
Disclaimer: This document was part of the DSP
Solution Challenge 1995 European Team Papers. It
may have been written by someone whose native
language is not English. TI assumes no liability for the
quality of writing and/or the accuracy of the
information contained herein.

Front-End Processing for Monopulse
Doppler Radar

Authors: P.H. Dezaux, X. Gilles, S. Marques

EFRIE, France
December 1995
SPRA299

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest version of
relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable
at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques
are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of
each device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license,
either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual
property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE (281) 274-2320

US TMS320 FAX (281) 274-2324

US TMS320 BBS (281) 274-2323

US TMS320 email dsph@ti.com

Contents
Abstract7
Product Support on the World Wide Web ..8
Introduction ..9
Overall Hardware/Software Description .. 11

Video Amplification ... 11
Analog to Digital Conversion.. 11
Input Interface Between DSP and ADC... 12
Digital Pulse Compression ... 13

General Description ... 13
Overview of the Calculation ... 15
Digital Correlation Formula .. 15
Hardware Description and Algorithm... 15

Doppler Processing .. 16
Calculations.. 16
C Program .. 19
Approximate Modulus .. 19

Output Interface with the Digital Tracker.. 20
Communication with the Radar Manager... 20

Architecture .. 20
Configuration .. 21
Global Variables Needed for Digital Calculations.. 22
Transmission Protocol.. 22

Performances and Conclusion ... 24
Appendices ... 26
Glossary... 38

Figures
Figure 1. Frequency Response of the Amplifier.. 11
Figure 2. Addressing the ADC... 13
Figure 3. Digital Pulse Compression... 15
Figure 4. Initial Doppler Filters Poles for the Acquisition Phase....................................... 18
Figure 5. Poles of 3 Narrow Filters Around the Central Doppler Frequency During the

Tracking Phase (Example)... 19
Figure 6. Communication via the Serial Port .. 21
Figure 7. Reception Diagram .. 23

Front-End Processing for Monopulse Doppler Radar 7

Front-End Processing for Monopulse
Doppler Radar

Abstract

FEPMR is standing for Front-End and Doppler Processing for
Monopulse Doppler Radar. It is a PCB at the frontier between the
RF and the Digital Circuits for the radar AXIR. There are four
channels, corresponding to the four squinted beams of the
antenna (Right, Left, Up and Down). Each beam channel is
processed in phase (I) and quadrature (Q) real baseband signals.

The eight video analog signals are amplified and then converted
by 8 ADC (Analog to Digital Converters). Four Texas Instruments
(TI) TMS320C50 dgital signal processors (DSPs) (one for each
beam channel) are operating two major algorithms in cascade.

� A flexible FIR (Finite Impulse Response) Digital Filter with
complex coefficients is first applied as a Digital Pulse
Compressor to provide 16 range bins. AXIR transmitter is
using a quadriphase sequence (1 up to 31 sub-pulses).
Coefficients for the reference code are optimised by the Radar
Manager (project C) to reduce the range side lobes.

� The second part implements three IIR (Infinite Impulse
Response) Digital Filters, using also complex coefficients as a
Doppler filter. These coefficients are dynamically computed by
the Radar Manager (project C) as a function of the tracked
target range and Doppler. An output time decimation is
provided in accordance with the coherent and non-coherent
integration process.

SPRA299

8 Front-End Processing for Monopulse Doppler Radar

For each beam, each range cell and each Doppler, the I and Q
signals are combined to form magnitudes to be delivered to the
TRACKER (project B) via 4 dual-port RAM. At the end of the
digital calculations, there are 4 * 16 * 3 bins, corresponding
respectively to the 4 beams, the 16 ranges and the 3 Doppler
filters. The output rate is fixed to 2 ms, independently of the
flexible Pulse Repetition Interval (PRI) controlled dynamically
by the Radar Manager.

This project is implemented on a Printed Circuit Board (PCB),
using four TMS320C50. In a close future, a single TMS320C82
could probably do the same job within the same real time
specifications because of its improvements.

This document was an entry in the 1995 DSP Solutions
Challenge, an annual contest organized by TI to encourage
students from around the world to find innovative ways to use
DSPs. For more information on the TI DSP Solutions Challenge,
see TI’s World Wide Web site at www.ti.com.

Product Support on the World Wide Web

Our World Wide Web site at www.ti.com contains the most up to
date product information, revisions, and additions. Users
registering with TI&ME can build custom information pages and
receive new product updates automatically via email.

SPRA299

Front-End Processing for Monopulse Doppler Radar 9

Introduction

This project deals with the study of a Front-End Processing for a
Monopulse Doppler Radar (FEPMR), in charge of Pulse
Compression and Doppler Digital Filtering. AXIR (Automatic
Xband Instrumentation Radar) is a concept of a low cost radar,
specially designed for the TEXAS INSTRUMENTS DSP
SOLUTIONS CHALLENGE. The idea was to use the
performances of the TMS320C4x and TMS320C5x families to
design a performant and intelligent radar processing, made of
multiprocessors DSP chips.

The objective product cost is under 80.000 $ for the complete
radar, including the pedestal, the antenna, the transmitter, the
R.F. Front-End processors and the display. AXIR is basically a
Monopulse Doppler Ground Based Radar with many civilian
applications:
� Tracking of Meteo sounders.
� Cloud Doppler analysis for Meteo purposes.
� Short range air control for parallel runways or difficult access

airports.
� Wind shear and burst detection.
� Trajectory control for sportive aerobatics events or air clubs.
� General low cost instrumentation radar (radar cross section

evaluation, tutorial radar for universities, private air-
tracking…).

The radar processor has been divided into four separate projects
submitted to the TI challenge, respectively in charge of the
following tasks:

A. FRONT END & DOPPLER PROCESSING (this project)

B. DIGITAL TRACKER.

C. RADAR MANAGER.

D. TARGET SIMULATOR.

AXIR features modern technology for the other sub-systems. The
antenna is a planar Monopulse array of printed patches. The
transmitter, the stalo and the R.F. homodyne Front-End are 100 %
solid-state. All the circuits and the processors are located at the
back of the thin antenna.

SPRA299

10 Front-End Processing for Monopulse Doppler Radar

The pedestal uses robotics low cost and modern technology. The
antenna box is free to rotate 360°, both in azimuth and elevation. A
standard PC, under MICROSOFT WINDOWS / MSDOS is used as
an operator remote control, graphics display, monitoring and
recording. A radio link could be managed between the sensor and
the operator desk. This project corresponds to the Printed Circuit
Board number 1 (PCB #1).

Three undergraduates students from the Ecole FRancaise
d’Electronique et d’Informatique have elaborated the hardware
and the software of this project, under the supervision of an
advising Professor.

SPRA299

Front-End Processing for Monopulse Doppler Radar 11

Overall Hardware/Software Description

Video Amplification

There are four channels, corresponding to the four squinted
beams of the antenna (Right, Left, Up and Down). Each beam
channel is processed in phase (I) and quadrature (Q) real
baseband signals.

These eight signals are amplified by eight monolithic operational
video amplifiers NE 5539 (Philips Semiconductors RF
Communications Products). This model was selected for its wide
bandwidth and its high slew rate. They provide a true differential
input impedance device, with proper external compensation to
design operations over a wide range of closed-loop gains. The
amplifiers are providing 30 dB gain, a 2 MHz , bandwidth and a

low noise ().4 HznV/

Figure 1. Frequency Response of the Amplifier

These signals are sent to the digital converters.

Analog to Digital Conversion

Eight Analog to Digital Converters (Analog Devices AD876) are
used to encode the four I & Q video signals. AD 876 is a CMOS
10-bits 20 MSPS sampling A I D converter which has a very good
differential nonlinearity (0,5 LSB). By implementing a multistage
pipeline architecture with output error correction logic, the AD 876
offers accurate performances and guarantees no missing codes.

SPRA299

12 Front-End Processing for Monopulse Doppler Radar

The sampling frequency is set to 2 MHz (500 ns). The Radar
Manager (project C) delivers the clock (2 Mhz) and the
conversion window (signal named PRI).

This signal has to respect some time rules:

� The number of samples could be 17 to 47 (according to 16
range bins, plus 1 to 31 taps for the Digital Filter.

� PRI must be low between 8,5 µs (17 samples) and 23,5 µs
(47 samples).

� PRI is periodic (50 µs to 100 µs) according to the repetition
used by the radar. This value is computed by the Radar
Manager.

An octal buffer and line driver with 3-states outputs (SN 74F244
from Texas Instrument) is used to latch the ADC outputs. This
component is interesting because of its fast logic (switching
characteristics of typically 4 ns). That means that the outputs can
be stopped quickly, whereas the switching of the ADC is
approximately 25 ns.

The data are converted 10 bits to 16 bits to fit the digital external
data bus by copying out the MSB bit (d9) to the bits d9 up to d15.

Input Interface Between DSP and ADC

There are four DSP (TMS 320 C50), one per antenna beam,
each interfaced with two ADC (refer to diagram Appendices B
and C). Numerical Data are available by addressing the ADC as
external memory. The addresses are 2C60h (channel Q) and
2C62h (channel I), chosen from the Data Memory Map.

When the PRI is low, the DSP takes in the samples, with the
following instructions forming an interruption subroutine
declenched by interruption IT1 (low active state during at least 3
consecutive machine cycles):

BLDD # 2C60h, AR1 ;AR1 initialised in the main with 0100h
BLDD # 2C62h, AR2 ;AR2 initialised in the main with 0200h
#AR1 ++
AR2 ++

ADC Data reading is illustrated by Figure 2.

SPRA299

Front-End Processing for Monopulse Doppler Radar 13

Figure 2. Addressing the ADC

As the DSP is running with interruption IT1, the signal which will
activate the interruption during at least 3 consecutive machine
cycles have to be chosen. The input of this interruption is a low
active state and as the frequency of new samples is 2 Mhz, a
combination between the signal PRI and the 2 Mhz clock, which
are synchroned because issued from the same Master Clock (
project C), can be used as IT1.

Digital Pulse Compression

General Description

The aims of the Digital Pulse Compression system (DPC) are to
reduce the peak transmitted power and the voltage / current ratio,
keeping a good range resolution.

The DPC consists of a digital correlation between:

� the received signal from the target, corresponding to a delayed
image of the transmitted waveform, modified by the Doppler
effect.

� the reference code matched to the transmitter sequence.

This lead to the single pulse ambiguity which is the output
amplitude as a 3d surface function of the range delay and the
Doppler shift.

The samples used by the DPC are coming from the two ADC
which operate on the received signal at a 500 ns period (range
resolution of 75 meters). The Digital Correlation is performed on a
part of this received video signal, according to the length of the
reference code chosen (called Lx code). There are nine different
codes used in the DPC system which length may vary from 1 up
to 31 coefficients. The number of Digital Correlation outputs is
equal to 16 (16 range bins). The number of samples taken from
the ADC will be included between 17 (1 + 16) up to 47
(31 + 16).

SPRA299

14 Front-End Processing for Monopulse Doppler Radar

The only information needed to calculate the DPC is the length of
the reference code. This information is given by the Radar
Manager (project C), using the serial port communication
interface.

These codes are quadriphase codes which the four complex
numbers are placed in the complex plane using the following
positions:

The result of one digital correlation is called a range cell.

List of the nine used reference codes:

Code(1) : 0
Code(3) : 002 (BARKER)
Code(5) : 00020 (BARKER)
Code(7) : 0002202 (BARKER)
Code(11) : 00022202202 (BARKER)
Code(13) : 0000022002020 (BARKER)
Code(15) : 000110331231020 (BARKER)
Code(21) : 002222222002202020220
Code(31) : 0012333000301301033212021310320

SPRA299

Front-End Processing for Monopulse Doppler Radar 15

Overview of the Calculation

Figure 3. Digital Pulse Compression

Digital Correlation Formula

150 :k With jLxkjVideoksultDPC
nLx

j
→+= ∑ =0

][].[)(Re_

DPC_Result (k) : Output of the range cell number k.
nLx : length of the reference code.
Video : Inputs from the ADC (complex video
bins).
Lx : Reference code used.

To obtain the 16 range cells, the correlation is repeated 16 times by
moving the variable k from 0 to 15.

Hardware Description and Algorithm

To speed up the DPC process, the nine codes used are stored in
each DSP memory . Here is the memory location for each variable
used for the DPC algorithm:

Complex video samples : Real part : 0100h - 0l5Dh Imaginary part : 0200h - 025Dh
Reference codes Real part: 0460h - 068Dh Imaginary part: 0700h - 092Dh
DPC results Real part : 0300h - O31Fh Imaginary part : 0320h - 033Fh
Working variables: 0800h - 087Fh

The only information given by the Radar Manager (project C) is
the number of the code (the nLx variable), which represents the
correlation length. This code is set every 2 ms via the serial port.
An internal interruption is detected each time the reference code
has to be changed.

The program of the DPC in C language is given in the Appendix F.

SPRA299

16 Front-End Processing for Monopulse Doppler Radar

The 16 range cells given by the DPC algorithm are the elementary
informations taken from the received signal on a PRI period. They
will be associated with the Doppler filtering which will give the
information necessary to track the detected target.

After having simulated the algorithm in C language and in
comparison with the arrays of calculation, the reason for ordering
the data in memory and the importance of the shift implemented
by the LTD instruction can be seen. To optimise real time and
speed calculation, the for loop can be replaced by a shift of the
data in memory (LTD). This instruction loads the T register with
the contents of the address, adds the result of the previous
multiply to the accumulator and shifts the data to the next higher
address in data memory. Associated with MPY (multiplication of
the contents of the T register with the contents of the address),
the calculations are optimised for real time specifications.

ZAC ;Zero the accumulator
LTD VideoQ ;CoefR . Doppler
MPY LxQ
LTS Videol ;CoefQ . DopplerQ - CoefI . DopplerI
MPY Lxl
DMOV Videol

These instructions can be repeated nLx times with the RPTB
instruction, improving the time for calculations.

Doppler Processing

The Doppler Processing is used to reduce the bandwidth (
coherent integration) and to reject fixed echoes. It is applied on
the 16 complex range bins calculated by the Pulse Compressor. It
corresponds to a complex coefficients BandPass Filter (BPF),
centered around a specific Doppler frequency.

This filter is used 3 times, with 3 different center frequencies, on
the 16 * 2 inputs (real and imaginary parts). So, the outputs
contained 16 * 2 * 3 values. These 3 filters are Digital order one
filters, based on a relationship between the input sequence
DPC_Result (n) and the output sequence Doppler (n).

Calculations

The Z transfer of the three Doppler filters is:

Each filter uses 2 coefficients : K and C.

� K corresponds to a gain and is common to the 3 filters.

()H z
K

1-C.z-1
=

SPRA299

Front-End Processing for Monopulse Doppler Radar 17

� C is the complex pole (C = A . ej.2∏.f = α + j . β).

The calculations are done for 3 Doppler frequencies (fcentral, flower,
fupper) with the same amplitude K.

The 3 filters are calculated with the following recursion:

Doppler (n) = K . DPC_Result (n) + α . Doppler (n – 1)

with: 0 < n < 17
Doppler (0) = 0
DPC_Result : Inputs from the Digital Pulse Compression.
Doppler : Outputs of the calculation.

The Effective Noise Bandwidth (ENBW) for this recursive filter is
given by:

C

C-1
=ENBW

+1
 where C is the complex pole.

The calculations are done for the 16 range cells (real and imaginary
parts). The results give 6 arrays of 16 elements, loaded between
0400h and 045Fh in the data memory.

The initial conditions are set at the beginning of the tracking
phase:

2

1=⇒ C
3

1
=ENBW

()0 central C =f
2

1

()1-lower C
6

1
 =f

()1upper C
6

5
 =f

SPRA299

18 Front-End Processing for Monopulse Doppler Radar

Figure 4. Initial Doppler Filters Poles for the Acquisition Phase

These coefficients (K, α = A. cos (2 . Π . f) and β = sin (2. Π. f))
are sent by the Radar Manager via the serial port and are loaded
between addresses 0690h and 069Ch. Periodically, coefficients are
re-calculated by the Radar Manager in order to match the target
Doppler frequency and to reduce the bandwidth.

SPRA299

Front-End Processing for Monopulse Doppler Radar 19

Figure 5. Poles of 3 Narrow Filters Around the Central Doppler Frequency During
the Tracking Phase (Example)

The central frequency is deduced from the trajectory. The radar
manager (project C) computes the estimated and smoothed
Doppler coefficients.

C Program

The program in C language is specified before writing the ASM
program and is given in the Appendix F. It can help to optimise the
ASM program by taking advantages (for execution time and data
memory) of the TMS C50 features. To maximise the real time
calculations, the same instructions than in the DPC program are
used : LTD, MPY, DMOV and RPTB.

Approximate Modulus

Magnitudes of previous results are calculated and transmitted to
the Digital Tracker.

The following approximate formula is used:

M=I Q +
1
2

I Q+ −

SPRA299

20 Front-End Processing for Monopulse Doppler Radar

ABS is available in the TMS320C50 instruction set. This formula is
computed on the 16 range cells * 2 (Q and I parts) * 3 Doppler
for each beam. Results are corresponding to 16 range cells * 3
Dopplers * 4 beams.

Output Interface with the Digital Tracker

To share the 16 * 3 * 4 values with the Tracker, four Dual Port
RAM are used. According to the documentation from Integrated
Device Technology (IDT), the Dual Port RAM allows 2
independent devices to have simultaneous read and write access
to the same memory. This allows the 2 devices to communicate
with each other by passing data through the common memory.
So, a dual-port memory has 2 sets of address, data and read /
write control signals, each of them access the same set of
memory cells. The product 7133 from IDT allows a memory of
2Kword on 16 bits. With a good access time, the only problem
about using this chip is about writing into the same cell at the
same time. But as this project only writes the data and as the
Tracker has only to read the data at a different time, the problem
never occurs.

This memory has been declared between addresses 2C00h and
2C5Fh, according to the memory map (external device).

Communication with the Radar Manager

By the use of a serial link between this project and the Radar
Manager (project C), a refresh of global variables is proceeded.
These global variables are used for the 2 digital filters which have
been presented precedently. The maximum operating frequency of
the serial port while using internal clocks is the frequency of
CLKOUT divided by four (5 Mbit/s at 50 ns ; 7,14 Mbit/s at 35 ns).

Architecture

The signals CLKR (Receive Clock Signal), DR (Receive serial
Data signal), FSR (Receive Framing synchronisation Signal) of
our DSP's are connected to the Radar Manager' DSP (project C).

SPRA299

Front-End Processing for Monopulse Doppler Radar 21

Figure 6. Communication via the Serial Port

Configuration

The use of the serial port receiver needs to program three
memory registers :

Hexadecimal address

SPC Serial Port Control register 22h

DRR Data Receive Register 20h

IMR Interrupt Mask Register 4h

IFR Interrupt Flag Register 6h

The register SPC has been programmed this way :

bit I DLB, value 0 Digital Loopback mode Bit, not used
bit 2 FO, value 0 16 bits transfer
bit 3 FSM, value 0 Frame Synch Mode Bit, no frame sync pulse required
bit 4 MCM, value 0 Clkx is taken from the Clx pin and not from internal clock
bit 5 TXM, value 0 FSX pin is configured as an input
bit 6&7 XRST, RRST O for reset the transmitter and the receiver, 1 for running
bit 14 SOFT, value 0 not used
bit 15 FREE, value 0 free run (1=stop)

Other bits can't be written and are unused, except :

bit 10 RRDY Receive Ready bit, a transition from 0 to 1 indicates that the
data can be read.

When a byte is received, an internal interrupt RINT (serial port
Receive INTerrupt) is generated.

This interrupt must not be masked in the Interrupt Mask Register (
IMR, dec 4, hex 4) in order to execute procedure
change_global_variables :

bit 4 (Rint), has to be equal to 1 which enables the corresponding
interrupt.

SPRA299

22 Front-End Processing for Monopulse Doppler Radar

Global Variables Needed for Digital Calculations

The first filter (Digital Pulse Compression) only needs one
variable : a number between 1 and 9 which corresponds to the
choice of the Lx code (9 different codes).

� ‘L’ : integer 16 bits numero of LX code.

The second filter (Doppler Processing) computes different
variables :

� ‘K’ : integer (16 bits) Amplitude coefficient of the
filter.

� ‘i’, ‘c’, ‘s’ :integers (16 bits) Real part (α) for the inferior,
central and superior
frequencies.

� ‘I’ ‘C’ ‘S’ :integers (16 bits) Imaginary part (β) for the
inferior ,central and superior
frequencies.

These are the only variables that this project needs for the
calculations.

Transmission Protocol

Two different methods have been studied:

� The Radar Manager (project C) transmits only the variables
that need to be changed (for example : K, 1200, i, 1300, C,
2400). The main advantage of this method consists in the fact
that the Radar Manager doesn't need to transmit the eight
variables. But it needs a lot of cycles at the reception for the
tests to recognise the variables.

� An other method consists to transmit the 8 words (16 bits).
When the receive buffer is full, the integer is placed into the
corresponding variable. This method has been retained
because of its speed : all the variables are sent every 2 ms.

The starting reception is detected by an interrupt signal. This
signal is generated when the first integer is received. Then the
procedure global_variables is executed.

SPRA299

Front-End Processing for Monopulse Doppler Radar 23

Figure 7. Reception Diagram

SPRA299

24 Front-End Processing for Monopulse Doppler Radar

Performances and Conclusion

This section concerns the effects of the 2 filters on filter
performances. Indeed, some features of filters include phase
characteristics, stability and coefficient quantization effects. An
important consideration is the stability of the filter. The Digital
Pulse Compression is inherently stable (i.e., a bounded input
always produces a bounded output). On the other hand, the
Doppler Processing may or may not be stable, depending on the
location of the pole of the filter.

Digital filters are designed with the assumption that the filter will
be implemented on an infinite precision device. However, as all
processors are of finite precision, it is necessary to approximate
the ‘ ideal ‘ filter coefficients. This approximation introduces
coefficients quantization error. The net result due to imprecise
coefficient representations is a deviation of the resultant filter
frequency response from the ideal one.

Another problem in implementing a digital filter is the quantization
error due to the finite wordlength effect in the hardware. Source of
error arising from the use of finite wordlength include the following :

� I I 0 signal quantization (ADC conversion).

� Filter coefficient quantization.

� Correlated roundoff noise.

� Dynamic range constraints.

The advantages of using digital filters over their Analog
counterparts are:

� high reliability.

� high accuracy.

� no effect of component drift on system.

� component tolerance not critical.

� Ease for changing filter parameters.

The 16-bit coefficients and the 32-bit accumulator of the TMS 320
processors help minimise the quantization effects. Special
instructions also help to overcome problems in the accumulator.
These features, in addition to a powerful instruction set and a fast
clock timing, make the TMS320C50 ideal programmable
processors for our application.

SPRA299

Front-End Processing for Monopulse Doppler Radar 25

In the worst case of the PRI, there is only 50 µs (shortest period
of the PRI) - 23,5 µs (47 samples of 500 ns each) = 26,5 µs for
the digital calculations, before the next samples. Indeed, the radar
must work in real time, so it can't memorise and calculate later.
This is the main reason for using 4 DSP C50 in parallel : the 47 * 4
samples (worst case) can't be loaded and 1 * 4 + 3 * 4 + 1 * 4 =
20 algorithms can't be processed in real time. With 4 DSP, we
have only 47 samples and 1 + 3 + 1 = 5 algorithms to process
them one after the others and in the same time than the first case.
Indeed, the first case needs to compute with 45 MIPS whereas the
second one needs only 15 MIPS per DSP. And DSP TMS 320
C50 allows a 35 I 50 ns single-cycle fixed-point instruction
execution time (28.6 / 20 MIPS).

This project demonstrates that a typical processing of Monopulse
Doppler Radar implemented on only 4 chips, realising 16 range
cells (500 ns) * 3 complex Doppler filters * 4 beams is equivalent
to 4 * 15 MIPS. It represents 75 % of the time possibilities offered
by the 4 DSP TMS320C50.

SPRA299

26 Front-End Processing for Monopulse Doppler Radar

Appendices

General description of the Front-End Processing. A

Global diagram of the 4 beams. B

Functional diagram for one antenna channel. C

Electrical diagram for one channel. D

Memory allocation. E

C program for simulation. F

C and ASM programs for the serial communication. J

SPRA299

Front-End Processing for Monopulse Doppler Radar 27

SPRA299

28 Front-End Processing for Monopulse Doppler Radar

Global Diagram of the 4 Beams

SPRA299

Front-End Processing for Monopulse Doppler Radar 29

Functional Diagram for One Antenna Channel

SPRA299

30 Front-End Processing for Monopulse Doppler Radar

SPRA299

Front-End Processing for Monopulse Doppler Radar 31

Memory Allocation Reserved for the ASM Program Inside the
DSP

VideoR 0100 015D 47 values of 16 bits
Videol 0200 025D 47 values of 16 bits
CompressR 0300 031F 16 values of 16 bits
Compressl 0320 033F 16 values of 16 bits
Doppler0R 0340 035F 16 values of 16 bits
Doppler0l 0360 037F 16 values of 16 bits
Doppler1R 0380 039F 16 values of 16 bits
Doppler1I 03A0 03BF 16 values of 16 bits
Doppler2R 03C0 03DF 16 values of 16 bits
Doppler2l 03E0 03FF 16 values of 16 bits
Working variables 0800 087F 64 variables of 16 bits
Doppler0 0400 041F 16 values of 16 bits
Doppler1 0420 043F 16 values of 16 bits
Doppler2 0440 045F 16 values of 16 bits
LxR 0460 068D 31*9 values of 16 bits
CoefR 0690 0695 3 values of 16 bits
CoefI 00696 069C 3 values of 16 bits
Lx1 0700 092D 31*9 values of 16 bits
Mémoire Double accès2C00 2C5F 48 values of 16 bits
CAN Q 2C60 2C61 1 value of 16 bits
CAN I 2C62 2C63 1 value of 16 bits

All the addresses are given in hexadecimal and refer to the DATA
memory and not to the program memory.

SPRA299

32 Front-End Processing for Monopulse Doppler Radar

C Program for the Front - End Processing

#include <stdio.h> #include <math.h> #include <conio.h>
#define nDPC_Result 16

/* Init of the LX coefficients. */
void initLx (int nlx, int LxQ[], int LxI[])

{ int i;

for (i=0 ; i < nlx; i++)
{LxQ [I] = 0;
LxI [i] = 0;
}

LxQ [0] = 1;

switch (nlx)
{ case 3 : LxQ [1] = 1; LxQ [2] = -1;

break;
case 5 : LxQ [1] = 1; LxQ [2] = 1; LxQ [3] = -1; LxQ [4] = 1;

break;
case7 : LxQ [1] = 1; LxQ [2] = 1; LxQ [3] = -1; LxQ [4] = -1 LxQ [5] = 1;

LxQ [6] = -1;
break;

case 11: LxQ [1] = 1; LxQ [2] = 1; LxQ [3] = -1 LxQ [4] = -1; LxQ [5] = -1;
LxQ [6] = 1; LxQ [7] = -1; LxQ [8] = -1; LxQ [9] = 1; LxQ [10] = -1;
break;

case l3: LxQ [1] = 1; LxQ [2] = 1; LxQ [3] = 1; LxQ [4] = 1; LxQ [5] = -1;
LxQ [6] = -1; LxQ [7] = 1; LxQ [8] = 1; LxQ [9] = -1; LxQ [10] = 1;
LxQ [11] = -1; LxQ [12] = 1;
break;

case 15: LxQ [1] = 1; LxQ [2] = 1; LxQ [5] = 1; LxQ [9] = -1; LxQ [12] = 1;
LxQ [13] = -1; LxQ [14] = 1; LxQ [3] = 1; LxQ [4] = 1; LxQ [6] = -1;
LxQ [7] = -1; LxQ [8] = 1; LxQ [10] = -1; LxQ [11] = 1;
break;

case 2l: LxQ [1] = 1; LxQ [2] = -1; LxQ [3] = -1; LxQ [4] = -1; LxQ [5] = -1;
LxQ [6] = -1; LxQ [7] = -1; LxQ [8] = -1; LxQ [9] = 1; LxQ [10] = 1;
LxQ [11] = -1; LxQ [12] = -1; LxQ [13] = 1; LxQ [14] = -1; LxQ [15] = 1;
LxQ [16] = -1; LxQ [17] = 1; LxQ [18] = -1; LxQ [19] = -1; LxQ [20] = 1
break;

case 3l: LxQ [1] = 1; LxQ [3] = -1; LxQ [7] = 1; LxQ [8] = 1; LxQ [9] = 1;
LxQ [11] = 1; LxQ [14] = 1; LxQ [16] = 1; LxQ [19] = -1; LxQ [21] = -1;
LxQ [22] = 1; LxQ [23] = -1; LxQ [27] = 1; LxQ [29] = -1; LxQ [30] = 1;
LxQ [2] = 1; LxQ [4] = -1; LxQ [5] = -1; LxQ [6] = -1; LxQ [10] = -1;
LxQ [12] = 1; LxQ [13] = -1; LxQ [15] = 1; LxQ [17] = -1; LxQ [18] = -1;
LxQ [20] = 1; LxQ [24] = 1; LxQ [25] = -1; LxQ [26] = 1; LxQ [28] = -1;

}

}

/* Init of the DSP inputs : video. */
void initvideo (int nvideo, int videoQ[], int videoI[])
{ int i;

for (i = 0 ; i < nvideo ; i++)
asm
{ MOVE 2C60, @videoQ [i];

MOVE 2C62, @videol [i];

SPRA299

Front-End Processing for Monopulse Doppler Radar 33

}
}

/* Init of the arrays used for the results. */
void initDPC_Result (int DPC_ResultQ [] int DPC_ResultI [])

{ int i;

for (i = 0 ; i <nDPC_Result ; i++)
{ DPC_ResultQ [I] = 0;

 DPC_ResultI [i] = 0;
}

}

/* Writing to the screen 2 integer arrays. */
void affiche (int nvideo, int LxQ[], int LxI[], int ntxt, char texte[])

{ int i;

clrscr ();
for (i =0 ; i < ntxt – 1 ; i++)
{ printf ("%c", texte [i]);
}
printf ("%c \n", texte [ntxt – 1]);
for (i = 0 ; i <nvideo ; i++)
{ printf ("%2d : Valeur %4d %4d \n", i, LxQ [i], LxI [i]);
}
I = getch ();

}

/* Calculation of Doppler coefficients from the frequencies and the amplitude delivered by the project C via the serial port.
=> normally designed by the projet C, but here for the simulation. */

void calcul_coef (float fzero, float fmoins, float fplus, float amp, int coefQ [], int coefI [])

{ coefQ [0] = (int) amp * cos (2 * 180 * fzero);
coefI [0] = (int) amp * sin (2 * 180 * fzero);
coefQ [1] = (int) amp * cos (2 * 180 * fmoins);
coefI [1] = (int) amp * sin (2 * 180 * fmoins);
coefQ [2] = (int) amp * cos (2 * 180 * fplus);
coefI [2] = (int) amp * sin (2 * 180 * fplus);

}

/* Output to the DMA of the results. */
void ecrire_ext (int doppler0 [], int doppler1 [], int doppler2 [])

{ int i;

for (i = 0 ; i <nDPC_Result ; i++)
asm
{ MOVE @doppler0 [i], 2C00 + i
}
for (i = 0 ; i <nDPC_Result ; i++)
asm
{ MOVE @doppler1 [i], 2C20 + i;
}
for (i = 0 ; i <nDPC_Result ; i++)
asm

SPRA299

34 Front-End Processing for Monopulse Doppler Radar

{ MOVE @doppler2 [i], 2C40 + i;
}

}

/* Main program. */

int main ()

{ int nlx, nvideo, i, j;
int LxQ [31], LxI [31];
float fzero, fmoins, fplus, amp, K;
int videoQ [47], videol [47], DPC_ResultQ [nDPC_Result], DPC_ResultI [nDPC_Result], coefQ [3],

coefI [3], doppler0 [nDPC_Result], doppler1 [nDPC_Result], doppler2 [nDPC_Result];
int doppler0Q [nDPC_Result], doppler0I [nDPC_Result], doppler1Q [nDPC_Result], doppler1I [nDPC_Result],

doppler2Q [nDPC_Result], doppler2l [nDPC_Result];

nlx = 15; /*Max value=31. */
nvideo = nlx + nDPC_Result

/* Init of the nlx divisions of LxQ and LxI. */
initLx (nlx, LxQ, LxI);
affiche (nlx, LxQ, LxI, 2, "Lx");

/* Init of the nvideo divisions of videoQ and videoI. */
initvideo (nvideo, videoQ, videoI);
affiche (nvideo, videoQ, videol, 8, "video in");

/* Init to 0 of the nDPC_Result divisions of DPC_ResultQ and DPC_Resultl. */
initDPC_Result (DPC_ResultQ, DPC_Resultl);
affiche (nDPC_Result, DPC_ResultQ, DPC_ResultI, 8, "DPC_Result");

/* Calculation of the Digital Pulse Compression. */
for (i = 0 ; i <nDPC_Result ; i++)
{ for (j=0 ; j < nlx ; j++)

{ DPC_ResultQ [i] = DPC_ResultQ [i] + LxQ [j] * videoQ [i+j] - LxI [j] * videol [i+j];
 DPC_ResultI [i] = DPC_ResultI [i] + LxQ [j] * videol [i+j] + LxI [j] * videoQ [i+j];
}

}
affiche (nDPC_Result, DPC_ResultQ, DPC_Resultl, 8, "DPC_Result");

/* Coefficients from the project C send by the serial port. */
fzero = 10.235;
fmoins = 7.59;
fplus = 11.15;
amp = 5; /* These values have been chosen at random for the simulation.*/
K = 1;
calcul_coef (fzero, fmoins, fplus, amp, coefQ, coefI);

/* Calculation of the Doppler Processing. */
doppler0Q [0] = K * DPC_ResultQ [0];
doppler0l [0] = K * DPC_Resultl [0];
doppler 1 Q [0] = K * DPC_ResultQ [0];
doppler1I [0] = K * DPC_Resultl [0];
doppler2Q [0] = K * DPC_ResultQ [0];
doppler2l [0] = K * DPC_Resultl [0];
for (i = 1; i < nDPC_Result ; i++)
{ doppleroQ [i] = K*DPC_ResultQ [i] + coefQ [0]*doppler0Q [i-1] - coefI [0]*doppler0I [i-1];

doppler0l [i] = K*DPC_ResultI [i] + coefI [0]*doppler0Q [i-1] + coefQ [0]*doppler0I [I-1];

SPRA299

Front-End Processing for Monopulse Doppler Radar 35

doppler1Q [i] = K*DPC_ResultQ [i] + coefQ [1]*doppler1Q [i-1] - coefI [1]*doppler1l [I-1];
doppler1l [i] = K*DPC_ResultI [i] + coefI [1]*doppler1Q [i-1] + coefQ[1]*doppler1I [I-1];
doppler2Q [i] = K*DPC_ResultQ [i] + coefQ [2]*doppler2Q [i-1] - coefI [2]*doppler2I [i 1];
doppler2l [i] = K*DPC_ResultI [i] + coefI [2]*doppler2Q [i-1] + coefQ [2]*doppler2I [I-1];

}
affiche (nDPC_Result, doppler0Q, doppler0I, 7, "doppler0");
affiche (nDPC_Result, doppler1Q, doppler1l, 7, "doppler1");
affiche (NPC_Result, doppler2Q, doppler2l, 7, "doppler2");

/* Calculation of the approximate modulus. */
for (i = 0 ; i < nDPC_Result ; i++)
{ doppler0 [I] = fabs (doppler0l [i]) + fabs (doppler0Q [I]) + 0.5 * fabs (fabs (doppler0l [i]) –

 fabs (doppler0Q [i]));
 doppler1 [i] = fabs (doppler1l [I]) + fabs (doppler1Q [i]) + 0.5 * fabs (fabs (doppler1l [I]) –

 fabs (doppler1Q [i]));
 doppler2 [I] = fabs (doppler2l [I]) + fabs (doppler2Q [i]) = 0.5 * fabs (fabs (doppler2l [i]) –

 fabs (doppler2Q [i]));
}

affiche (nDPC_Result, doppler0, doppler1, 15, "doppler0 + doppler1");
affiche (nDPC_Result, doppler1, doppler2, 15, "doppler1 + doppler2 ");

/* Output of the results. */
ecrire_ext (doppler0, doppler1, doppler2);

}

SPRA299

36 Front-End Processing for Monopulse Doppler Radar

C and Asm Programs for the Serial Communication

// Constant //
#define nb_word_transfered 8
#define begin_adr Ox9OOOh //9000h->9016h//
#define adr_serial_buffer 32

// Global variables //
L, K, I, c, s, I, C, S :integer;

// Reception of interruption Rint signales that the first byte is being transmitted //
// Execution of procedure void change_global_variables (void) //

void change_global_variables (void)

// Local variables //
integer *buffer_DRR;
integer *register;

{
register=04h; // adress of the register IMR //
*register=0h; // inhibit interruptions //
register=022h; // adress of the register SPC II
buffer_DRR = adr_serial_buffer;
K= *buffer_DRR;
repeat until (*register & 04 00h == 1) // wait until bit RRDY==1; an integer is received //
L= *buffer_DRR;
repeat until (*register & 04 00h == 1) // wait until bit RRDY==1; an integer is received //
i = *buffer_DRR;
repeat until (*register & 04 00h == 1) // wait until bit RRDY==1; an integer is received //
c= *buffer_DRR;
repeat until (*register & 04 00h == 1) // wait until bit RRDY==1; an integer is received //
s= *buffer_DRR;
repeat until (*register & 04 00h == 1) // wait until bit RRDY==1; an integer is received //
I= *buffer_DRR;
repeat until (*register & 04 00h == 1) // wait until bit RRDY==1; an integer is received //
C= *buffer_DRR;
repeat until (*register & 04 00h == 1) // wait until bit RRDY==1; an integer is received //
S= *buffer_DRR;
register=04h; // adress of the register IMR //
*register = 0l0h; // allow RINT interruption II

}

First, the vector has to be stored in the RAM:

LAMM change_global_variables ;ACC=ISR adress
BACC ;Branch to ISR

In the main program there is an initialization part:

SPLK #0008h, SPC ; Set SP as CLK; frame sync receive
; Set TXM=MCM=DLB=FO=0, FSM=1
; and put SP into reset (XRST=RRST=0)

SPLK #00C8h, SPC ; Take SP out of reset, setup interrupts

SPRA299

Front-End Processing for Monopulse Doppler Radar 37

SPLK #0FFFFh, IFR ; Clear IFR
SPLK #010h, IMR ; Turn on RINT
CLRC INTM ; Enable interrupts
LAR AR7, #9000h ; Setup where to write received data
CLRC XF ; Signal ready to receive

SELF1 B SELF 1 ; Wait for interrupts

The interrupt subroutine change_global_variables is:

CHANGE_GLOBAL_VARiABLES
LACL DRR ; Load received value
SACL *+ ; Write to memory block

TEST1 BIT *,5,SPC ; wait transition from 0 to 1 of bit 10 (RRDY) of SPC
BCND TEST1, NTC ; TC=0, return to TEST1

NEXT LACL DRR ; Load received value
SACL *+ ; Write to memory block
….
RETE ; Clears INTM (enable interrupt) and execute RETI,

; return from interrupt

SPRA299

38 Front-End Processing for Monopulse Doppler Radar

Glossary

ADC : Analog to Digital Converter.
AXIR : Automatic Xband Instrumentation Radar.
CLKR : Receive CLocK
DMA : Double Memory Access.
DR : Receive serial Data signal
DRR : Data Receive Register
DSP : Digital Signal Processor.
FIR : Finite Impulse Response.
FSR : Receive Framing Synchronisation signal
IFR : Interrupt Flag Register
IIR : Infinite Impulse Response.
IMR : Interrupt Mask Register
MSB : Most Significant Bit
PRF : Pulse Repetition Frequency.
PRI : Pulse Repetition Interval.
R.F. : Radio Frequency.
SPC : Serial Port Control register

