
����� �������������� �� ���
�
����	��
��

Application
Report

1997 Digital Signal Processing Solutions

Printed in U.S.A., June 1997 SPRA161

H.261 Implementation on the
TMS320C80 DSP

Application Report

SPRA161
June 1997

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright  1997, Texas Instruments Incorporated

iii H.261 Implementation on the TMS320C80 DSP

Contents
1 Introduction 1.

2 Basic Overview of the H.261 Recommendation 3.
2.1 Transform, Quantization, and Run-Length Encoding 8.

3 Applying the H.261 Recommendations 10.
3.1 What is Not Specified in the Recommendation 10.

4 Implementation on the TMS320C80 Processor 12.
4.1 Major Types of Coding Modes 12.
4.2 Coding Mode Decisions in the TMS320C80 14.
4.3 Motion Estimation 16.
4.4 Bit-Rate Control 18.
4.5 Adaptive Quantization 18.
4.6 Frame Dropping 18.
4.7 Multitasking on the TMS320C80 18.

5 Using the H.261 Code 19.
5.1 Initialization Code 19.
5.2 Loopback Program 20.

6 Conclusion 21.

7 References 22.

Figures

SPRA161iv

List of Figures
1 Recommendation H.261 Image Format and Hierarchy 4.
2 Video Multiplex Coder Syntax Diagram 5.
3 H.261 Recommended Zig-Zag Scanning Procedures 9.
4 TMS320C80 H.261 Recommendation Compression and Decompression Codec Used

in the TMS320C80 13.
5 TMS320C80 H.261 Coding Mode Decision 16.
6 TMS320C80 H.261 Recommended Motion-Estimation-Search Algorithms 17.
7 TMS320C80 H.261 Tasking Model 20.

1 H.261 Implementation on the TMS320C80 DSP

H.261 Implementation on the TMS320C80 DSP

ABSTRACT
This report describes the coding requirements, techniques, and decisions which
must be made to utilize the TMS320C80 DSP as an integrated services digital
network (ISDN) video-system manager and provides an overview on how the
processor handles video signal in the ISDN narrow-band format in conformance
with the International Telecommunications Union (ITU)–T H.261 Recommendation.

1 Introduction
The development of video encoding/decoding transmission standards by
the International Telecommunications Union (ITU) has resulted in a series
of recommendations which attempt to specify practices and protocols for
various service types.

For video-signal management using narrow-band ISDN service, this has led
to development of the H.261 Recommendation. The H.261
Recommendation, “Video Codec For Audiovisual Services at
p × 64 kbits/s” supports and defines coder/decoder (codec) protocols for
transmission bit rates of up to P × 64 kbps, where P is between 1 and 30,
which results in a maximum throughput of up to 1.92 Mbps.

H.261 precedes the Joint Photographic Experts Group (JPEG) and Motion
Picture Experts Group (MPEG) formats and specifically defines only the
signal decoder mechanism. By necessity, however, all encoder schemes
must be compatible with any decoder used to process the coded data
streams. Therefore, the P × 64 Kbps standard is actually a series of
recommendations which describe transmission items such as:
• H.221 frame structure
• H.230 frame synchronous control
• H.242 communications between audio-visual terminals
• H.320 systems terminal equipment
• H.261 video codec systems

Both H.261 and JPEG codecs use discrete cosine transform (DCT) and
variable length codes (VLC) techniques. JPEG processes incoming picture
frames independently, using intraframe DCT while the H.261 recommended
using a block-based, motion-compensating scheme.

Similar to other video-encoding/-decoding methods, H.261 uses picture
data in previous frames to predict the image blocks in the current frame.
Therefore, only differences of a small magnitude between the displaced
previous block and the current block are transmitted rather than entire
picture blocks as in the JPEG standards.

Introduction

SPRA1612

Several characteristics and design considerations are relevant to the H.261:

1. H.261 defines only the decoder. Encoders, which are not explicitly
specified by the standard, are expected to be compatible with any
well-defined decoder.

2. H.261 is designed for real-time communications and to reduce encoding
delays uses the closest previous frame for motion-picture-sequence
coding.

3. H.261 tries to balance the hardware complexities between the encoder
and the decoder since they are both needed for real-time videophone
applications. Other coding schemes, such as vector quantization (VQ)
may have a rather simple decoder but must have a more complex
encoder.

4. H.261 compromises between coding performance, real-time
requirements, implementation complexities, and system robustness.
Motion-compensated DCT coding is a mature standard.

5. The H.261 final coding structures and parameters are tuned more
toward low bit-rate data transmission applications. Selection of coding
structures and coding parameters is more critical to codec performance
at very low bit-rates. At low bit-rates, data is transmitted at a slower pace
and any discrepancies in reception are more able to disrupt reception of
data. At higher bit rates less-than-optimal parameter values do not affect
CODEC performance as much.

This report provides basic information on how the H.261 is implemented,
and explains how the TMS320C80 implementation is accomplished. While
current implementations conform with the H.261 standard, many
parameters that affect the quality of the picture are not defined by the H.261
recommendations. This report gives some of the encoding/decoding details
so designers can understand and enhance the code to best fit specific
applications.

Basic Overview of the H.261 Recommendation

3 H.261 Implementation on the TMS320C80 DSP

2 Basic Overview of the H.261 Recommendation
H.261 specifies a set of protocols that every compressed-video bitstream
must follow and a set of operations that every standard, compatible decoder
must be able to perform. The actual hardware codec implementation and the
encoder structure can vary greatly from one design to another. The data
structure of the encoder/decoder and the requirements of the video
bitstream also are described. The video bitstream contains the picture layer,
group-of-blocks layer, macroblock layer, and the block layer (with the
highest layer having its own header, followed by a number of lower layers).

• Picture size: The only two picture formats that are allowed by the H.261
at the present time are the common-intermediate format (CIF) and
quarter-common-intermediate format (QCIF). The CIF picture size is
352 pixels (pels) per line by 288 lines while the QCIF is 176 pels per line
by 144 lines. The QCIF picture size is half as wide and half as tall as the
CIF picture.

• Color-space: The 4:1:1 format is used. The picture color is made of
three components: the luminance signal Y and the color-difference
information signals CR and CB. The CR signal and the CB signal are each
subsampled at half the rate of the Y-signal in both the horizontal and
vertical direction. For every 2 × 2 = 4 Y samples, there is one sample of
each for CR and CB. The bit size of each Y, CR, and CB sample is 8.

• Picture Hierarchy : Picture frames are partitioned into 8 line by 8 pel
image blocks square. Macroblocks (MB) are made of four Y blocks, one
CR block, and one CB block at the same location as shown in Figure 1.
A group of blocks (GOB) is made of 33 MBs. Figure 1 shows these
relationships while Figure 2 shows how the video bitstream is separated
into different layers .

Basic Overview of the H.261 Recommendation

SPRA1614

A CIF frame
contains
12 GOBs
A QCIF frame
contains
3 GOBs

A Group of
Blocks (GOB)
has 33 MBs

A Macroblock
(MB) is made of
4 Y blocks, 1 Cr
block, and 1 Cb
block

An image
block is
8 lines by
8 pels

CIF

QCIF

176

144

352

288

1

3

2

12

10

8

6

4

2

11

9

7

5

3

1

11

22

33

10

21

32

9

20

31

8

19

30

7

18

29

6

17

28

5

16

27

4

15

26

3

14

252423

2

13

1

12

6

CrCbY

5
3 4

21

Figure 1. Recommendation H.261 Image Format and Hierarchy

Basic Overview of the H.261 Recommendation

5 H.261 Implementation on the TMS320C80 DSP

Fixed Length

Variable Length

Legend

Macroblock Layer

Block Layer

EOBTCOEFF F

MBA stuffing

E Block Layer F

CBP

CBPMVD

MVD

MQUANTMTYPEMBA

Group of Blocks Layer

Picture Layer

C MB Layer DGEI GSPAREGQUANTGNGBSC

A GOB Layer BPSPAREPEIPTYPETRPSCIN

A

CC

E

OUT

B

D

Figure 2. Video Multiplex Coder Syntax Diagram

• Picture layer: Data for each picture consists of a picture header followed
by data for a GOB. The data stream is a compressed videostream which
contains:

– Picture start code (PSC), which is a fixed 20-bit pattern

– Temporal reference (TR), which is a 5-bit input-frame number, which
can have 32 possible values that indicate the number of dropped
frames.

– Type information, (PTYPE) which is a 6-bit field described as:

– bit 1 – Split-screen indicator, defined as 0 for off, 1 for on

– bit 2 – Document-camera indicator, defined as 0 for off, 1 for on

– bit 3 – Freeze-picture release, defined as 0 for off, 1 for on

– bit 4 – Source format, defined as 0 for QCIF, 1 for CIF

– bit 5 – Optional still-image mode HI_RES, defined as 0 for on,
1 for off

– bit 6 – Spare

– Optional spare field (PEI). If set to 1 indicates that a 9-bit value
appears in the PSPARE field, if set to 0, no data follows in the
PSPARE field.

Basic Overview of the H.261 Recommendation

SPRA1616

– Spare-Information field (PSPARE). Currently encoders must not
insert PSPARE until specified by ITU and must be designed to
discard PSPARE if PEI is set to 1. This allows ITU to specify
backward-compatible additions to PSPARE.

• GOB layer: Each picture is divided into GOBs, each of which is
one-twelfth of the CIF or one-third of the QCIF picture area. A GOB
relates to 176 pels by 48 lines of Y and the spatially corresponding
88 pels by 24 lines for each CB and CR.

• A GOB header contains the following:

– Group of blocks start code (GBSC), a 16-bit pattern

– Group number (GN), a 4-bit GOB address

– Quantizer (GQUANT) information such as the initial-step size
normalized to the range 1 to 31. At the start of a GOB, the
quantization value QUANT is set to GQUANT.

– Optional spare field (GEI). If set to 1 indicates the presence of a
following data field designated as GSPARE.

– A spare information field (GSPARE). Currently encoders must not
insert GSPARE until specified by the ITU and must be designed to
discard GSPARE if GEI is set to 1. This allows the ITU to specify
backware-compatibie additions to GSPARE.

• Macroblock (MB) layer: Each GOB layer is divided into
33 macroblocks (see Figure 1). A macroblock relates to 16 pels by
16 lines of Y and the spatially corresponding 8 pels by 8 lines for each
CR and CB.

– A variable-length codeword macroblock address (MBA) indicating
the position of a macroblock within a group of blocks. The first block
transmitted in MBA is the absolute address and, for subsequent
macroblocks, the MBA is the difference between the absolute
address of the current macroblock and the last transmitted
macroblock. When macroblocks are skipped, the value for the MBA
equals one plus the number of skipped macroblocks preceding the
current macroblock in the GOB. Macroblocks that contain no
information are not transmitted.

– Macroblock type (MTYPE). Variable-length codewords giving
information about the macroblock and which data elements are
present. These elements are of the following type: intra-, inter-, inter-
with motion compensation (MC), or inter- with MC and a filter. There
are ten types in total (see Table 1).

Basic Overview of the H.261 Recommendation

7 H.261 Implementation on the TMS320C80 DSP

– Quantizer (MQUANT). The normalized quantizer step size is used
until the next MQUANT or GQUANT. If MQUANT is received, the
quantization value QUANT is set to MQUANT. The value is from 1
to 31.

– Motion vector data (MVD), is differential-displacement vector data.
MVD is included in all macroblocks and is obtained from the
macroblock vector by subtracting the vector of the previous
macroblock. For this calculation the vector of the preceding
macroblock is considered to be 0 in the following three situations:

– Evaluating MVD data for the macroblocks 1, 12, and 23

– Evaluating MVD for macroblocks in which MBA does not
represent a difference of 1

– MTYPE of the previous macroblock was not motion
compensated

– Limited to �15 Y pels for both the horizontal and vertical
components.

– Only one MVD per macroblock is indicated by MTYPE.

• Coded block pattern (CBP) is a variable length field that is present if
indicated by MTYPE. The codeword gives a pattern number signifying
those blocks in the macroblock for which at least one transform
coefficient is transmitted. The pattern number for the CBP is given by:

32 • P1 + 16 • P2 + 8 • P3 + 4 • P4 + 2 • P5 + P6
where Pn = 1 if any coefficient is present for block n, else 0.

• Block layer. A macroblock is composed of four luminance blocks and
one each of the two color difference blocks. Data for a block consists of
codewords for transform coefficients followed by an end-of-block (EOB)
marker. The order of transmission is the four Y luminance data items
followed by block 5, the CB value, and block 6 which is the CR value.

– Transform coefficients (TCOEFFs) consist of quantized-transform
coefficients, followed by the EOB symbol. Transform-coefficient
data is always present for all six blocks in a macroblock when
MTYPE indicates INTRA. In other cases, the MTYPE and the CBP
signal which blocks have coefficient data transmitted for them. The
quantized-transform coefficients are transmitted sequentially
according to the sequence set in the standard.

– The most commonly occurring combinations of successive zeros
(RUN) and the following value (LEVEL) are encoded with variable
length codes. Other combinations of (RUN, LEVEL) are encoded
with a 20-bit word consisting of 6-bit ESCAPE, 6-bit RUN, and 8-bit
LEVEL. For the variable-length encoding scheme, there are two

Basic Overview of the H.261 Recommendation

SPRA1618

code tables. The first is used to transmit LEVEL in INTER,
INTER+MC, and INTER+MC+FIL, and the second for all other
LEVELs except the first one in the INTRA blocks, which is a
fixed-length code of 8 bits.

2.1 Transform, Quantization, and Run-Length Encoding

The Y-, CR-, and CB- sampled signals are each represented by 8 bits
(1 to 254). The value to be transformed is represented by 9 bits (–256 to
+255) because, during inter-frame coding, negative values can be
generated. During the encoding phase, if the transform coefficient
(TCOEFF) is sent for the picture block, the 8 x 8 block that contains the 9-bit
values processed by a two-dimensional DCT, which generates an 8 x 8
transformed coefficient. The coefficient ranges in value from –2048 to 0 and
0 to +2047. For the intra-discrete-cosine transformed coefficient (the one
at the upper left corner during Intra-frame coding), the range is from 0 to
+2047.

These values are passed to the quantizer, which generates 8 x 8 values
between –128 to+127, called LEVELs. The intra-DC coefficient is linearly
quantized with a fixed-step size of 8. All other coefficients are quantized
based on a QUANT value, which changes from macroblock to macroblock.

The QUANT value can be set by GQUANT or MQUANT. The quantizer
reduces the precision of the data sample and includes a “dead zone” close
to zero, which forces most small coefficients to zero.

After the quantization process, most high-spatial-frequency coefficients are
zero. Therefore, when the data is being zig-zag scanned in the order as
shown in Figure 3, most of the non-zero runs are concentrated at the
beginning. The number of successive zeroes between two non-zero
coefficients is called a RUN. The Huffman-coding scheme uses a shorter
code to represent more likely occurring combinations of the RUN and
LEVEL pair, but unlike the JPEG coding, the Huffman-code table is fixed.
The Huffman-coded pairs are called variable-length codes. The other less
likely occurring pairs are coded with a 20-bit fixed-length codes.

Basic Overview of the H.261 Recommendation

9 H.261 Implementation on the TMS320C80 DSP

Figure 3. H.261 Recommended Zig-Zag Scanning Procedures

Applying the H.261 Recommendations

SPRA16110

3 Applying the H.261 Recommendations

It is important to understand that the H.261 is an evolving standard. When
this standard was adopted in 1985, the technology advances currently being
implemented were anticipated but not entirely implemented by the standard.

3.1 What is Not Specified in the Recommendation

The H.261 essentially defines only the signal decoder. The signal encoder
is not completely specified by the H.261 standard but is expected to be
compatible with the decoder. This encoder allows various implementations
to be available on the market, from low-end and low-cost implementations
to high-performance and high-cost implementations, but at the same time,
also allows these implementations to be compatible.

Frame rate is defined by the National Television Systems Committee
(NTSC) at 29.97 frames per second (fps). The actual frame rate can be less,
since an encoder is allowed to drop frames. This usually happens if the
encoded bitstream is not sent out fast enough. When frames are dropped,
the temporal reference (TR) value indicates how many frames have been
dropped. The criteria used to determine when to drop frames are not defined
in the standard.

Encoder and decoder buffers are used to delay the bitstream. The size of
buffers affects the amount of transmission delay. Exactly how to implement
the encoder and decoder buffers items such as buffer sizes, buffer
thresholds, and either fixed or adaptive thresholds, is not defined in the
standard.

H.261 does not define how to select coding mode. Coding mode decisions
is not defined in the standard. There are 10 macroblock types (MTYPEs)
defined by the recommendation, but how to decide which MTYPE to be used
is not defined. For example, choosing between inter-frame and intra-frame
coding and choosing which type and usage criteria of loop filters, and
whether motion compensation detection should be used or not, respectively,
are undefined by the recommendation.

The H.261 recommendation also does not define the quantization value
(MQUANT or GQUANT) or how a specific quantizer value affects the
number of bits sent per frame. For larger quantization values, more
coefficients are zeroed, resulting in fewer RUN and LEVEL pairs being sent.
An effective encoder adaptively adjusts the quantization values based on
the image content and available channel bandwidth.

Applying the H.261 Recommendations

11 H.261 Implementation on the TMS320C80 DSP

H.261 also does not specify how motion vectors are to be obtained. So, if
motion compensation is used, the choices of which displacement-
estimating algorithm to use is left open to the designer. Using block matching
is a popular scheme, but many other block-motion-estimation algorithms
exist. Good motion estimation algorithms require a large amount of
processor power so the algorithm must be chosen carefully.

A common component of a video information signal is noise. Signal
pre-processing is frequently used to reduce coding noise as a component
of the video information. Post-processing of the signal may further reduce
the induced artifacts, such as blockiness, that can be inadvertently be
introduced during data compression. H.261 does not specify the type or
amount of pre- and post-processing required. These items are usually
accomplished by using various types of spatial and temporal filters. The
encoder can be designed to adjust the filter parameters adaptively, based
on the available channel bandwidth.

Implementation on the TMS320C80 Processor

SPRA16112

4 Implementation on the TMS320C80 Processor

H.261 can use any of ten major types of coding modes shown in Table 1.
Another major concern in processing video information is the motion
estimation algorithm selected. This aspect of the video-processing task is
highly time consuming, so selection of the algorithm is critical to ensure
maximum efficiency and throughput. These activities are controlled by the
master processor and four parallel processors on-board the TMS320C80
chip.

4.1 Major Types of Coding Modes

The video bitstream contains both the picture and picture quality data values
which are macroblock type, motion-vector data, quantizer, and the
transform coefficients. Out of all these video bitstream information values,
those that actually contain the picture data and ultimately affect the picture
quality are MTYPE, MVD, QUANT, and TCOEFF. Ten types of coded
macroblocks are possible as indicated by the value MTYPE; however, there
are only three major types. Table 1 shows how these three major types are
implemented:

• Intra-frame coded where only the original pixels are transform-coded.

• Inter-frame coded with motion vector only. The motion vector is sent and
the decoder uses the last reconstructed frame and the received motion
vector to rebuild the new MB.

• Inter-frame coded with motion vector and coded differences. The
decoder uses the previously reconstructed frame and the received
motion vector and also uses the received transform-coded pixel
differences to rebuild a new macroblock.

Table 1. TMS320C80 Implementation Of Different MTYPEs

PREDICTION MQUANT MVD CBP TCOEFF
TMS320C80

IMPLEMENTATION

Intra–
Intra–
Inter–
Inter–
Inter + MC
Inter + MC
Inter + MC
Inter + MC + FIL
Inter + MC + FIL
Inter + MC + FIL

x

x

x

x

x
x
x
x
x
x

x
x

x
x

x
x

x
x
x
x

x
x

x
x

Intra–
Intra–
Inter– w / coded diff (MV = 0)
Inter– w / coded diff (MV = 0)
Inter–MV only
Inter–w/ coded diff
Inter– w / coded diff
Inter– MV only
Inter– w / coded diff & filter
Inter– w / coded diff & filter

Implementation on the TMS320C80 Processor

13 H.261 Implementation on the TMS320C80 DSP

Figure 4 shows the data-flow diagram for TMS320C80 encode/decode.
During intra-frame coding, the block is discrete cosine transformed,
quantized, zig-zag scanned, and run-length encoded. The encoded
bitstream and coding-mode decisions are sent to the buffer. From the H.261,
the encoder contains an inverse quantizer and inverse discrete cosine
transform (IDCT) function to reconstruct a frame if motion compensation is
to be done on the next frame. The decoder does an inverse quantization and
IDCT to generate the picture.

Decoder

Motion Vector

In

Intra–

Inter–(MV only)

Inter–(w/ coded diff)

Encoder

Out

Parameter Control Feedback

Intra

Inter–(w/ coded diff)

Inter–(MV only)

Decision

Mode

Coding

+

+

+
Motion

Estimation

Reconstruction
Previous

Frame

Reconstruction
Previous

Frame

Encode Buffer

Decode Buffer

Loop
Filter

Intra–

Inter–

Lee
DCT

Thres/
QuantZ
ZS/RLE

Lee
DCT

Inverse
Quantizer

Current Block

Predicted Block

Motion Vector

Lee
DCT

Loop
Filter

Inverse
Quantizer

Motion
Comp

Out

In

Figure 4. TMS320C80 H.261 Recommendation Compression and
Decompression Codec Used in the TMS320C80

Implementation on the TMS320C80 Processor

SPRA16114

During inter-frame coding using the motion vector only, no transformed
coefficients are sent and only a motion vector is sent. The picture-block-
to-picture-block differentiation is represented by a motion vector. The
motion estimator uses the previous reconstructed frame to compare with the
current block to determine the motion vector. The motion estimator also
applies the motion vector to the previous reconstructed frame to regenerate
a predicted block which represents the reconstructed frame. The decoder
then uses the motion vector to motion-compensate the previously
reconstructed frame to generate the picture. This is similar to the predictor
used in pulse-coded-modulation speech coding where the motion estimator
in the encoder uses the motion vector to build the reconstructed frame rather
than just copying the present frame to the reconstructed frame buffer to
simulate the performance of the decoder. The encoder is doing the same
thing as the decoder and any accumulated errors in the decoder are
detected and are present in the encoder. This ensures that the decoder
image has low distortion.

During inter-frame coding using motion vectors and coded differences,
differences between the current block and a predicted block are
discrete-cosine transformed, quantized, zig-zag scanned, and run-length
encoded. Together with the motion vector, the differences are sent to the
buffer. The decoder uses the motion vector to motion compensate for the
predicted block and adds the result to the inverse quantized, IDCT
coefficients to regenerate the picture. If MTYPE specifies no motion vector,
then the motion vector is regarded as having a zero displacement. At the
same time, the encoder is rebuilding the reconstructed present frame using
the same scheme as the decoder.

A loop filter keeps the differences between a motion-compensated picture
block and the current block small. Any coded differences are smaller and
less information is required to be sent, reducing the transmission bit rate.

4.2 Coding Mode Decisions in the TMS320C80

The TMS320C80 video processor selects which coding mode to use per
block by evaluating several parameters. First, any sampled value variations
that occur within a block are measured and the sum of absolute differences
(SAD) between the block average and the individual samples is evaluated.
This produces the value INTRA_SAD. The encoder evaluates the SAD of
the present block and the previously analyzed block to create the
INTER_SAD value. A coding mode decision is made by a process called
STEPA, where it is determined if any motion compensation is required and
whether or not motion compensation data is to be sent.

Implementation on the TMS320C80 Processor

15 H.261 Implementation on the TMS320C80 DSP

A threshold value is compared with the SAD00 value to establish the
INTER_SAD at zero-motion vector. With the INTER_SAD value less than
the threshold value, no motion compensation is required.

STEPA first computes the INTER_SAD value for a motion-vector value of
zero to determine if any motion estimation is necessary. If motion is required
to be performed, STEPA also determines whether motion-compensated
data needs to be sent. If the sum of absolute difference is still too high, it
computes the INTRA_SAD and determines whether intra-frame coding is
used. The actual coding uses a value which represents the mean absolute
difference (MAD).

• INTRA_SAD

– A measure of the variation of sample values within a block

– Sum of absolute differences between the block average and the
individual samples in the block

• INTER_SAD

– A measure of differences between the current block and the previous
block

– Sum of absolute difference between the current block samples and
the block samples from the previous reconstructed frame

• SAD00

– INTER_SAD with zero displacement

• SATMC

– INTER_SAD with a non-zero motion vector

Implementation on the TMS320C80 Processor

SPRA16116

Figure 5 is a pseudocode example that demonstrates how to decide on
which coding mode to use. This psuedocode gives some basic insight into
the decision-making process. The actual code is much more complex.

/ * If the INTER_SAD with no MV is already below a threshold * /
 If SAD00 < 100

 / * No motion estimation task is necessary * /
 / * Block will most likely not be coded at all * /

 Else
 / * Need to do some motion estimation * /
/ * If motion estimation is to be performed, check if the motion
 compensated INTER_SAD is quite so much less than the INTER_SAD with
 no motion compensation * /

 If SATMC + 100 < SAT00
 / * Motion compensated data need to be send * /

 Else
 / * No motion compensation required* /
/ * If the INTRA_SAD is so much less than the selected INTER_SAD * /

 INTER_SAD = SATMC or SAT00
 If INTRA_SAD + 500 < INTER_SAD

 / * Use Intra-Frame Coding * /
Else
 / * Use Inter Frame Coding * /

Figure 5. TMS320C80 H.261 Coding Mode Decision

4.3 Motion Estimation

H.261 motion estimation is one of the most time-consuming tasks. Current
software releases support two different motion-estimation search
algorithms, which result in a one-at-a-time search and a three-step search.
Figure 5 demonstrates the actions of these two search algorithms as well
as an exhaustive search algorithm and an XY search algorithm. In either
case, the sum of the absolute differences between the current block and the
displaced previously reconstructed block is used as a merit factor.

The three-step search searches the origin and displacements of ±4 first to
find the best general area. It then refines the search around a new origin by
searching displacements of ±2. The final step searches displacements
of ±1. The current software release limits the maximum displacement to ±7
instead of ±15 as specified in H.261.

The one-at-a-time search uses either the origin or the displacement from the
previous MB as the origin of the search. It then refines the search by
searching displacements of ±1 until all neighboring blocks show a higher
SAD. The current software release limits the maximum number of searches
to 25.

Implementation on the TMS320C80 Processor

17 H.261 Implementation on the TMS320C80 DSP

x x x x x x x x x x x x x x

x x x x x x x x x x x x x x

x x x x x x x x x x x x x x

x x x x x x x x x x x x x x

x x x x x x x x x x x x x x

x x x x x x x x x x x x x x

x x x x x x x x x x x x x x

x x x x x x x x x x x x x x

x x x x x x x x x x x x x x

x x x x x x x x x x x x x x

x x x x x x x x x x x x x x

x x x x x x x x x x x x x x

x x x x x x x x x x x x x x

x x x x x x x x x x x x x x

x x x x x x x x x x x x x x

dX

dY

Selected
Block

Exhaustive Search
255 (15 × 15)

Searches MAX
(Not Implemented)

2

2

2

2

1 1 1 1 1 1 1

2

dX

dY

Selected
Block

XY Search
29 (7+6+5 . . . +1+1)

Searches MAX
(Not Implemented)

2 2 2

3 3 3

1 1 2 1 3 2 3

3 3 3

2 2 2

1 1 1

1 1 1

dX

dY

Selected
Block

3-Step Search
25 (9+8+8)

Searches MAX

8 9 A

5 6 7 8 9

2 3 4 5 6 7

2 1 2 3 4 7

1 1 1 4

1

dX

dY

Selected
Block

One-At-A-Time Search
25 (Set By Program)

Searches MAX

Figure 6. TMS320C80 H.261 Recommended
Motion-Estimation-Search Algorithms

Implementation on the TMS320C80 Processor

SPRA16118

4.4 Bit-Rate Control

The encoder uses adaptive quantization and frame dropping to control the
bit rate generated from the encoded picture frame.

4.5 Adaptive Quantization

The QUANT value is incremented or decremented based on how many bits
are generated from the previous frame. As the QUANT value is increased,
more LEVELs (digitally-quantized-transform coefficients) become zero and
the number of bits generated should be less. If QUANT is decreased, then
more non-zero LEVELs are generated and the number of bits generated
should be more and the picture quality should improve.

4.6 Frame Dropping

If the number of bits not transmitted reaches a threshold and data is about
to overflow the buffer, then it is necessary to drop a frame.

4.7 Multitasking on the TMS320C80

The TMS320C80 has one master processor (MP), four parallel processors
(PP0 to PP3), a transfer controller (TC), and a video controller (VC). The MP
and PP3 are used to implement various other tasks required by the H.320
recommendation and other recommendations such as H.221, H.242, and
G.728. The remaining three parallel processors, PP0 – PP2, are used solely
for the H.261 video encoder/decoder implementation. PP0, PP1, and PP2
are called PP_BLOCK0. Each communicates with one another and with the
master processor via the multitasking executive and command buffer
interface.

During the encoding, STEPA makes coding-mode decisions and calculates
the INTRA_SAD for each MB. In STEPA, all three PPs of PP_BLOCK0 work
in parallel to perform the motion-estimation task. In STEPB, the three PPs
perform different tasks. PP0 performs the loop filtering, image difference,
and DCT. PP1 performs the thresholding, quantization, zig-zag scanning,
and inverse quantization. PP2 performs the IDCT and block reconstruction.

The decoding phase has one step and the three PPs perform different tasks.
PP0 performs bit-stream parsing and acts as the client for the other two
server PPs, PP1, and PP2. The server PPs perform the rest of the decoding
tasks such as IDCT, motion compensation, and loop filtering.

Using the H.261 Code

19 H.261 Implementation on the TMS320C80 DSP

5 Using the H.261 Code
The current H.320 code was intended for the VisionPoint project which has
been terminated. There are only a few interface functions on which to run
H.261 code, which is located in the H320\H261 directory. The \H320\SHARE
and H320\UTIL directories also must be included because there are utility
functions to be used by the H.261 code. When using the code on the
software development board (SDB), keep the \H320\DRV directory to allow
an H.261 loopback demo on the SDB using a camera and a display.

5.1 Initialization Code

The steps necessary to exercise the H.261 recommended code are as
follows:

1. Initialize the H.261 buffer functions:

BufferInit();

BufferInstallMalloc (MemAlloc,MemFree);

2. Initialize the H.261 FEC:

H261FecInit();

3. Create the encoder and decoder task

taskIdH261Enc = TaskCreate(TASKID_H261_ENC,H261_Encoder,NULL,7,4096);

taskIdH261Dec = TaskCreate(TASKID_H261_DEC,H261_Decoder,NULL,8,4096);

4. Create a timer function

The encoder and decoder tasks directly interface with the video capture
and display drivers. The tasks can be started by a timer at every frame,
so a timer function must be created:

taskIdTimer = TaskCreate(–1,TimeMgr,NULL,18,4096);

5. Resume tasks

These tasks must be resumed using the TaskResume functions. There
are just two major functions that get the bitstream from the H.261
encoder and put the bitstream to the H.261 decoder.

H261FecGetEncodedBuffer (bitrate);
/ * Get encoded bitstream from encoder * /

H261FecDecodeBuffer (dbuffer, bitrate);
/ * Decode the dbuffer bitstream * /

Using the H.261 Code

SPRA16120

5.2 Loopback Program
The following shows how a program does a loopback by reading an encoded
buffer and placing the buffer value in the decoder buffer. Much of the
programming detail is omitted in this sample to simplify the concept.
for(;;) {

TaskWaitSema (h221TxSemaId); / * Wait for timer signal * /

if ((dbuffer = H261FecDecGetEmptyBuffer()) != NULL) {

ebuffer = H261FecGetEncodedBuffer (bitrate);

memcpy(dbuffer,ebuffer,(bitrate+7)>>3);

H261FecEncReclaimBuffer(ebuffer);

H261FecDecodeBuffer(dbuffer,bitrate);

}

}

Audio
Control
Input/
Output

Host
Internode
Message
Manager

Internode
Message
Manager

H.242/H.230
Transmitter

H.242/H.230
Receiver

H.261
Decoder

H.261
Encoder

H.221

Data
Manager
LSD/HSD

Video
Output
Driver

MVIP Bus
Driver

Audio
Decoder

Audio
Encoder

Video
Input
Driver

Figure 7. TMS320C80 H.261 Tasking Model

Conclusion

21 H.261 Implementation on the TMS320C80 DSP

6 Conclusion
With a 40-MHz TMS320C80, CIF resolution, and data transmission at a
frame rate of 30 fps, the loading of the PPs is almost up to 100 percent in
a typical video-conferencing session. The encoder loads about 60 percent
while the decoder loads about 30 percent of all the PPs in PP_BLOCK0.
With a 60-MHz TMS320C82 coming out soon, Texas Instruments (TI)1 is
planning to implement the H.261 recommendation on the TMS320C82.

H.261 does not explicitly specify a standard encoder but many basic
operational elements are strongly constrained by it. Most other crucial
elements are still open to manipulation by the design engineer. A few
examples are:

• The coding-mode decision

• Motion-estimation algorithms

• Pre- and post-processing

• Quantization

• Frame dropping

• Encoder-and-decoder buffer sizes

• Loop-filtering methods; etc.

Improvements can be made to current software design of the video
encoder/decoder are improvements to the motion estimation and adaptive
quantization algorithms. In fact, TI’s H.263 implementation on the C82 has
an improved motion-estimation routine that reduces bit rates of typical
videoconferencing session by half while essentially maintaining the same
picture quality. A new rate-control algorithm has been developed.[4]

With various video encoder/decoder software implementations, designers
of videophone systems can progressively improve encoder/decoder
performance without significant additional future major hardware redesigns.

1. TI is a trademark of Texas Instruments Incorporated.

References

SPRA16122

7 References
1. ITU-T Recommendation H.261 (1993): “Video Codec for Audiovisual

Services at Px64 kbits”.

2. Jeremiah Golston, “TMS320C80 H.320 Software User’s Guide”,
Release 1.1, Texas Instruments, Oct 1995.

3. Arun N. Netravali and Barry G. Haskell, “Digital Pictures:
Representation, Compression, and Standards”, Second Edition, AT&T
Bell Laboratories, 1995.

4. Jennifer L. H. Webb, “Rate Control for H.261 Video Coding Through
Quantization Step Size Update and Selective Coding of Coefficients”,
Technical Activity Report, Texas Instruments, June 1996.

Glossary

A-1 H.261 Implementation on the TMS320C80 DSP

Appendix A Glossary
address Program code memory location or data-storage location

ANSI American National Standards Institute

ANSI C A version of the C programming language

BRI Basic-rate service on ISDN

buffer An intermediate storage space

CBP Coded block pattern

CD Coded differences

CIF Common intermediate format (352 pixels × 288 lines)

CODEC Coder/Decoder or Compression/Decompression

DCT Discrete-cosine transform

DSP Digital signal processor

EOB End of block

FLC Fixed-length code

fps Frames per second (fps)

GBSC Group of blocks start code

GN Group number

GOB Group of blocks

GQUANT A 5-bit quantizer

IB Image block (8 pixels x 8 lines)

IDCT Inverse direct cosine transform

interframe coding w/motion vector (MV) Only the motion vector is transmitted

interframe w/MV and CD Uses previously reconstructed frames and MV and CD

intraframe coding Only the original pixels are transformed

ISDN Integrated services digital network

JPEG Joint Photographic Experts Group format

Loop Filter Keeps signal levels minimized

MAD Mean absolute difference

MB Macroblock

MBA Macroblock address

MP Master processor

MPEG Motion Picture Experts Group format

MQUANT 5-bit quantizer

MTYPE Macroblock type

MV Motion vector

Glossary

SPRA161A-2

MVD Motion-vector data

NTSC National Television Systems Committee Standard

PAL Phase alternating line

PCM Pulse-coded modulation

PP Parallel processor

PSC Picture-start code

QCIF Quarter CIF format (176 pixels by 144 lines)

RUN Number of zeroes between two non-zero coefficients

SAD Sum absolute differences

SDB Software development board

TC Transfer controller

TCOEFF Transform coefficients

TR Temporal reference

VC Vector quantization

VC Video controller

VLC Variable-length coding

VQ Vector quantization

