

Converting Code from
the TMS320C5x DSP to
the TMS320C2xx DSP

APPLICATION REPORT: SPRA293

Henry D. Hendrix
 Senior Technical Staff DSP Applications

Digital Signal Processing Solutions
 January 1998

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest version of
relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable
at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques
are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of
each device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license,
either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual
property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used.

Copyright © 1998, Texas Instruments Incorporated

TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE (281) 274-2320

US TMS320 FAX (281) 274-2324

US TMS320 BBS (281) 274-2323

US TMS320 email dsph@ti.com

Contents
Abstract... .. 8
Product Support on the World Wide Web... 9
Major Conversion Considerations... 10
Design Porting Methodology ... 12
Summary of Workarounds... 15
Detailed Instruction Replacements ... 16

Context Save/Restore... 16
Missing Functional Units and Registers ... 17

Parallel Logic Unit (PLU)... 17
APL, OPL, and XPL.. 17
CPL ... 18

Accumulator Buffer (ACCB) .. 19
General Replacement Strategy... 19
ACCB Load and Store: LACB, SACB, and EXAR ... 19
ACCB Arithmetic Instructions: ADCB, ADDB, SBB, and SBBB....................... 20
ACCB Boolean Instructions: ANDB, ORB, and XORB 20
ACCB Compare Instructions: CRGT and CRLT.. 21
65-Bit Shift and Rotate Instructions: ROLB, RORB, SFRB, and SFLB............ 22

Barrel Shifter... 24
BSAR ... 24
SATL, SATH... 24

Temporary Registers (TREG1, TREG2) ... 25
BITT, LACT, ADDT, and SUBT:.. 25

Addressing Mode Differences ... 27
Load/Store of Memory-Mapped Registers... 27

Load/Store of Auxiliary Registers.. 27
Load/Store of TREG ... 28
Load/Store of DARAM Block B2 ... 28

Circular Buffering .. 29
Replacement with a Linear Buffer ... 29
Replacement with Bit-Reversed Addressing ... 29
Replacement with Manual Address Checks.. 30

Auxiliary Register Compare Register (ARCR)... 31
Index Register (INDX)... 31
Dynamic Addressing Modes via the Block Move Address Register (BMAR) 32

MADS, MADD... 32
BLDD, BLDP, and BLPD .. 33

I/O Data Moves... 34
Program Control Differences... 36

Conditional Execution (XC)... 36
Delayed Branches, Calls, and Returns (BD, BACCD, BANZD, BCNDD, CALAD,
CALLD, CCD, RETD, and RETCD)... 36
Block Repeat (RPTB) ... 37
Interrupts .. 37

Shadow Registers .. 37
RETE and RETI.. 38

Control and Status Bits ... 38
Idle Mode (IDLE2)... 39
Automatic Zero of Accumulator and P Register (ZAP, ZPR, RPTZ) 39
Immediate Operands .. 39

Appendix A. Summary of Instruction Replacements ... 41
Appendix B. Context Save and Restore.. 48

Accumulator.. 48
Data Page Pointer .. 48
Auxiliary Registers .. 48
T Register and P Register... 49
Interrupt Context Save and Restore.. 49

References.. 51

Tables
Table 1. Replacements for Non-Supported C5x Code.. 15
Table 2. Replacement Code for APL, OPL, and XPL Instructions................................. 17
Table 3. Replacement Code for CPL Instruction... 18
Table 4. Replacement Code for ACCB Load and Store Instructions............................. 20
Table 5. Replacement Code for ACCB Arithmetic Instructions 20
Table 6. Replacement Code for ACCB Boolean Instructions .. 21
Table 7. Replacement Code for ACCB Compare Instructions....................................... 22
Table 8. Replacement Code for 65-Bit Shift and Rotate Instructions 23
Table 9. Replacement Code for BSAR Instruction .. 24
Table 10. Replacement Code for SATL and SATH Instructions...................................... 25
Table 11. Replacement Code for Load/Store of Auxiliary Registers................................ 28
Table 12. Replacement Code for Load/Store of TREG... 28
Table 13. Replacement Code for Load/Store of DRAM Block B2 29
Table 14. Replacement Code Example Using Manual Address Checks 30
Table 15. Replacement Code Example for MADS and MADD Instructions..................... 33
Table 16. Replacement Code Examples for BLDD, BLDP, and BLPD Instructions......... 34
Table 17. Replacement Code for I/O Data Moves .. 35
Table 18. Replacement Code for Conditional Execution... 36
Table 19. Replacement Code for Block Repeats .. 37
Table 20. Replacement Code for RETE and RETI Specialized Return Instructions 38
Table 21. Replacement Code for ZAP, ZPR, and RPTZ Instructions.............................. 39
Table 22. Replacement Code to Support 16-Bit Immediate Operand 40
Table 23. Directly Replaceable C5x Instructions .. 41
Table 24. Non-Directly Replaceable C5x Operations.. 46

Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP 8

Converting Code from the
TMS320C5x DSP to the TMS320C2xx

DSP

Abstract

With the introduction of the TMS320C2xx (C2xx) family of low-cost
digital signal processors (DSPs), many customers are discovering
that they can utilize this DSP family for designs that previously
required the processing power of a TMS320C5x (C5x) DSP.
Although some code has been written for the C2xx, reuse of the
large repository of C5x application code can dramatically speed
up designs using the C2xx. Since the architecture and instruction
set of the C2xx is similar to the C5x, porting of code from the C5x
to the C2xx is fairly straightforward.

The C2xx instruction set is fully capable of implementing the
functionality of the omitted and changed C5x instructions,
although usually at the cost of a minor increase in program
memory and cycle counts. Since most code replacement involves
the use of alternate resources, efficient porting of C5x code
requires careful review of the surrounding code to prevent
unneeded context save and restore. Sometimes restructuring the
code is the only way to prevent large inefficiencies. For these
reasons, no automatic conversion utilities exist.

This paper describes the architectural differences in the C5x and
C2xx CPU cores and provides example replacement code for all
omitted and changed C5x instructions. The implications of each
replacement are also described, including the cost in cycles and
memory usage. Because of the need for system-level
consideration, differences in internal memory and peripherals and
their configuration are not covered.

SPRA293

Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP 9

Product Support on the World Wide Web

Our World Wide Web site at www.ti.com contains the most up to
date product information, revisions, and additions. Users
registering with TI&ME can build custom information pages and
receive new product updates automatically via email.

SPRA293

10 Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP

Major Conversion Considerations

The architectural differences between the C5x and C2xx cores
relevant to producing working code can be summarized as
follows:

� Functional units and registers

� Parallel logic unit (PLU) and dynamic bit manipulation
register (DBMR)

� Accumulator buffer (ACCB)

� Barrel shifter

� Temporary registers (TREG1, TREG2)

� Addressing modes

� Memory-mapped register addressing

� Circular buffering

� Auxiliary register compare register (ARCR)

� Index register (INDX)

� Dynamic addressing via block move address register
(BMAR)

� I/O data moves

� Program control differences

� Conditional execution

� Delayed branches

� Block repeat

� Interrupt return and shadow registers

� Control and status bits

� Idle mode

� Automatic zero of accumulator and product register

� Immediate operands

Although these differences define the major concerns, other
system-level issues should be addressed when porting a design to
the C2xx:

� Memory-map differences

The C2xx has 544 words of internal dual-access RAM
(DARAM); the C5x has 1056 words. This difference has no
effect on specific instruction replacements but is a major
system level consideration: the use of internal vs. external

SPRA293

Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP 11

memory can have a large effect on processor throughput. In
addition, internal single-access memory (SARAM) differences
also exist among different family members in both the C2xx
and C5x. The processor mode status register (PMST), which
controls the configuration of SARAM, among other things, is
also configured differently in the C2xx than the C5x.

� Peripheral hardware differences

The types and numbers of peripherals (serial ports, timers,
wait-state generators, host-port interfaces, PLLs, etc.) vary
greatly among the different family members in both the C2xx
and C5x families. For the most part, the registers used to
control these peripherals are configured and accessed
differently in each DSP family.

SPRA293

12 Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP

Design Porting Methodology

When converting a design from the C5x to the C2xx, several
considerations can make the process easier:

� Invalid C2xx code detection

All unsupported C5x instructions can be detected by simply
running the C5x code through the assembler with the -v2xx
switch. The resulting listing file will have an error or warning
for each invalid C2xx instruction.

However, certain valid instructions utilize different resources
on the C5x than the C2xx and are NOT flagged as errors or
warnings. These resources are limited to the TREG1/2,
ARCR, and INDX registers and the memory-mapped I/O ports.
Refer to the sections on temporary registers, auxiliary
registers, and I/O ports for more details.

� Memory-map changes

Remapping of the memory should be completed before
attempting the instruction changes. Some instructions, such
as DMOV and MACD, only work properly using internal
memory. Use of these instructions with external operands will
not be detected as errors but will result in non-working code
(for a method to eliminate the need for data movement in
external memory, see the section, Circular Buffering.) Also be
aware of any hard-coded addresses that may need changing.
It is best to use relocatable addresses and let the linker assign
their value.

� Peripheral changes

Control of peripheral hardware should be handled separately
from the other instruction changes. Although many of the
peripherals are similar, the location and contents of their
control registers are often different. Changing the instructions
that access the peripherals will not likely be adequate.

� Test procedure

Due to the upward compatibility of the C2xx, code converted to
the C2xx can still be run on a C5x platform, isolating any
problems to specific code changes. The memory-map can be
left in C5x-compatible form or converted to emulate the
memory available on the C2xx. All peripheral access code
should be left in C5x-compatible form. Then the converted
code is reassembled for the C5x and debugged on its original
platform. Two compatibility bits in the C5x PMST register
must be managed to properly emulate C2xx CPU. The NDX
and TRM bits should be set to zero to allow C2xx instructions

SPRA293

Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP 13

utilizing the TREG1/2, ARCR, and INDX to be properly
emulated on the C5x.

To get the most efficiency from the ported code, you must have
some knowledge of the surrounding code. The following
suggestions deal with minor differences between the instruction
replacements and the original code:

� Context changes from replacement code

Several of the replacement methods given here affect the
content of registers and status bits (C, TC, OV, etc.) differently
than the original code. While code can be inserted to save the
context and exactly match the effect on status bits, this is often
unnecessary. However, when debugging ported code, these
affected registers and status bits are a good area to check.

� Location of temporary memory

Memory locations are typically used to emulate missing
registers or to save the context of functional units. For context
saves, it is most efficient to use available memory locations on
the current data page, as there is a 4-cycle penalty for
changing the data page, then changing it back. Register
replacements can also be located on the current data page if
their use is temporary. However, to emulate a register with
global visibility, it is often better to use a specific memory
location (on data page zero, for instance). Although the
overhead is higher, this method allows data to be passed
between functions in that emulated register. If an auxiliary
register is available, it can be used to access replacement
memory anywhere in the map without data page changes.

� Conditional instructions

Conditional branches or calls often directly follow instructions
that set the conditions. If the instruction which set the
condition must be replaced, it is often more effective to utilize
a new conditional instruction, rather than inserting code to
reproduce the original condition. For example, consider the
following C5x code:

APL #0Fh,dma ;clear dma, except 4 LSBs,
;set TC if LSBs = 0

BCND next,TC ;branch if LSBs = 0

This could be converted into code that performs the “AND” and
explicitly sets the TC at a cost of 4 or 5 cycles. However,
since we must use the accumulator for the “AND”, we might as
well test the condition there:

SPRA293

14 Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP

LACC dma ;ACC = dma
AND #0Fh,dma ;ACC = 0000 0000 0000 xxxx
SACL dma ;dma = 0000 xxxx
BCND next,EQ ;branch if LSBs = 0

� Single instruction repeat mode

Alternate replacement methods may be more efficient when
replacing code in single-instruction repeat mode. For
example, a repeated MACD (multiply and accumulate with
data move) ported to operate on external data could be split
into two small loops, rather than one large one. The first loop
implements the MAC only, retaining its single-cycle operation,
and the second does the data move, using BLDD, and is also
single-cycle. If both operations were in a block repeat, neither
would be single-cycle and the overhead of a branch instruction
would be incurred.

� Barrel shift and store

In many cases, a BSAR followed by a store is used to store
accumulator data with a right shift, since SACL/H only allows a
left shift. For shift values of 5 and more followed by an SACL,
it is more efficient to do a left shift of the accumulator followed
by a shifted SACH. The amount of the left shift must be 16 -
R, where R is the desired amount of the right shift. Since
SACH allows a shift up to 7 bits, the number of discrete left
shifts required is 9 - R. Thus for R > 9, all left shifts can be
done by the SACH instruction. Although this method results in
different accumulator contents, it provides a good example of
the most efficient replacement method when all that was
needed is a shifted store. The following example saves 5
cycles over the right-shift then store method.

C5x code C2xx code
BSAR 7 SFL
SACL temp SFL

SACH temp,7

SPRA293

Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP 15

Summary of Workarounds

Table 1 summarizes the proposed replacements for non-
supported C5x code.

Table 1. Replacements for Non-Supported C5x Code

Changed from C5x Workaround
Typical Cycle
Increase Comments

No PLU Use accumulator 2

No accumulator buffer Use local data
memory

1 cycle for 32-bit
arithmetic op’s

9 cycles for 32-bit
boolean, compare,
and shift op’s

No extra cycles for
16-bit operations

No single-cycle barrel shifts Use multi-cycle shifts
or restructure code

1 per shifted bit Can often use
output shifter

No specialized registers
(ARCR, INDX, TREG1/2)

Use other registers 0

No memory-mapped
registers

Set data page and/or
use direct loads and
stores (LAR, LT, etc.)

2

No circular buffering
hardware

Use DMOV or bit-
reversed addressing

0 Avoid manual
address checks

No dynamic addressing
modes

Use immediate
addressing or ACC
instead of BMAR

0 Use ACC to retain
dynamic
addressing

No conditional execution
 (XC)

Use conditional
branch

1

No delayed branches, calls,
or returns

Use non-delayed
versions

2

No zero-overhead block
repeat

Use BANZ or unroll
loop

4 per loop Small loops can
be unrolled

No interrupt shadow
registers

User must save
context

21 cycles per ISR Must only save
those registers
modified by ISR

No auto-zero of
accumulator and product
register

Load zero 1

Limited use of long
immediate operands

Use data memory 1

SPRA293

16 Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP

Detailed Instruction Replacements

The following sections detail the replacement code for each non-
supported C5x instruction. Each section explains the C5x
instruction(s), the replacement code, and any context changes
incurred by the replacement code. The replacements are
organized by the architectural differences as outlined above, with
all relevant instructions included for the given difference.

The following notation is used in the replacement code tables:

[] = optional
wxyz = WXYZ register replacement in data memory (for

example, DBMR, BMAR)
dma = data memory access (either direct or indirect)
pma = program memory access
ARx = auxiliary register x
ACC = accumulator
ACCB = accumulator buffer
Preg = product register
Treg = temporary register

Context Save/Restore

Most of the replacement code has the effect of changing the
contents of specific registers or status bits (for example, the
accumulator or carry bit). Rather than including code to restore
the exact context after every replacement, this paper will simply
list any change in context for each replacement. If these context
changes affect the surrounding code, the code should be
rearranged, if possible, to minimize the effect. If this is not
possible, the register or status bit should be saved beforehand
and restored afterward. Appendix B details methods for context
save and restore.

SPRA293

Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP 17

Missing Functional Units and Registers

Parallel Logic Unit (PLU)

The functional Parallel Logic Unit (PLU) and associated Dynamic
Bit Manipulation Register (DBMR) do not exist on the C2xx. Four
C5x instructions make use of these resources: APL, OPL, XPL,
and CPL. This unit allows direct operations on memory without
affecting the accumulator’s contents.

APL, OPL, and XPL

These instructions perform Boolean operations directly on data
memory locations, replacing the data with the result of the
operation. If no immediate value is specified, the DBMR register
is used as the first operand. The Boolean operation sets the TC
bit to 1 if the result is zero, and sets the TC bit to 0 if the result is
not zero.

Replacement

The preferred replacement technique is to perform the same
function using the accumulator. When DBMR is used as one
operand, its current value (if local) or a memory location (if global)
must be used in the replacement function.

Table 2. Replacement Code for APL, OPL, and XPL Instructions

C5x Instruction C2xx Replacement Code Comments

APL [#lk,]dma LACC dma

AND [#lk][dbmr]

SACL dma

Modifies ACC
Does not set TC

OPL [#lk,]dma LACC dma

OR [#lk][dbmr]

SACL dma

Modifies ACC

Does not set TC

XPL [#lk,]dma LACC dma

XOR [#lk][dbmr]

SACL dma

Modifies ACC

Does not set TC

If the TC bit is required to be set, the following code can be used
at a cost of 4 or 5 cycles:

CLRC TC ;set TC = 0
BCND next,EQ ;if ACC = 0,
SETC TC ;set TC = 1

next next instruction

SPRA293

18 Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP

However, if possible, the accumulator status (EQ or NEQ) should
be used by an instruction utilizing the condition instead of the TC
bit.

CPL

This instruction compares the immediate value or DBMR value
with the data. The data memory location is unchanged. The TC
bit is set to 1 if the values are the same and set to 0 if they are
different.

Replacement

Two replacement methods are available:

� Using the accumulator

� Using auxiliary registers

The accumulator method is more efficient but indicates the results
via the accumulator status bits. The auxiliary register method sets
the TC bit. When DBMR is used as one operand, its current value
(if local) or a memory location (if global) must be used in the
replacement function.

Table 3. Replacement Code for CPL Instruction

C5x Instruction C2xx Replacement Code Comments

CPL [#lk],dma LAR AR0,[#lk][dbmr]

LAR ARx,dma

MAR *,ARx

CMPR 00

Compare using two ARs
Modifies AR0, ARx, and ARP

Sets TC

LACC [#lk][dbmr]

SUB dma

Compare using ACC
Sets ACC status (EQ or NEQ)

Modifies ACC and carry bit (C)
Does not set TC

If the second method is used and the TC bit is required to be set,
the following code can be used at a cost of 4 or 5 cycles.

CLRC TC ;set TC = 0
BCND next,EQ ;if ACC = 0,
SETC TC ;set TC = 1

next next instruction

However, if possible, the accumulator status (EQ or NEQ) should
be used by an instruction utilizing the condition instead of the TC
bit.

SPRA293

Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP 19

Accumulator Buffer (ACCB)

The Accumulator Buffer (ACCB) 32-bit register is not present on
the C2xx. The C5x can access it only through the accumulator – it
is not a memory-mapped register. The 16 instructions that utilize
the ACCB can be grouped as load/store instructions, arithmetic
instructions, Boolean instructions, compare instructions, and 65-bit
shift and rotate instructions.

General Replacement Strategy

Two data memory locations must be used to fully emulate the 32
bits of the ACCB. To be most efficient, these memory locations
should be on the current data page. However, if global visibility is
required, it may be preferable to allocate memory on a specific
data page used throughout the code. Data page management
must be included in this case.

Many replacements require temporary memory to maintain the
contents of the ACC while the ACCB is being emulated. Since
these memory locations are always temporary, they should be on
the current data page, unless the data page has already been
changed to access the replacement ACCB.

If only 16 bits of the ACCB are being used, the replacement code
can often be streamlined. In addition, only one memory location is
needed.

ACCB Load and Store: LACB, SACB, and EXAR

The LACB, SACB, and EXAR instructions load the ACCB from the
ACC, store data from the ACCB to the ACC, and exchange data
between the ACCB and ACC.

Replacement

The load and store instructions are replaced with simple load/store
instructions from memory. The EXAR instruction requires
additional memory as a temporary holding location for the data to
be exchanged.

SPRA293

20 Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP

Table 4. Replacement Code for ACCB Load and Store Instructions

C5x Instruction C2xx Replacement Code Comments

LACB LACC accbh,16

OR accbl

accbh/l in memory

SACB SACH accbh

SACL accbl

accbh/l in memory

EXAR SACH temp2

SACL temp1

LACC accbh,16

OR accbl

BLDD #temp2,accbh

BLDD #temp1,accbl

accbh/l and temp1/2 in memory on
same DP

ACCB Arithmetic Instructions: ADCB, ADDB, SBB, and SBBB

The ACCB Arithmetic instructions perform arithmetic operations
between the ACCB and ACC. The results are placed in the ACC,
leaving the ACCB unchanged. Like other arithmetic operations,
they affect the carry (C) and overflow (OV) bits and are affected
by the overflow mode (OVM).

Replacement

Since 32-bit arithmetic is required, the add/subtract instructions
with sign-suppression are used for the lower 16 bits. The order of
operation is important if the status of the carry bit is to be
maintained.

Table 5. Replacement Code for ACCB Arithmetic Instructions

C5x Instruction C2xx Replacement Code Comments

ADCB ADDC accbl

ADD accbh,16

accbh/l in memory

ADDB ADDS accbl

ADD accbh,16

accbh/l in memory

SBB SUBS accbl

SUB accbh,16

accbh/l in memory

SBBB SUBB accbl

SUB accbh,16

accbh/l in memory

ACCB Boolean Instructions: ANDB, ORB, and XORB

The ACCB Boolean instructions perform Boolean operations
between the ACCB and ACC. The results are placed in the ACC,
leaving the ACCB unchanged. No status bits are set.

SPRA293

Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP 21

Replacement

Since C2xx Boolean operations always place the results in the
lower ACC, extra memory locations are required to properly place
the 32-bit result in the accumulator.

Table 6. Replacement Code for ACCB Boolean Instructions

C5x Instruction C2xx Replacement Code Comments

ANDB SACH temp1

AND accbl

SACL temp2

LACC temp1

AND accbh

SACL temp1

LACC temp1,16

OR temp2

accbh/l and temp1/2 in memory on
same DP

ORB SACH temp1

OR accbl

SACL temp2

LACC temp1

OR accbh

SACL temp1

LACC temp1,16

OR temp2

accbh/l and temp1/2 in memory on
same DP

XORB SACH temp1

XOR accbl

SACL temp2

LACC temp1

XOR accbh

SACL temp1

LACC temp1,16

OR temp2

accbh/l and temp1/2 in memory on
same DP

ACCB Compare Instructions: CRGT and CRLT

The ACCB Compare instructions compare the value in the ACC
with the value in the ACCB. The larger value (for CRGT) or
smaller value (for CRLT) is placed in both registers. The carry bit
(C) is set to one if the condition is true.

Replacement

A 32-bit comparison is done through the ACC and the appropriate
value is then manually loaded into the ACC and ACCB. The carry
bit must also be manually set, if required.

SPRA293

22 Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP

Table 7. Replacement Code for ACCB Compare Instructions

C5x Instruction C2xx Replacement Code Comments

CRGT SUBS accbl ;test for larger value

 SUB accbh,16

 BCND abig,GEQ ;branch if ACC bigger

 LACC accbh,16 ;else set ACC = ACCB

 OR accbl

 CLRC C ;clear carry bit

 B next

abig ADDS accbl ;restore ACC

 ADD accbh,16

 SACH accbh ;set ACCB = ACC

 SACL accbl

 SETC C ;set carry bit

next

accbh/l in
memory

CRLT SUBS accbl ;test for smaller value

 SUB accbh,16

 BCND asml,LT ;branch if ACC smaller

 LACC accbh,16 ;else set ACC = ACCB

 OR accbl

 CLRC C ;clear carry bit

 B next

asml ADDS accbl ;restore ACC

 ADD accbh,16

 SACH accbh ;set ACCB = ACC

 SACL accbl

 SETC C ;set carry bit

next

accbh/l in
memory

65-Bit Shift and Rotate Instructions: ROLB, RORB, SFRB, and SFLB

The C5x allows shifts and rotates of the accumulator through the
ACCB and carry bit, enabling a 65-bit shift path. Except SFRB, the
65 bit Shift and Rotate instructions are not affected by SXM.

Replacement

These instructions are replaced by code that extracts the MSB or
LSB from the ACC (ACCB), then rotates/shifts it into the ACCB
(ACC). Two temporary memory locations are required to maintain
the contents of both the ACC and ACCB.

SPRA293

Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP 23

Table 8. Replacement Code for 65-Bit Shift and Rotate Instructions

C5x Instruction C2xx Replacement Code Comments

ROLB SACH temp1 ;save ACC

SACL temp2

LACC accbh,16 ;load ACCB

OR accbl

ROL ;shift C <- ACCB <- C

SACH accbh ;save shifted ACCB

SACL accbl

LACC temp1,16 ;reload ACC

OR temp2

ROL ;shift C <- ACC <- C

accbh/l and
temp1/2 in
memory on same
DP

RORB ROR ;shift C -> ACC -> C

SACH temp1 ;save ACC

SACL temp2

LACC accbh,16 ;load ACCB

OR accbl

ROR ;shift C -> ACCB -> C

SACH accbh ;save shifted ACCB

SACL accbl

LACC temp1,16 ;reload ACC

OR temp2

accbh/l and
temp1/2 in
memory on same
DP

SFLB SACH temp1 ;save ACC

SACL temp2

LACC accbh,16 ;load ACCB

OR accbl

SFL ;shift C <- ACCB <- 0

SACH accbh ;save shifted ACCB

SACL accbl

LACC temp1,16 ;reload ACC

OR temp2

ROL ;shift C <- ACC <- C

accbh/l and
temp1/2 in
memory on same
DP

SFRB SFR ;shift 0* -> ACC -> C

SACH temp1 ;save shifted ACC

SACL temp2

LACC accbh,16 ;load ACCB

OR accbl

ROR ;shift C -> ACCB -> C

SACH accbh ;save shifted ACCB

SACL accbl

LACC temp1,16 ;reload shifted ACC

OR temp2

* shift value
depends on SXM
accbh/l and
temp1/2 in
memory on same
DP

SPRA293

24 Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP

In some cases, it may be more efficient to restructure the
algorithm than to emulate it directly. This is especially true if
multiple bit shifts or rotates are done, for example, a repeated
ROLB or SFRB.

Barrel Shifter

The C2xx does not have the 1 to 16-bit prescaling shifter of the
C5x, thus cannot do multiple bit shifts on the accumulator or
accumulator loads with variable shifts.

BSAR

The BSAR instruction shifts the accumulator right by 1 to 16 bits.

Replacement

The simplest method of replacement is to perform repeated single
bit shifts. Since the repeat instruction performs n+1 repetitions,
the repeat should be done one less time than the value specified
in BSAR. The repeat loop can be unrolled to save a cycle.

Table 9. Replacement Code for BSAR Instruction

C5x Instruction C2xx Replacement Code Comments

BSAR n RPT #n-1

 SFR

#n single bit shifts
n is a constant

SFR

SFR

SFR

...

#n discrete shifts
(unrolled loop)

SATL, SATH

The SATL and SATH instructions shift the accumulator right by
the amount specified in TREG1. SATL shifts by the amount
specified by the 4 LSBs; SATH shifts by 16 bits, if bit 4 is a one.
These instructions cannot be emulated through TREG, although
other instructions using TREG1 and TREG2 can be (see the
section, Temporary Registers (TREG1, TREG2)).

SPRA293

Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP 25

Replacement

Since the TREG1 register does not exist on the C2xx (see the
section, Temporary Registers (TREG1, TREG2)), it must be
replaced by a memory location or constant, if possible. SATL is
replaced by repeated single bit shifts. SATH requires a bit test
followed by a save of the high ACC and a store to the low ACC.
SATH also requires a temporary memory location to implement
the shift.

Table 10. Replacement Code for SATL and SATH Instructions

C5x Instruction C2xx Replacement Code Comments

SATL RPT treg1

 SFR

 ROL

treg1 in memory
ROL needed since repeat operates
n+1 times

SATH BIT treg1,11

 BCND same,NTC

 SACH temp

 LACC temp

same next instr...

treg1 and temp in memory on
same DP

Temporary Registers (TREG1, TREG2)

The TREG1 and TREG2 registers do not exist on the C2xx, but
the TREG register, which is called TREG0 on the C5x, emulates
their usage.

BITT, LACT, ADDT, and SUBT:

The BITT, LACT, ADDT, and SUBT instructions operate exactly
the same as on the C5x, except that they use TREG instead of
TREG1 or TREG2. They are valid C2xx instructions and thus will
not cause errors or warnings when assembled for the C2xx.
However, in working C5x code, they must be preceded by a load
of TREG1 or TREG2, which will cause an error when assembled
for the C2xx.

Replacement

These instructions do not need to be replaced, but their usage
should be checked to determine if they can use TREG or if an
alternate method is needed. If more than one TREG is currently
used in the C5x code, a context save and restore of TREG (see
Appendix B) may be necessary to utilize it for this instruction. In
this case, it is often more efficient to restructure this piece of code
than to use one register for multiple functions.

SPRA293

26 Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP

Test Method on the C5x

Setting the C5x PMST bit TRM = 0 causes any load of TREG to
also load the same value into TREG0, TREG1, and TREG2.
Thus, the C2xx code will properly execute the affected instructions
on a C5x. However, care must be taken to ensure that all TREG1
and TREG2 loads have been converted, or their values could be
corrupted.

SPRA293

Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP 27

Addressing Mode Differences

Load/Store of Memory-Mapped Registers

The C5x makes most of its on-chip registers available at specific
addresses on data page 0, allowing direct reading and writing of
these registers without setting or modifying the data page pointer.
The C2xx does not have this capability.

SAMM and
LAMM

Load/store the low accumulator from/to the
specified address on data page 0, without
explicitly changing the data page pointer. LAMM
also sets the high accumulator to zero.

SMMR and
LMMR

Copy data from/to a data memory location
(addressed by 16-bit constant “#addr”) to/from a
memory-mapped register (addressed by lower 7
bits of dma). Note that these instructions do not
load/store a constant, but rather to or from a
constant address (usually a label).

Replacement

Of the C5x memory mapped registers, only the auxiliary registers
(AR0-AR7), temporary register (TREG0), and DARAM block B2
exist in the same form on the C2xx. Access to any other register
requires either emulation of that register with a memory location or
system-level changes. Replacement code for many of these
registers are described throughout this document.

An immediate value is often loaded to a memory-mapped register
by first loading it into the accumulator. In this case, more efficient
results can be obtained by directly loading the value into the C2xx
register.

Each of these instructions can use indirect addressing to point to
the memory-mapped register. In this case, the user must
determine which register is being addressed, then use the proper
replacement based on this determination.

Load/Store of Auxiliary Registers

The auxiliary registers can only be accessed through the LAR and
SAR instructions. Simple replacement will require use of local
memory or a change in the data page pointer.

SPRA293

28 Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP

Table 11. Replacement Code for Load/Store of Auxiliary Registers

C5x Instruction C2xx Replacement Code Comments

SAMM ARx SACL temp

LAR ARx,temp

temp in memory

LAMM ARx SAR ARx,temp

LACL temp

temp in memory

SMMR ARx,#addr LDP #addr

SAR ARx,addr

DP changed

LMMR ARx,#addr LDP #addr

LAR ARx,addr

DP changed

Load/Store of TREG

TREG can be loaded via the LT instruction but only read by
moving its data through the accumulator.

Table 12. Replacement Code for Load/Store of TREG

C5x Instruction C2xx Replacement Code Comments

SAMM TREG0 SACL temp

LT temp

temp in memory

LAMM TREG0 MPY #1

PAC

AND #0FFFFh

Preg changed
Make sure product shift mode is
set to zero (PM=00).
AND instruction only required to
ensure ACCH = 0

SMMR TREG0,#addr MPY #1

PAC

LDP #addr

SACL addr

Preg and DP changed
Make sure product shift mode is
set to zero (PM=00).

LMMR TREG0,#addr LDP #addr

LT addr

DP changed

Load/Store of DARAM Block B2

Memory-mapped accesses to block B2 must be replaced by code
that explicitly manages the data page pointer.

SPRA293

Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP 29

Table 13. Replacement Code for Load/Store of DRAM Block B2

C5x Instruction C2xx Replacement Code Comments

SAMM dma LDP #0

SACL dma

DP changed

LAMM dma LDP #0

LACL dma

DP changed

SMMR dma,#addr LDP #0

BLDD dma,#addr

DP changed

LMMR dma,#addr LDP #0

BLDD #addr,dma

DP changed

Circular Buffering

The C2xx family does not contain the C5x circular buffering
hardware, including the five registers (CBSR1, CBER1, CBSR2,
CBER2, and CBCR) used to configure this feature. Loading one
or more of these registers indicates use of this capability.

Replacement with a Linear Buffer

Sometimes a linear buffer can be used instead of a circular one.
For example, in a filter application, the C2xx automatic data
movement (DMOV) capabilities can be used to implement the
delay line rather than a circular buffer. Although this method is
limited to use in on-chip memory, in some cases it is the most
efficient.

Replacement with Bit-Reversed Addressing

The bit-reversed addressing capabilities of the C2xx can be used
to implement a circular buffer, with the following limitations:

� The size of the buffer must be a power of two (2n), although it
can be used with any filter length.

� The buffer must be aligned so that the starting address of the
buffer has n LSBs equal to zero.

� All pointer updates must use the bit-reversed update mode
(*BRO+/-).

SPRA293

30 Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP

To set up this method, AR0 (used for indexed addressing) must
be set to half the buffer size (2n-1), which is actually a bit-reversed
one. Another AR is used to access the buffer and can be
initialized anywhere within the buffer. When the pointer is updated
using bit-reversed mode, the arithmetic carries propagate to the
right instead of the left, resulting in modulo arithmetic that keeps
the pointer within the desired range. For more details, see
reference [3].

Replacement with Manual Address Checks

The most direct replacement is to manually check the address
after every modification of the AR associated with the circular
buffer. This requires both a different setup and added code every
time the circular buffer pointer is modified.

The following example illustrates one method to replace this code.
This method requires that AR0 be available for use in the code to
be changed. First, all of the setup code is replaced. Then, when
the circular buffer is used, code is added to check for required
pointer wrap-around. If ARP modification is included in the code
line utilizing circular buffering, it must be moved to the end of the
added code.

Table 14. Replacement Code Example Using Manual Address Checks

C5x Code C2xx Replacement Code
LACC #bstart

SAMM CBSR1 ;start of buffer

SAMM AR2 ;AR2 -> bstart

ADD #blength-1

SAMM CBER1 ;end of buffer

SPLK #000A,CBCR ;enable buffer #1 and

 ;associate AR2 with it

. . .

MAR *,AR2

ADD *+ ;use circular buffer (AR2)

MPY *+,0,AR6 ;use circular buffer (AR2)

ADD *+ ;not a circular buffer (AR6)

etc.

 LACC #bstart ;start of buffer

 ADD #blength

 SACL temp ;(end of buffer)+1

 LAR AR0,temp ;used for compare

 . . .

 MAR *,AR2

 ADD *+ ;use circular buf (AR2)

 CMPR 00 ;if past end, TC=1

 BCND n1,NTC ;if not past, continue

 LAR AR2,#bstart ;if past, reset AR2

n1 MPY *+ ;use circular buf (AR2)

 CMPR 00 ;if past end, TC=1

 BCND n2,NTC ;if not past, continue

 LAR AR2,#bstart ;if past, reset AR2

n2 MAR *,AR6 ;do ARP modification

 ADD *+ ;not a circular buf (AR6)

 etc.

SPRA293

Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP 31

Auxiliary Register Compare Register (ARCR)

The Auxiliary Register Compare Register (ARCR) does not exist
on the C2xx but is emulated with the AR0 register. ARCR is used
solely by the CMPR instruction, which performs a comparison of
the specified AR with ARCR. Its usage in the CMPR instruction
will not cause assembler errors or warnings, although an error will
occur when attempting to load it.

Replacement

Just load AR0 instead of ARCR and its usage should remain the
same. However, since AR0 can be used for other purposes, you
should make sure that its value is not corrupted before its use.

Test method on C5x

Setting the C5x PMST bit NDX = 0 causes any load of AR0 to also
load the same value into ARCR and INDX. Thus, the C2xx code
will properly execute the CMPR instruction on a C5x. However,
care must be taken to ensure that all ARCR and INDX loads have
been converted or their values can be corrupted.

Index Register (INDX)

The Index Register (INDX) does not exist on the C2xx but is
emulated with the AR0 register. INDX is used for indirect indexed
addressing modes (*0, *0+, *0-). Its usage in these address
modes will not cause assembler errors or warnings, although an
error will occur when attempting to load it.

Replacement

Just load AR0 instead of INDX and its usage should remain the
same. However, since AR0 can be used for other purposes, you
should make sure that its value is not corrupted before its use.

Test method on C5x

Setting the C5x PMST bit NDX = 0 causes any load of AR0 to also
load the same value into ARCR and INDX. Thus, the C2xx code
properly executes indexed addressing modes on a C5x.
However, care must be taken to ensure that all ARCR and INDX
loads have been converted, or their values can be corrupted.

SPRA293

32 Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP

Dynamic Addressing Modes via the Block Move Address
Register (BMAR)

For instructions that use two operands, the C2xx can only specify
one of these at run time. The second operand must be hard-
coded; that is, its address must be specified as an immediate
value. The C5x uses the Block Move Address Register (BMAR) to
enable dynamic, or run-time, specification of the second operand
for the following instructions:

MADS, MADD

The MADS and MADD instructions multiply a data memory value
(*dma) by a program memory value (*pma in BMAR) and
accumulate the previous product. MADD also performs a data
move of *dma to *(dma+1). When these instructions are repeated,
they become single cycle and allow the program memory address
to be automatically incremented by the prefetch counter (part of
the program counter).

Replacement

The most efficient method is to use the MAC or MACD instruction
with the pma hard-coded. This method retains the single-cycle
execution with auto-pma increment in repeat mode. However,
hard-coding the address of the pma makes the routine usable for
only one set of coefficients. Thus, if MADD/MADS is used in a
routine called with differing coefficient tables (different values in
BMAR) then separate routines must be created for each instance.

The dynamic addressing capability can be maintained by using
the LTA[LTD] and MPY instructions. This method performs the
same functions, but requires an additional cycles.

Table 15 shows both replacement methods discussed above.

SPRA293

Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP 33

Table 15. Replacement Code Example for MADS and MADD Instructions

C5x Code C2xx Replacement Code Comments

LACL #coeff

SAMM BMAR

LAR AR2,#d_end

MAR *,AR2

RPT #n-1

 MADD *-

APAC

SACL output

 LAR AR2,#d_end

 MAR *,AR2

 RPT #n-1

 MACD coeff,*-

 APAC

 SACL output

Still single-cycle in repeat mode

Must create separate instance
for each coefficient set
Use MAC to replace MADS,
MACD to replace MADD

 LAR AR7,#n-1

 LAR AR2,#d_end

 LAR AR3,#coeff

 LAR *,AR2

lp LTA *-,AR3

 MPY *+,AR7

 BANZ lp,AR2

 APAC

 SACL output

Retains dynamic addressing

6-cycle loop (vs. 1-cycle)
AR3 and AR7 changed
Use LTA in MADS replacement,
LTD in MADD replacement

BLDD, BLDP, and BLPD

The BLDD, BLDP, and BLPD instructions copy data between
memory locations. The BMAR can be used to specify the second
memory location, allowing dynamic addressing. If BMAR is not
used, an immediate operand must specify the second memory
location. Single-cycle execution with automatic address increment
is obtained when in repeat mode. The BLDD/BLPD versions with
long immediate operands are valid on the C2xx, but all other
versions will be flagged as errors.

Replacement

For BLDD and BLPD, the simplest replacement is to use the long-
immediate version of the instruction. However, this method
requires hard coding of one of the addresses, preventing its use
for multiple routines. To maintain the dynamic addressing
capability, TBLR (copy *pma to *dma) can be used to replace
BLPD, and TBLW (copy *dma to *pma) can be used to replace
BLDP. These instructions achieve single-cycle execution in
repeat mode but require the accumulator for the address of the
second memory location. The following table shows examples of
all three instructions and their replacements.

SPRA293

34 Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP

Table 16. Replacement Code Examples for BLDD, BLDP, and BLPD Instructions

C5x Code C2xx Replacement Code Comments

LAR AR0,#dest

MAR *,AR0

LACL #src

SAMM BMAR

RPT #n-1

 BLDD BMAR,*+

LAR AR0,#dest

MAR *,AR0

RPT #n-1

 BLDD #src,*+

Still single-cycle in repeat mode

Must create separate instance
for each buffer copy

LAR AR0,#src

MAR *,AR0

LACL #dest

SAMM BMAR

RPT #n-1

 BLDP *+

LAR AR0,#src

MAR *,AR0

LACL #dest

RPT #n-1

 TBLW *+

Still single-cycle in repeat mode
Maintains dynamic addressing

ACC changed

LAR AR0,#dest

MAR *,AR0

LACL #src

SAMM BMAR

RPT #n-1

 BLPD BMAR,*+

LAR AR0,#dest

MAR *,AR0

RPT #n-1

 BLPD #src,*+

Still single-cycle in repeat mode

Must create separate instance
for each buffer copy

LAR AR0,#dest

MAR *,AR0

LACL #src

RPT #n-1

 TBLR *+

Still single-cycle in repeat mode
Maintains dynamic addressing
ACC changed

I/O Data Moves

The C5x allows a subset of its I/O memory locations to be
accessed as memory-mapped registers for the load/store and
IN/OUT instructions. These are addressed as PA0-PA15 in the
C5x, which map to addresses 0x50-0x5F. Assembly of "PAx" in
the C2xx IN and OUT instructions produce the absolute addresses
0-15 rather than the memory-mapped locations. Additionally, (in
assembler version 6.60) the use of “PAx” will not produce an
error or warning! IN/OUT instructions using a normal 16-bit
address do not require modification.

Replacement

Use absolute addressing for all IN and OUT instructions. Direct
access via the memory-mapped load/store instructions (LAMM,
SAMM, LMMR, SMMR) requires substitution of the appropriate IN
or OUT instruction at the correct I/O address.

SPRA293

Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP 35

Table 17. Replacement Code for I/O Data Moves

C5x Code C2xx Replacement Code Comments

IN data,PAx IN data,50h + x PAx = address 50h + x

0 d x d 15
OUT data,PAx OUT data,50h + x PAx = address 50h + x

0 d x d 15

SPRA293

36 Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP

Program Control Differences

Conditional Execution (XC)

The C5x allows efficient implementation of “if-then-else”
constructs via the XC instruction. This instruction eliminates
branches by either executing the next 1 or 2 instructions or
inserting NOPs. The C2xx does not have this capability.

Replacement

The most efficient replacement utilizes conditional branching
based on the opposite condition than used in the XC instruction.
BIO is the only condition without an opposite; thus, it requires an
extra branch.

Table 18. Replacement Code for Conditional Execution

C5x Code C2xx Replacement Code Conditions

XC 2,cond

 instruction_1

 instruction_2

next_instruction

 BCND A1,!cond

 instruction_1

 instruction_2

A1: next_instruction

EQ � NEQ

LT � GEQ

GT � LEQ

C � NC
XC 2,BIO

 instruction_1

 instruction_2

next_instruction

 BCND A1,BIO

 B A2

A1: instruction_1

 instruction_2

A2: next_instruction

OV � NOV

TC � NTC

Delayed Branches, Calls, and Returns (BD, BACCD, BANZD,
BCNDD, CALAD, CALLD, CCD, RETD, and RETCD)

Since branches flush the pipeline, the C5x improves code
performance by allowing two instructions to be performed before
the branch is taken. The C2xx does not have this feature.

Replacement

Use the standard non-delayed versions of these instructions.

SPRA293

Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP 37

Block Repeat (RPTB)

The C5x contains dedicated hardware, including a loop counter
called the Block Repeat Counter Register (BRCR), which allows it
to perform zero-overhead block repeats. The C2xx does not
have the hardware or the BRCR, and thus requires overhead for
looping.

Replacement

The most efficient method is to unroll the loop, eliminating any
overhead. However, when this is not possible, code can be
inserted to perform the loop control. The loop counter (BRCR)
must be replaced with an AR and a branch must be placed at the
end of the loop. The code within the loop must be modified to
properly manage the ARP. Table 19 shows how this is done for a
typical loop.

Table 19. Replacement Code for Block Repeats

C5x Code C2xx Replacement Code Comments

 MAR *,AR1

 LACC #n-1

 SAMM BRCR

 RPTB end-1

 ADD *+

 SACL temp

 AND *-

end: next_instr

 MAR *,AR1

 LAR AR7,#n-1

st: ADD *+

 SACL temp

 AND *-,AR7

 BANZ st,AR1

end: next_instr

One AR changed
4 extra cycles in loop

Must manage ARP to use
additional AR for loop counter

Interrupts

Shadow Registers

The C5x has shadow registers to automatically store the CPU
context on interrupt traps. The following registers are shadowed:
ACC, ACCB, PREG, ST0, ST1, PMST, ARCR, INDX, TREG0,
TREG1, and TREG2. The C2xx does not contain these shadow
registers.

SPRA293

38 Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP

Replacement

The most direct replacement is for the interrupt service routine
(ISR) to manually save these registers. However, only those
registers that are modified in the ISR need to be saved. This is
typically only a few of the total number. See Appendix B for more
details on context saves and restores. Because ISRs are typically
important for proper real-time system operation, restructuring of
interrupts to minimize the overhead should be given thorough
study.

RETE and RETI

The RETE and RETI instructions implement specialized returns
from an interrupt. As opposed to normal returns, they pop the
shadow registers as well as copy the top of the stack to the
program counter. In addition, RETE automatically enables
interrupts (sets INTM=0).

Replacement

Because the shadow registers are not present on the C2xx, use a
simple RET and manually restore any changed registers as
outlined in the section, Interrupts. Manual interrupt enable is also
required to replace RETE.

Table 20. Replacement Code for RETE and RETI Specialized Return Instructions

C5x Code C2xx Replacement Code Comments

RETI RET Manually restore changed
context

RETE SETC INTM

RET

Manually restore changed
context

Control and Status Bits

The C5x has four control and status registers: PMST, CBCR, ST0,
and ST1. Of these, only ST0 and ST1 are available on the C2xx.
The C2xx’s ST0 and ST1 are identical except for the hold-mode
bit, HM (ST1, bit 6). Attempts to set or clear non-existent bits or
registers will result in an error.

Replacement

These differences require system-level study to determine
replacement strategy.

SPRA293

Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP 39

Idle Mode (IDLE2)

The C5x and C2xx both offer low-power modes of operation in
which the CPU activities are halted but the peripherals remain
active. The IDLE instruction places the devices in this state. The
C5x offers an additional power mode, IDLE2, which shuts down
the entire device. This mode is not available on the C2xx.

Replacement

Use IDLE, which is lowest power mode available.

Automatic Zero of Accumulator and P Register (ZAP, ZPR,
RPTZ)

These instructions automatically zero the accumulator and product
register (Preg) on the C5x. This capability does not exist on the
C2xx.

Replacement

The accumulator and/or product register must be manually
cleared.

Table 21. Replacement Code for ZAP, ZPR, and RPTZ Instructions

C5x Code C2xx Replacement Code Comments

ZAP MPY #0

PAC

Zero Preg first, then move to
ACC.

ZPR MPY #0 Zero Preg only.
RPTZ #lk MPY #0

PAC

RPT #lk

Zero Preg and ACC, then
repeat.
See Immediate Operands for
RPT concerns.

Immediate Operands

Except for the long immediate operand format, the following two
instructions are supported by the C2xx. The C5x allows 16-bit
immediate operands for these instructions:

MPY #lk Immediate operand restricted to 13 bits – values from
-1000h (-4096) to 0FFFh (4095)

RPT #lk Immediate operand restricted to 8 bits (largest value
is 255 or FFh)

SPRA293

40 Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP

These instructions truncate any 16-bit operands, resulting in
warnings but not errors when assembled for the C2xx. When
modified for the C2xx, they assemble correctly for the C5x.

Replacement

If a 16-bit immediate operand is truly required, the value should be
stored in a memory location, which can then be used as the
operand. A temporary variable on the current data page should
be used, if available. Otherwise, the data page pointer must be
saved, set, and restored afterward.

Table 22. Replacement Code to Support 16-Bit Immediate Operand

C5x Code C2xx Replacement Code Comments

MPY #7FFFh SPLK #7FFFh,temp

MPY temp

temp in memory (watch DP)

RPT #3456h SPLK #3456h,temp

RPT temp

temp in memory (watch DP)

SPRA293

Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP 41

Appendix A. Summary of Instruction Replacements

The following tables list replacements for all unsupported
instructions and detail their cost in cycles and memory. The cycle
costs assume that local data memory is used (same DP) and that
context save and restore is not required. Use of memory can
incur additional cycle costs due to data page changes or extra AR
setup. Context saves and restores will also add cycle and
memory costs.

Table 23 lists C5x instructions that are individually replaceable.
Table 24 lists those C5x instructions and operations that require
some surrounding context to be considered in the replacement.
Any instruction or operation not listed in these tables requires
system-level considerations.

Table 23. Directly Replaceable C5x Instructions

C5x Instruction C2xx Replacement Code Changed
Context

Extra
Cycles

Extra
Memory

Comments

APL [#lk,]dma LACC dma

AND [#lk][dbmr]

SACL dma

ACC 2 None or
1 (dbmr)

Does not
set TC

OPL [#lk,]dma LACC dma

OR [#lk][dbmr]

SACL dma

ACC 2 None or
1 (dbmr)

Does not
set TC

XPL [#lk,]dma LACC dma

XOR [#lk][dbmr]

SACL dma

ACC 2 None or
1 (dbmr)

Does not
set TC

CPL [#lk,]dma LAR
AR0,[#lk][dbmr]

LAR ARx,dma

MAR *,ARx

CMPR 00

AR0
ARx
ARP

5 None or
1 (dbmr)

Sets TC

LACC [#lk][dbmr]

SUB dma

ACC
C

1 None or
1 (dbmr)

Sets ACC
status
(EQ or
NEQ), not
TC

LACB LACC accbh,16

OR accbl

1 2
(accbh,
accbl)

SACB SACH accbh

SACL accbl

1 2
(accbh,
accbl)

SPRA293

42 Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP

C5x Instruction C2xx Replacement Code Changed
Context

Extra
Cycles

Extra
Memory

Comments

EXAR SACH temp2

SACL temp1

LACC accbh,16

OR accbl

BLDD #temp2,accbh

BLDD #temp1,accbl

9 4
(accbh,
accbl,
temp1,
temp2)

ADCB ADDC accbl

ADD accbh,16

1 2
(accbh,
accbl)

ADDB ADDS accbl

ADD accbh,16

1 2
(accbh,
accbl)

SBB SUBS accbl

SUB accbh,16

1 2
(accbh,
accbl)

SBBB SUBB accbl

SUB accbh,16

1 2
(accbh,
accbl)

ANDB SACH temp1

AND accbl

SACL temp2

LACC temp1

AND accbh

SACL temp1

LACC temp1,16

OR temp2

7 4
(accbh,
accbl,
temp1,
temp2)

ORB SACH temp1

OR accbl

SACL temp2

LACC temp1

OR accbh

SACL temp1

LACC temp1,16

OR temp2

7 4
(accbh,
accbl,
temp1,
temp2)

XORB SACH temp1

XOR accbl

SACL temp2

LACC temp1

XOR accbh

SACL temp1

LACC temp1,16

OR temp2

7 4
(accbh,
accbl,
temp1,
temp2)

SPRA293

Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP 43

C5x Instruction C2xx Replacement Code Changed
Context

Extra
Cycles

Extra
Memory

Comments

CRGT SUBS accbl

 SUB
accbh,16

 BCND
abig,GEQ

 LACC
accbh,16

 OR accbl

 CLRC C

 B next

abig ADDS accbl

 ADD
accbh,16

 SACH accbh

 SACL accbl

 SETC C

next

10 2
(accbh,
accbl)

CRLT SUBS accbl

 SUB
accbh,16

 BCND asml,LT

 LACC
accbh,16

 OR accbl

 CLRC C

 B next

asml ADDS accbl

 ADD
accbh,16

 SACH accbh

 SACL accbl

 SETC C

next

10 2
(accbh,
accbl)

ROLB SACH temp1

SACL temp2

LACC accbh,16

OR accbl

ROL

SACH accbh

SACL accbl

LACC temp1,16

OR temp2

ROL

9 4
(accbh,
accbl,
temp1,
temp2)

SPRA293

44 Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP

C5x Instruction C2xx Replacement Code Changed
Context

Extra
Cycles

Extra
Memory

Comments

RORB ROR

SACH temp1

SACL temp2

LACC accbh,16

OR accbl

ROR

SACH accbh

SACL accbl

LACC temp1,16

OR temp2

9 4
(accbh,
accbl,
temp1,
temp2)

SFLB SACH temp1

SACL temp2

LACC accbh,16

OR accbl

SFL

SACH accbh

SACL accbl

LACC temp1,16

OR temp2

ROL

9 4
(accbh,
accbl,
temp1,
temp2)

SFRB SFR

SACH temp1

SACL temp2

LACC accbh,16

OR accbl

ROR

SACH accbh

SACL accbl

LACC temp1,16

OR temp2

9 4
(accbh,
accbl,
temp1,
temp2)

BSAR n RPT #n-1

 SFR
n None n-1 single-

bit shifts

SFR

SFR

SFR

…

n-1 None Unrolled
loop: do n-
1 individual
shifts

SATL RPT treg1

 SFR

ROL

n+1 1 (treg1) n is shift
count in
treg1

SPRA293

Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP 45

C5x Instruction C2xx Replacement Code Changed
Context

Extra
Cycles

Extra
Memory

Comments

SATH BIT treg1,11

 BCND same,NTC

 SACH temp

 LACC temp

same next instr…

4 2 (treg1,
temp)

n is shift
count in
treg1

SAMM ARx SACL temp

LAR ARx,temp

2 1 (temp)

LAMM ARx SAR ARx,temp

LACL temp

1 1 (temp)

SMMR ARx,#addr LDP #addr

SAR ARx,addr

DP 1 None

LMMR ARx,#addr LDP #addr

LAR ARx,addr

DP 2 None

SAMM TREG0 SACL temp

LT temp

1 1 (temp)

LAMM TREG0 MPY #1

PAC

AND #0FFFFh

Preg 3 (1) None Make sure
product
shift mode
is set to
zero
(PM=00).
AND
instruction
only
required to
ensure
ACCH = 0

SMMR TREG0,#addr MPY #1

PAC

LDP #addr

SACL addr

Preg

DP

3 None Make sure
product
shift mode
is set to
zero
(PM=00)

LMMR TREG0,#addr LDP #addr

LT addr

DP 2 None

SAMM B2dma LDP #0

SACL B2dma

DP 2 None

LAMM B2dma LDP #0

LACL B2dma

DP 2 None

SMMR B2dma,#addr LDP #0

BLDD B2dma,#addr

DP 3 None

LMMR B2dma,#addr LDP #0

BLDD #addr,B2dma

DP 3 None

SPRA293

46 Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP

C5x Instruction C2xx Replacement Code Changed
Context

Extra
Cycles

Extra
Memory

Comments

ZAP MPY #0

PAC

1 None

ZPR MPY #0 0 None
RPTZ #lk MPY #0

PAC

RPT #lk

2 None Make sure
RPT is
converted
properly

MPY #lk

(> 13 bits)

SPLK #lk,temp

MPY temp

1 1 (temp) Warning
only

RPT #lk

(> 8 bits)

SPLK #lk,temp

RPT temp

1 1 (temp) Warning
only

Table 24. Non-Directly Replaceable C5x Operations

C5x Operation C2xx Replacement Cost Comments

Circular buffering Linear buffer using DMOV None Can’t be used in external
memory

Bit-reversed addressing AR0 usage Buffer must be size 2n and
properly aligned

Manual address checks 5 or 6
cycles per
access

High overhead

ARCR usage Use AR0 AR0 usage Make sure AR0 isn’t being used
for other purposes

INDX usage Use AR0 AR0 usage Make sure AR0 isn’t being used
for other purposes

TREG1 or
TREG2 usage
(BITT, LACT,
ADDT, and SUBT
instructions)

Use Treg Treg usage Make sure Treg isn’t being used
for other purposes

MADS & MADD
instructions

Use MAC[D] with long-
immediate addressing

None Single-cycle in repeat mode, but
loses dynamic addressing

Use LTA[D] and MPY 2 AR’s
4 extra
cycles per
loop

Retains dynamic addressing, but
has high overhead

BLDD instruction
using BMAR

Use BLDD with long-
immediate addressing

None Single-cycle in repeat mode, but
loses dynamic addressing

BLDP instruction
using BMAR

Use TBLW Alters ACC Retains dynamic-addressing;
single-cycle in repeat mode

BLPD instruction
using BMAR

Use TBLR Alters ACC Retains dynamic-addressing;
single-cycle in repeat mode

Use BLPD with long-
immediate addressing

None Single-cycle in repeat mode, but
loses dynamic addressing

SPRA293

Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP 47

C5x Operation C2xx Replacement Cost Comments

IN or OUT
instruction using
PAx notation

Use physical address None Not detected by assembler
(ver 6.60)

XC instruction Use BCND with opposite
condition

1 extra
cycle (3
extra for
BIO)

Delayed
branches, calls,
and returns

Use normal branches,
calls, and returns

2 extra
cycles

Block repeats Unroll the loop None More code space required, but
actually faster

Add BANZ to end of loop 4 extra
cycles 1
AR altered

Automatic
context save on
interrupts

Manually save and restore
context

Depends
on ISR

Typically minimal impact

RETE and RETI
instructions

Use RET and manually
enable INTM

1 cycle for
INTM
enable

Must save and restore context

Control and
Status register
manipulation

System-dependent Depends

IDLE2 mode Use IDLE None Can’t shut down peripherals

SPRA293

48 Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP

Appendix B. Context Save and Restore

In some cases the current context must be saved and restored to
ensure that the modifications do not alter values used by other
code sections. This section does not deal with replacement code
– only methods to ensure that the other replacements do not alter
the current context.

Accumulator

Two temporary data locations are required to save the current
accumulator value. The most efficient method is to use locations
on the current data page. If a separate data page is required, the
data page must also be set and restored.

save: SACH temp1 ;save high ACC
 SACL temp2 ;save low ACC

restore: LACC temp1,16 ;restore high ACC
 OR temp2 ;restore low ACC

Data Page Pointer

The data page pointer is stored as the lower 9 bits of Status
Register 0 (ST0). Thus to save and restore the DP value, it is
easiest to save and restore ST0:

save: SST #0,temp ;save @temp on DP #0

restore: LDP #0 ;manually set to DP #0
 LDP temp ;restore ST0

Note that the save is done automatically to DP #0, but the restore
must set the DP. Either SST or LST can also be used with
indirect addressing to use any data page. Since ST0 also
contains the ARP, OV, and OVM bits, these can be restored as
well by the "LST #0,temp" instruction. The INTM bit, although in
ST0, is not set by the LST instruction.

Auxiliary Registers

To save the contents of an auxiliary register, a temporary data
location is required. The most efficient method is to use a location
on the current data page. If a separate data page is required, the
data page must also be set and restored.

save: SAR ARx,temp ;store ARx

restore: LAR ARx,temp ;restore ARx

SPRA293

Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP 49

T Register and P Register

Since the only method to save Treg is through the Preg, these
registers will typically be saved and restored together. The Preg
should be saved first, followed by the Treg. As with other context
saves, the most efficient method uses memory on the current data
page. If a separate data page is required, the data page must also
be set and restored.

save: SPM 0 ; set for no shift on Preg xfer
SPH temp1 ; push PregH
SPL temp2 ; push PregL
MPY #1 ; Treg -> Preg
SPL temp3 ; push Treg

restore: LT temp2 ; pop PregL
MPY #1 ; restore PregL
LPH temp1 ; pop PregH
LT temp3 ; pop Treg

Interrupt Context Save and Restore

Of the registers automatically saved by the C5x when servicing an
interrupt, the only ones present on the C2xx are the ACC, PREG,
ST0, ST1, and TREG. Thus, only these must be saved and
restored in addition to whatever other context is saved by the C5x
routine (such as any modified AR’s). The following outlines one
method for saving and restoring these:

* Assume AR7 has been initialized as the stack pointer
save: MAR *,AR7 ; 7->ARP, ARP->ARB

MAR *- ; point to top of stack
SST #0,*- ; push ST0
SST #1,*- ; push ST1
SACH *- ; push ACCH
SACL *- ; push ACCL
SPM 0 ; no shift on Preg xfer
SPH *- ; push PregH
SPL *- ; push PregL
MPY #1 ; Treg -> Preg
SPL *- ; push Treg
...

SPRA293

50 Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP

* Assume AR7 has been initialized as the stack pointer
restore: MAR *,AR7 ; 7->ARP, ARP->ARB

MAR *+ ; point to bottom of stack
MAR *+ ; skip Treg
LT *- ; pop PregL
MPY #1 ; restore PregL
LT *+ ; pop Treg

 MAR *+ ; skip PregL
 LPH *+ ; pop PregH

 LACC *+ ; pop ACCL
 ADD *+,16 ; pop ACCH
 LST #1,*+ ; pop ST1
 LST #0,*+ ; pop ST0
 EINT ; enable interrupts
 RET

SPRA293

Converting Code from the TMS320C5x DSP to the TMS320C2xx DSP 51

References
[1] TMS320C2xx User’s Guide, Digital Signal Processing Products,

Texas Instruments, 1997.

[2] TMS320C5x User’s Guide, Digital Signal Processing Products, Texas
Instruments, 1997.

[3] Hendrix, Henry, “Implementing circular buffers with bit-reversed
addressing”, application report, Texas Instruments, Inc.,
1997

