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Interrupts in C on the TMS320C3x

Abstract 

Writing interrupt routines in C is straightforward as long as you
follow the simple rules set out in this note. There are several parts to
the problem: (1) writing the ISR, (2) initializing the interrupt vector
table, and (3) linking the parts together in the linker command file.
You must make sure to generate the interrupt vector table and to
provide the linker with all the necessary information to link the ISRs,
vector table, and section names into the correct locations.

Clearly there are variations on this theme. Some ISRs can be written
in C and some in assembly so long as the naming conventions and
vector tables are followed and initialized.



8 SPRA227

Design Problem 

How do I use interrupts from C?

Solution 

There are several parts to this problem: (1) writing the ISR, (2)
initializing the interrupt vector table, and (3) linking the parts together
in the linker command file.

A C Language ISR

The C compiler requires that each ISR be named as follows:

void c_int0n(void) /* n is the int number */
{

/* a C function that is an ISR */
}

The interrupt may not return a value and has no arguments. The C
compiler recognizes this naming convention and treats it as a
normal ISR, which means it performs a context save where needed
and returns from the routine via a RETI instruction.

A good practice is to include the interrupts in a separate file called
ints.c  or something similar. This makes for a more modular style,
simpler maintenance, and easier to understand software.

The Interrupt Vector Table

The first 40h addresses are reserved for the interrupt and trap
vectors. Address 0 (zero) holds the address of the reset routine. If
using C linker options, the RTS30.lib function boot.asm  takes care
of defining the reset function, but the vector table initialization is left
to the user. You can do so with either C or assembly language.

An assembly language routine might look like this.

; file name is vectors.asm
;
; .sect “vectors”;a new section begins here

.word _c_int00 ;the address of the reset vector

.word _c_int01 ;the ISR for interrupt 0

.word _c_int02 ;the ISR for interrupt 1
; etc.
; end

This routine creates a new section that is merely a list of addresses
where the interrupt routines can be found. It can be written in C by
encapsulating each line in an asm statement.
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For example:

asm(“ .sect \”vectors\” ”);
a C function that is an ISR.

Linking Them Together

The linker command file provides the mechanism for including the
vectors.asm  object and the ints.c  object.

/* file name == mylink.cmd */
vectors.obj
ints.obj

The MEMORY section needs to identify the location of the int
vectors.

MEMORY
{

VECTORS: origin = 0h, length = 40h
...

}

The SECTIONS section needs to map the user-defined section
called “vectors” to the memory location.

SECTIONS
{ vectors : > VECTORS

...
}

Summary

Writing interrupt routines in C is straightforward as long as you
follow the simple rules set out in this note. You must also make sure
to generate the interrupt vector table and to provide the linker with
all the necessary information to link the ISRs, vector table, and
section names into the correct locations.

Clearly there are variations on this theme. Some ISRs can be written
in C and some in assembly so long as the naming conventions and
vector tables are followed and initialized.


