

TMS320 DSP
DESIGNER’S NOTEBOOK

Writing TMS320C8x PP
Code Under the
Multitasking Executive
APPLICATION BRIEF: SPRA269

 Leor Brenman
 Digital Signal Processing Products
 Semiconductor Group

 Texas Instruments
 May 1996

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which such semiconductor products
or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE (281) 274-2320

US TMS320 FAX (281) 274-2324

US TMS320 BBS (281) 274-2323

US TMS320 email dsph@ti.com

Contents
Abstract... .. 7
Design Problem.. 8
Solution... .. 8

Figures
Figure 1. Command Buffer.. 10
Figure 2. Graphical Description of the Concepts.. 14

Examples
Example 1. Code Listing ... 11

Writing TMS320C8x PP Code Under the Multitasking Executive 7

Writing TMS320C8x PP Code Under
the Multitasking Executive

Abstract

The purpose of this document is to supplement the TMS320C8x
Multitasking Executive (ME) User’s Guide and to provide useful
guidelines for writing Parallel Processor (PP) assembly language or
C code that can run under the executive.

ME tasks running on the Master Processor (MP) may issue
commands to the PPs. These commands are requests for the PPs
to execute a routine and then, optionally, interrupt the MP to notify
the MP that the routine is done. The routine that the PP executes is
a PP assembly language subroutine or a C routine. In order to write
PP subroutines or C routines that run under the ME, it is important to
understand the PP environment set up by the ME. Tasks running
under the ME communicate with the PPs via a PP command
interpreter. The PP command interpreter is a PP assembly language
routine that waits for commands to be sent from tasks running on
the MP.

8 SPRA269

Design Problem

How do I write TMS320C8x Parallel Processor (PP) code to run
under the Multitasking Executive (ME)?

Solution

Introduction

The purpose of this document is to supplement the TMS320C8x ME
User’s Guide and to provide useful guidelines for writing PP
assembly language or C code that can run under the executive.

ME tasks running on the Master Processor (MP) may issue
commands to the PPs. These commands are requests for the PPs
to execute a routine and then, optionally, interrupt the MP to notify
the MP that the routine is done. The routine that the PP executes is
a PP assembly language subroutine or a C routine. In order to write
PP subroutines or C routines that run under the ME, it is important to
understand the PP environment set up by the ME. Tasks running
under the ME communicate with the PPs via a PP command
interpreter. The PP command interpreter is a PP assembly language
routine that waits for commands to be sent from tasks running on
the MP.

The main guidelines for launching a PP routine from an ME task are
outlined below:

MP:
ME task initializes command buffers in PP parameter RAM.
ME task installs PP command interpreter entry point address

as the PP task vector.
ME task un-halts PP causing it to execute PP command interpreter.
ME task installs ISR to respond to PP command interpreter

interrupt when the command is complete (optional).
ME task initializes argument buffers in PP parameter or data RAM.
ME task loads command buffer with parameters and issues

command to PP.

PP:
PP routine written as a standard called routine.
PP uses a9 or d1 as address of argument buffer.
PP program returns stack to value upon entry to routine.
PP program does not overwrite memory used by ME.
PP program restores interrupt environment prior to exiting.

The remainder of this document details these steps.

Writing TMS320C8x PP Code Under the Multitasking Executive 9

MP Responsibilities

ME tasks use functions in the PP command library, mp_ppcmd.lib,
to set up command buffers in PP parameter RAM, load the PP
command interpreter on the PP, un-halt the PP, and issue
commands to a PP by loading the command buffers. The PP
command interpreter is a PP routine that is supplied with the ME in
the library ppcmd.lib. Its entry point is PpCmdInterp. Once the
command buffers are created and the PP is running the PP
command interpreter, the PP command interpreter waits for the first
command buffer to be filled by an ME task. The command buffers
are allocated in PP parameter RAM at an offset of 0x200 from the
start of PP parameter RAM. Each command buffer is 32 bytes long.
This requires the PP programmer not to use this area of parameter
RAM.

When an ME task wants the PP to execute a routine it issues a
command to the PP command interpreter via the command buffers.
To issue a command, the MP task loads the command buffer with
the following items: (1) the address of the entry point of the PP C or
assembly language routine, (2) the address of the argument buffer
for the PP routine, (3) an optional interrupt code for the PP
command interpreter to load into the cmnd word to interrupt the MP
when the PP completes the desired routine, and (4) an optional
message value for the PP command interpreter to load into the
mailbox before interrupting the MP. (When interrupted, the MP
interrupt service routine (ISR) reads the mailbox to identify the
source of the interrupt and then clears the mailbox). The mailbox is
at an offset of 0xf0 in PP parameter RAM. This value is hard coded
into both the PP command interpreter and the ME. PP user
programs must not overwrite this location

The complete command buffer is described in Figure 1.

10 SPRA269

Figure 1. Command Buffer

link Pointer to next command buffer in Linked list
flag Full/not-empty flag

function Pointer-to-command function
args Pointer-to-buffer containing argument values

mailbox Pointer to server PP’s mailbox
msgValue Message to put in mailbox for client

IntCode Code for Message Interrupt to client
reserved Reserved

ÅÅ 32 bits ÆÆ

The command buffer is a C data structure called PPCMDBUFF.

Since the ME tasks can start a PP routine on any PP, the location
and size of the particular arguments for a particular PP may be
determined at runtime based on processor loading. This requires the
PP and ME programmer to establish a protocol for avoiding conflicts
in memory usage since the location and size of the arguments for a
particular PP are not fixed at link time. For example, one could
restrict the PP routine from accessing parameter RAM entirely so
that PP parameter RAM can be used for command buffers and
argument buffers. As an example, the address of the argument
buffer can be calculated and loaded into the command buffer in the
following fashion:

ASTRUCT *ppArg;

ppArg = (ASTRUCT *)
 (0x1000200+0x20*numCmdBufs+(ppNum<12));

PpCmdBufSetArgs(cmdBuf, ppArg);

If another argument buffer is to be set up, say for the second
command, then the ME programmer must know, or determine, how
large the argument buffer is. This is easily accomplished using the C
sizeof() function. Then, for example, the second argument buffer
can be placed in memory immediately following the first.

Alternatively, if a fairly static system is being designed where each
PP always executes the same routine and the argument buffer is
always the same, then the argument buffers can be statically
allocated in a particular PP’s memory. This is done by having the
ME task create a data structure that is linked into the particular PP’s
memory. See Linking C Data Objects Separate From the .bss
Section (Literature Number SPRA258), for details. The ME task still
needs to load the argument buffer address into the command buffer.

Writing TMS320C8x PP Code Under the Multitasking Executive 11

Once all elements have been written to the command buffer, the ME
task issues the command by setting the flag entry to 1 which causes
the PP command interpreter to call the routine or subroutine
specified in the command buffer. The following code segment is an
example of how to start a routine on PP0 from an ME task:

Example 1. Code Listing

#include ask.h /* incl header file for ME */
#include .h /* incl header file for PP cmd interp */
...
void ppFunc(ARG *); /* prototype PP routine */
...
PPCMDBUF *cmdBuf; /* create ptr to command buffer(s) */
...
/*
* create 2 command buffers in PP0’s parameter RAM, install PP
* command interpreter and un-halt PP0
*/
cmdBuf = PpCmdBufInit(0, &PpCmdInterp, 2);

/*
* load address of routine and argument buffer into command buffer
*/
PpCmdBufSetFunc(cmdBuf, &ppFunc);
PpCmdBufSetArgs(cmdBuf, ppArg)

/*
* issue command buffer (set flag=1)*/
*/
PpCmdBufIssue(cmdBuf);
...

Once the ME task calls the PpCmdBufIssue() routine, the PP
command interpreter reads the command buffer’s flag and starts the
PP routine. If the ME wants to be interrupted upon completion of the
PP routine, the ME task must request to be interrupted by the PP
command interpreter. This is accomplished through the command
buffer and requires that an ISR be installed in the MP to respond to
the particular PP’s message (MSG) interrupt. (See the ME function:
PpCmdBufNotifyIssue()).

12 SPRA269

PP Programming Guidelines

When the PP command interpreter reads a ready command buffer
(flag=1), it reads the address of the argument buffer from the
command buffer and places it in a9 and d1. PP assembly language
subroutines can use a9 to read the arguments from the argument
buffer while C routines expect d1 to contain the first passed
parameter which in this case is a pointer to the argument buffer. The
PP command interpreter pushes all of the registers it was using onto
the stack and makes a call to the routine that was specified in the
command buffer.

Entry Point

PP routines running under the ME can either be ASM routines or C
routines. In order to create PP routines to run under the ME, the
entry point (function label) must be made visible to the ME task so
that it can load this address into the command buffer as shown in
the previous ME code example. The .system assembly language
directive and the C shared keyword make the entry point visible to
MP programs for PP-defined ASM and C routines, respectively. The
following two examples illustrate the use of .system assembler
directive and shared C keyword for the previous example:

Ex2 (ASM)
.system _ppfunc

_ppFunc: d5=h *a9++
...

Ex2b (C)
shared void ppFunc(ARG *argPtr)
{

int Acount = argPtr-imageSize;
...

All arguments are passed to the routine in the argument buffer and
any returned value should also be placed in the argument buffer.

Writing TMS320C8x PP Code Under the Multitasking Executive 13

Accessing Arguments

The argument buffer, set up by the ME task, is typically a C data
structure. PP C code can share that data structure via a header file
for accessing the arguments from the argument buffer. However, PP
assembly language routines have no way of sharing C data
structures with C routines running under the ME on the MP. The PP
assembler has facilities for creating assembly language data
structures. The PP programmer can make the assembly language
data structure match the C data structure and this will help automate
accessing arguments. For example, consider the following data
structure used by the ME to set up an argument buffer:

typedef struct {
int arraySize;
int *arrayPtr;
int result;

} ASTRUCT;

The corresponding PP assembly language data structure could be
created as follows:

.struct
sASIZE .word
sAPTR .word
sRESULT .word

.endstruct

To access the element arraySize (sASIZE in assembly language)
use the following PP assembly language syntax:

d0 = *a9.sASIZE

Register Usage

Since the PP command interpreter pushes all the PP data and
address registers it uses onto the stack, the PP programmer is free
to use all of the data and address registers for implementing their
subroutine. However, it is up to the user to maintain the interrupt
environment set up by the PP command interpreter. Since the
address of the argument buffer is in a9 and d1 assembly language
routines can use a9 to access the arguments and can disregard d1
while C programs, by definition, expect to find the first (and in this
case, the only) passed argument in d1. Therefore, writing both C
and/or assembly language routines are easily supported.

Exit

Since the PP routine was called from the PP command interpreter,
the PP routine can exit simply as a called routine by branching to the
iprs register. This is handled automatically by the C compiler for C
routines. Also, assembly language routines must return the stack
pointer to its position on entry to the routine. Again, this is handled
automatically by the C compiler for C routines.

14 SPRA269

Summary

The file me_exmpl.tar contains a simple example of running a PP
assembly language routine as well as a C routine from the ME.
Figure 2 summarizes the concepts discussed in this document.

Figure 2. Graphical Description of the Concepts

