

Both the ’C2x and the ’C5x have accumulator-based internal architecture. In ’C2x devices, all arithmetic
operations are performed on the accumulator. There is no data path between the accumulator and other CPU
registers, including the auxiliary register set. Therefore, a temporary data memory location must be used
to transfer data between the arithmetic logic unit (ALU) and the address generation unit (AGU).

The ’C5x architecture is considerably enhanced; it provides a direct data path between the accumulator and
the rest of the CPU registers by mapping them into local data memory. It also supports direct
memory-to-register data transfer on all its internal registers. The code in Example 8 illustrates the use of
’C5x memory-mapped registers.

6

Example 8. Taps Update Routine UPDATE. ASM

update taps:
splk #16,indx ;init. index register
lar AR1,#INCO ;init. aux register 1
lacc ADA0
sub H
sacl ar2 ;init. aux register 2
lacc beta_gain ;get variable beta_gain factor
samm treg1 ;init. temp register 1
lacl num_a_2
samm brcr ;init. repeat count
lact IABSY
samm treg0 ;init. temp register 2
mpy *+,ar2
rptb $block_end–1

lacc *,16,arl
mpya *+,ar2
sach *0–

$block_end

Parallel Logic Unit

The ’C5x bit manipulation unit runs independently from its arithmetic logic unit. It allows logical
operations on any on-chip or off-chip memory location (including memory-mapped registers) without
modifying the accumulator (ACC) or accumulator buffer (ACCB). This feature, in conjunction with the
memory mapping of the CPU registers, provides ’C5x programmers more flexibility to modify auxiliary
registers to implement software queues and FIFOs. Additionally, the read-modify-write operation
performed by the parallel logic unit (PLU) instructions may also be used for semaphore update. The section
of code in Example 9 is taken from the echo canceler program. It services the serial port receive interrupt
by reading the received data, transmitting new data and setting appropriate flags to communicate with the
background program. Notice in particular the use of PLU instructions for setting software flags.

Example 9. Serial Port ISR ECHOISR.ASM

rint_isr:
ldp #DRR_data
smmr drr,#DRR_data ;get serial receive data
lmmr drr,#DXR_data ;send serial transmit data
opl #RXDATA,sp_flag ;mark serial data received
apl #TXDATA,sp flag ;mark serial port data sent
opl #ERINT,intr_flag ;mark rint in intr_flag
reti

Code and Data Requirement

The echo canceler software implementation gives you maximum control over its performance and
behavior. Various system parameters, such as the echo filter length, echo cancellation enable/disable mode,
and filter adaption enable/disable mode, are represented by memory variables rather than by hard-coding
in software. This lets you either:

• Modify these parameters in realtime by the use of supervisory software, as illustrated in the
SWDS demo program, or

• Set up these parameters in the initialization stage.

7

Table 1 lists these user-defined system parameters along with their default values. To modify the default
value parameters, edit the echoequ.inc file.

Table 1. User-Defined System Parameters

Number Variable Name Description Type Default [range]

1 pd_wait Program/data wait states const 0h

2 echo_taps Transversal echo filter taps const 512 [16-512]

3 sim_echo Simulated echo disable/enable const 1 [0/1]

4 host_comm Host PC communications disable/enable const 1 [0/1]

5 control_flags† Bit 0: echo cancellation disable/enable
Bit 1: residual suppression disable/enable
Bit 2: coeff adaptation disable/enable

variable 1 [0/1]
1 [0/1]
1 [0/1]

† The control_flags variable is active only when host_comm is set to 1. Edit the echoinit.asm file to modify this memory
variable.

8

Table 2 indicates the processor loading and the code size of each software module for a 512-tap
implementation. It also indicates where each module is located in program memory. Most of the
time-critical subroutines are located in the on-chip single-access random-access memory (SARAM). The
auxiliary functions, such as the host PC mailbox, are executed from external memory.

Table 2. Program Module Requirements

Number
Module
Name Description

CPU
Cycles † Code Size

Code
Location ‡

1 ECHO.ASM Main module — variable declarations. – 2 ROM

2 ECHOINIT.ASM Initialization module. – 218 ROM

3 ECHOISR.ASM Interrupt services routines. 17 56 ROM

4 CYCLE.ASM Get new samples. Convert µ-law
to linear. Poll host PC mailbox.

67 71 SARAM

5 EFILT.ASM AR for the echo simulation. Update
delay buffers.

50 21 SARAM

6 FIR.ASM Estimate echo. Compute error. 546 21 SARAM

7 RESID.ASM Residual error suppressor. 17 16 SARAM

8 MULAW.ASM Linear-to-PCM conversion. 41 28 SARAM

9 PCALC.ASM Power estimate of y(n) and o(n). 39 19 SARAM

10 NESPDET.ASM Near-end speech detection. 47 83 SARAM

11 ONORM.ASM Output normalization for
coefficient update.

55 32 ROM

12 TAPINC.ASM Tap increment. 791 32 ROM

13 UPDATE.ASM FIR filter tap update. 153 27 ROM

14 UTIL.ASM Process host PC commands.
Write monitored variables.

– 233 ROM

15 MAILBOX.ASM Host PC mailbox. – 41 ROM

Total cycles
for 512-tap
filter = 1825

Total code
size = 900

words

† Only for the modules that are in the main cycle. Cycle count given for 512 taps transversal echo filter.
‡ ROM = ’C51 on-chip, read-only memory or external memory.
 SARAM = ’C51 on-chip, single-access RAM.

Data Allocation

The ’C51 has 1056 words of dual-access and 1024 words of single-access on-chip memory. It also has 8K
words of on-chip, read-only memory. The on-chip data memory is allocated to various modules of the echo
canceler software according to their specific requirements. Table 3 lists the size and the location of various
data variables for a 512-tap implementation.

The coefficients of the echo transversal filter are placed in the on-chip, single-access memory because of
its dual-mapping capability. Note that these coefficients are accessed in both program and data spaces by
two different modules.

The 1024 words of dual-access memory are used for data storage. Reference samples of the far-end talker
reside in this memory block. This makes efficient use of multiply-accumulate-with-data-move-type
operations.

9

To simulate delay paths between near-end and far-end speakers, two long buffers of 2K words each are
maintained in external data memory. Another buffer that holds host PC messages resides in external
memory. Since all three buffers are in noncritical paths and would eventually be deleted from the final
implementation, they are placed in external memory.

Table 3. 512-Tap Implementation Data Variables

On-Chip Single-Access Memory: 528 Words

16 words Normalized outputs Un0 – Un15

512 words Transversal echo filter coefficients A0 – A15

On-Chip Dual-Access Memory: 655 Words

62 words System variables

33 words Local maxima M(k) for near-end speech detection

32 words Coefficient increment INC(k)

528 words Reference samples Y(k)

External Data Memory

2304 words Near-to-far sample delay buffer (optional)

2304 words Far-to-near sample delay buffer (optional)

2048 words Message buffer for PC communications (optional)

10

Code Benchmarks

The two most computationally intensive routines of this echo canceler application are:

• The transversal echo filter routine FIR.ASM, and

• The mean square error (MSE) computation routine TAPINC.ASM.

The computational requirement for these two routines depends on the length of the echo transversal filter.

Table 4 shows the relationship between the processor loading and the length of the transversal filter. For
a 512-tap filter, the ’C5x takes only 92 microseconds to process each sample. With an input sampling rate
of 128 microseconds, this leaves the processor with ample time for system overhead. In fact, a 50-ns ’C5x
processor can implement about 750 echo filter taps within a 128-microsecond sampling period. In other
words, one 50-ns ’C5x DSP can handle 96 ms of the tail-end circuit delay.

Table 4 shows code benchmarks for a hardware platform that consists of the ’C51 software development
system (SWDS) with an analog front end (AFE) board, a zero-wait-state external data/program memory,
a 50-ns instruction cycle rate, a 128-µs input sampling period, and PC communication disabled.

Table 4. Code Benchmarks

Number Echo Filter Taps Time Required to Process One Sample

1 32 26.0 µs

2 48 28.1 µs

3 64 30.0 µs

4 80 32.4 µs

5 96 34.6 µs

6 128 38.9 µs

7 256 56.7 µs

8 512 91.6 µs

Echo Canceler Demonstration on a ’C5x SWDS

The primary hardware platform for testing the ’C5x echo canceler software (for code benchmarks) was a
’C5x SWDS. The AFE board communicates with the ’C5x DSP via its serial port and has codecs and hybrid
transformers for near-end and far-end telephone interfaces. An AFE board schematic is shown in the
appendix of this report.

You can run the demonstration software on any ’C5x SWDS board by downloading the echo.out file to the
board and running the echodemo.exe file on the host PC. To do this, type the following two commands at
the DOS prompt:

c51load echo.out

echodemo.exe

11

You can control the various system parameters — such as tail-circuit delay, transversal filter taps, echo
cancellation mode, and adaptation mode — in real time by running the echodemo.exe program.

Conclusion

This implementation of a single-channel voice echo canceler on a TMS320C51 highlights the powerful and
versatile architecture of that DSP. This particular algorithm was first coded on a TMS32020. Coding the
same algorithm on a TMS320C51 shows that the resulting performance improvement is not merely due
to the faster instruction rate on the ’C5x. Performance is improved by more than a factor of two when
enhanced ’C5x architecture is fully utilized. The ’C5x features used in this implementation are discussed
in detail. The processor loading and the code and data size of each software module are listed. Several
auxiliary functions that are used for testing and evaluation purposes are discussed. The details of a
demonstration package that consists of a ’C51 SWDS, an analog front-end board, a ’C5x DSP, and PC
software are given.

Acknowledgements

Texas Instruments acknowledges the efforts of the DNA Enterprises’ project team: Kevin McCoy, Mark
Sissom, and Paul Kniffen.

Code Availability

The associated program files are available from the Texas Instruments TMS320 Bulletin Board System
(BBS) at (713) 274-2323. Internet users can access the BBS via anonymous ftp at ti.com.

References

1. “Digital Voice Echo Canceler With a TMS32020”, Digital Signal Processing Applications,
Volume 1, Texas Instruments, 1986, pp. 415–454.

2. TMS320C5x User’s Guide, Texas Instruments, 1991.

3. TMS320C5x Software Development System Technical Reference, Texas Instruments, 1990.

4. TMS320C5x C Source Debugger User’s Guide, Texas Instruments, 1991.

5. TMS320 Fixed-Point DSP Assembly Language Tools User’s Guide, Texas Instruments, 1990.

NOTE: T1–T2 Transformer Specifications

1. Dual primary, center-tapped secondary

2. Primary inductance = 1.1 H@ 1 kHz. 65 mA
3. Saturation current > 70 mA
4. 1 : 1 : 1 : 1 turns ratio
5. Average winding resistance = 62.5 Ω
6. Primary winding resistances should match within 1%.
7. Wind 1/2 secondary first; tape, then wind primary

bifilar; tape, then wind rest of secondary.
8. Coefficient of coupling (K) >= 0.998
9. Pri-to-pri and pri-to-sec Hipot = 500 V

(This is a single-coil, hybrid transformer.)

12

Appendix: Schematic of the Dual-Telephone Interface
for the TMS320C51 SWDS

FSX (104)

FSR (45)

CLKX (124)

CLKR (46)

DR (43)

DX (106)

Serial Port
TMS320C5x

Codec Frame Generator

3

4

5

6

10

11

12

13

+5 V

+5 V
8

2

2

1

C

CL

B

A

QA

QB

QC

QD

QE

QF

QG

QH

Near-End Circuit

Far-End Circuit

T2

NMI8842
T1

Oscillator
2.048-MHz

13 74ALS163
U3

11

13

12

QB

QC

QD

1

E

102

E
C

QA

CL

7

14

6

4

5

9
+5 V

3

D

C

B

A

LD+5 V

7102

EE
C

1

14

13

12

11

9

3

4

5

6

CL

QA

QB

QC

QD

LD

A

B

C

D

11

U2 29C16

10
FSX

12

9

/TSX

AIN

/PDN

GSX

PCMOUT

15R12

4
174 � 1%

+5 V

14

3

5

7

6
9

10 1
R7

C2

�F

75 �

75 �
R8 2.2

TIP_NEAR R10
174 � 1%

R9
182 � 1%

6
PCMIN

7

5

FSR

PWRO+

PWRO–

AGND

– 5 V

DCLKR

2

3

13

RING_NEAR
R11

174 � 1%

CLK

5 V

– 5 V

–5 V

5

7

6

9

12

10

11

U1 29C16

DCLKR

FSR

PCMIN

CLK

/TSX

FSX

PCMOUT

AGND

PWRO–

PWRO+

/PDN

GSX

AIN

22 �F
C4

22 �F
C3

– 5 V

5 V

13

3

2

4

15

14

+5 V

174 1%

R6

174 � 1%

R5

182� 1%

R3

174 � 1%
R4

5

3

1

6
9

7

10

RING_FAR

TIP_FAR

75 �
R2

75 �
R1

– 5 V

5 V

uF
2.2
C1

DNA Enterprises. Inc.
Dual-Telephone Interface for the TMS320C51 SWDS

74ALS163
U4

74ALS164
U5

NMI8842

