
Disclaimer: This document was part of the First
European DSP Education and Research Conference.
It may have been written by someone whose native
language is not English. TI assumes no liability for the
quality of writing and/or the accuracy of the
information contained herein.

Determining CPU and Memory
Requirements for Real-Time Speech
Recognition Systems Using the
TMS320C3x/C4x

Authors: E. Batlle, J.A.R. Fonollosa

ESIEE, Paris
September 1996
SPRA314

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest version of
relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable
at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques
are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of
each device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license,
either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual
property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE (281) 274-2320

US TMS320 FAX (281) 274-2324

US TMS320 BBS (281) 274-2323

US TMS320 email dsph@ti.com

Contents
Abstract ... 7
Product Support ... 8

Related Documentation .. 8
World Wide Web... 8

Introduction... 9
Signal Preprocessing ... 10

Frame Blocking... 11
Preemphasis... 11
Windowing .. 12
Preemphasis and Windowing ... 12

Parameter Measurement .. 13
Autocorrelation Analysis ... 13
LPC Analysis .. 14
LPC to Cepstrum .. 14
Temporal Derivative.. 15

Vector Quantization.. 16
Full Search Algorithm ... 16
Pre-Computed Energy .. 17
Assembler Version.. 18

The Viterbi Algorithm ... 19
Results... 20
References .. 22

Figures
Figure 1. A Speech Recognition System ... 10

Tables
Table 1. Notation .. 11
Table 2. Cycles Consumed by the Parameterization.. 13
Table 3. Full Search VQ ... 16
Table 4. Cycles Used by Pre-Calculating the Energy... 17
Table 5. Cycles Used by the Assembler VQ .. 18
Table 6. Common Values ... 20
Table 7. Cycles for a Bigger Codebook.. 21
Table 8. Cycles for a Longer Cepstral Vector... 21

Determining CPU and Memory Requirements for Real-time Speech Recognition Systems 7
Using the TMS320C3x/C4x

Determining CPU and Memory
Requirements for Real-Time Speech

Recognition Systems Using the
TMS320C3x/C4x

Abstract

Developing a computer system using real-time speech recognition
previously required a workstation using non-specialized CPUs.
Limits to the system were imposed by the amount of memory and
hardware required.

The Texas Instruments (TI) TMS320C3x/C4x (’C3x/’C4x) digital
signal processor (DSP) is a high performance CMOS 32-bit
floating point processor. This project uses the (’C3x/’C4x) DSP to
count the cycles consumed by the algorithms involved and to
know how many words can be recognized with a predetermined
accuracy, allowing you to calculate the hardware required for your
recognition system to perform.

This document describes the CPU and memory requirements for
DSP real-time speech recognition systems used in consumer
applications. Included are sections on signal preprocessing,
parameter measurement, vector quantization, veterbi algorithm,
and results.

This work was supported by the Spanish government under grant
number C95-l022-C05-03. This document was part of the first
European DSP Education and Research Conference that took
place September 26 and 27, 1996 in Paris. For information on
how TI encourages students from around the world to find
innovative ways to use DSPs, see TI’s World Wide Web site at
www.ti.com.

SPRA314

8 Determining CPU and Memory Requirements for Real-time Speech Recognition Systems
Using the TMS320C3x/C4x

Product Support

Related Documentation

The following list specifies product names, part numbers, and
literature numbers of corresponding TI documentation.

q TMS320C3x User’s Guide, Literature number SPRA031E

q TMS320C3x C Source Debugger, Literature number
SPRU053B

World Wide Web

Our World Wide Web site at www.ti.com contains the most up to
date product information, revisions, and additions. Users
registering with TI&ME can build custom information pages and
receive new product updates automatically via email.

SPRA314

Determining CPU and Memory Requirements for Real-time Speech Recognition Systems 9
Using the TMS320C3x/4x

Introduction

For the past decades, many researchers worked to develop
algorithms for speech recognition systems. All these algorithms
worked only on workstations and belonged to experimental
systems. However, speech recognition systems have spread to
consumer applications in recent years, which has led to the
development of smaller (and cheaper) systems. In addition,
researchers started using DSPs to implement speech recognition
systems. One of the most popular DSP families is the TI TMS320.
We have developed a system based on the TMS320C3x, a high-
performance CMOS 32-bit floating-point DSP.

One point that is very important in the development of a system is
to know the limits imposed by the hardware. What we basically do
in this paper is use the TMS320C3x/C4x DSP to count the cycles
consumed by the algorithms involved in recognition. We thus can
know how many words we can recognize with a predetermined
accuracy, how much memory we must use, etc.

SPRA314

10 Determining CPU and Memory Requirements for Real-time Speech Recognition Systems
Using the TMS320C3x/C4x

Signal Preprocessing

It is useful to preprocess the speech signal to flatten its spectrum
and make the system more robust against finite precision effects.

Figure 1. A Speech Recognition System

SPRA314

Determining CPU and Memory Requirements for Real-time Speech Recognition Systems 11
Using the TMS320C3x/4x

Frame Blocking

Before entering the recognition system, the input signal is blocked
into frames of FR samples with an overlap of WS samples (Table
1 lists the variables and their meaning). We use FR+1 words to
store the entire block and its previous sample.

Table 1. Notation

Variable Meaning

FR frame-length
LP LPC order

LC cepstrum coefs.
DI diff. memory

FS sampling rate

WS window shift
CS size of codebooks

VD vector dimension
NS number of states

NO number of obs.
NM n. of models

NT transitions

Preemphasis

To remove the color of the spectrum of the speech signal we
apply a first-order high-pass filter.

As we can see in the code below, there is a pipeline conflict and
we consume two cycles for each sample.

 rptb end_preem
 subf r0, *ar0--(1), r1
end_preem:
 stf r1, *+ar0(1)
 || mpyf r2, *-ar0(1) , r0

Where ar0 points to the last input sample and r2 is the
preemphasis factor.

SPRA314

12 Determining CPU and Memory Requirements for Real-time Speech Recognition Systems
Using the TMS320C3x/C4x

Windowing

Signal discontinuities are at the beginning and end of each frame
block. We can soften them by windowing each frame. The most
used window in speech recognition is the Hamming window. As in
the previous section, a pipeline conflict forces us to consume two
cycles per sample. The program is

rpts FR-2
mpyf *ar0--(1), *ar1--(1), r0
|| stf r0, *+ar0(1)

As we make three memory accesses at the same time, a bus
conflict occurs and an additional cycle is used.

Preemphasis and Windowing

As we show in the previous sections, Preemphasis and
Windowing, we can not complete any of the parts without an
additional cycle. However, we can perform these two steps jointly
to avoid one of the pipeline conflicts.

 rptb end_pre_wind
 subf r0, *ar0--(1), r2
 mpyf r2, *ar1--(1), r1
end_pre_wind:
 stf r1, *+ar0(1)
 || mpyf r3, *-ar0(1), r0

With this program we use just 3·FR cycles to get the entire block
preemphasised and windowed.

SPRA314

Determining CPU and Memory Requirements for Real-time Speech Recognition Systems 13
Using the TMS320C3x/4x

Parameter Measurement

Once we have preprocessed the speech signal, we can extract
the features that the system will use to recognize the words. As is
well known, there are many useful parameters that we can
consider (mel-cepstrum, LPC, etc.). In our system we use LPC
cepstrum parameters because they are not very expensive to
calculate and give us an acceptable accuracy.

First of all, we want to know which parts are the most expensive.
Previously, we programmed the entire system in C and we used
the TI compiler and optimizer. After that, we count how many
cycles consume each part. We take common values for a speech
recognition system with a sampling rate of 8 kHz, i.e.,

FR=240, LP=8, LC=12, DI=2, FS=8000, WS=120,
CS=(128,128,64), VD=(12,12,1), NS=10, NO=3, NM=11, NT=2

Table 2 lists the cycles consumed by each part in the parameter
measurement.

Table 2. Cycles Consumed by the Parameterization

Algorithm Cycles

Autocorrelation 2347
LPC analysis 959

LPC to cepstrum 1254
Parameter weighting 70

Temporal derivative 403

Autocorrelation Analysis

Table 2 reflects that the autocorrelation is the most expensive
algorithm of those involved in the feature extraction. The
autocorrelation algorithm is

() () ()∑
=−

=
+=

1

0

ˆˆ
iFR

j

jisjsir LPi ≤≤0 (1)

We notice that it needs on the order of LP² cycles to execute.

We programmed the preliminary version of the algorithm in C and
used the TI compiler and optimizer. We observed the following
assembler code produced by the optimizer:

rpts r1
addf r0, r2
|| mpyf *ar2++, *ar4++, r0

SPRA314

14 Determining CPU and Memory Requirements for Real-time Speech Recognition Systems
Using the TMS320C3x/C4x

This means that we would not improve the performance of the
program by programming it directly in assembler code, because
the body of the main loop is already executed with one-cycle
instructions.

LPC Analysis

At this step, we use the Levinson-Durbin algorithm to obtain the
LPC parameters from the autocorrelation matrix. This algorithm
converts the LP+1 autocorrelation coefficients into the LPC
parameters using the reflection (PARCOR) coefficients.

()

()

()2

1

,

,1,

0,

1

0
,1

1

0

0.0

1

1

1

1

0

1

Γ
Γ

Γ

∑Γ

−=

=

<≤+=

=

−−=

=

=

−

−

−

−
−

−

mmm

mmm

*

i-m1,-mmimim

m

m

i
im

m
m

PP

a
aaa

a

aP

P
a

mi

mir

r

(2)

We can improve some of the parts of the output of the TI
optimizer, but this will reduce the cost in cycles of the algorithm
only a little, because it represents only 1.6 % of the total.

LPC to Cepstrum

We use the obtained LPC parameters to derive the cepstral
parameters. In speech recognition systems the cepstral domain is
preferred because convolutional noise turns into additive noise,
and because it is easier to separate the vocal tract and the glottal
excitation from the received signal.

The algorithm used is

LPm
m

LPm
m

akcc

akcac

c

k-m

m

k
km

k-m

m

k
kmm

>=

≤≤+=

=

∑

∑
−

=

−

=
1

1

1

1

0

1

1
1

0

(3)

SPRA314

Determining CPU and Memory Requirements for Real-time Speech Recognition Systems 15
Using the TMS320C3x/4x

Here the optimizer is not able to solve a pipeline conflict and gives
as an output the following code lines.

 rptb ceps1
 float r2, r0
 mpyf *ar2--, r0
 mpyf *ar5++, r0
 addf r0, r4
ceps1:
 subi 1, r2

When the algorithm represents a small part within the global
system (2 %) we can reduce only slightly its cost by programming
it in assembler.

Temporal Derivative

It is well known that we can improve the performance of a speech
recognition system by adding temporal derivative information. In
our system we approximate the differential by

() () ()∑
−=

+=∆=
∂

∂ DI

DIk
mm

ktt
t

tc kccm)µ (4)

Where we can take µ = 1 for simplicity. According to Table 2, this
section represents 0.6 % of the global.

SPRA314

16 Determining CPU and Memory Requirements for Real-time Speech Recognition Systems
Using the TMS320C3x/C4x

Vector Quantization

In previous sections we obtained all the parameters that we need
to recognize the speech signal, but to store all this data we
consume a lot of memory. We can reduce the amount of memory
required by storing just one value instead of a LC-dimensional
vector. To find this value we use a vector quantifier. In our system
we store just one value per vector. Doing so, the resulting Markov
Models are called discrete (DHMM). Even though we made all the
computations for discrete models, is not very complicated to
extend them to semi-continuous.

Because the VQ is the most CPU-consuming block in our system,
it is important to pay special attention to it.

Full Search Algorithm

This is the most computationally expensive process but always
finds the best match. The algorithm is

()yvdm
mCSm

,minarg*
1 ≤≤

= (5)

Where v is the feature vector and ym is the mth vector in a CS-
vector codebook.

The distance used is L1, that is

() ∑
=

−=
k

k
kk yxyxd

1

, (6)

We may use the square of the distance between components
(instead of the absolute value).

() ()∑
=

−=
k

k
kk yxyxd

1

2
, (7)

With this distance and the corresponding values as previously
shown in this section, we obtained the number of cycles listed in
Table 3.

Table 3. Full Search VQ

VQ Parameter Cycles Percentage (%)

LPC cepstrum 17974 31.2
LPC ceps. deriv. 17974 31.2

energy deriv. 1974 3.4

TOTAL 37922 65.8

SPRA314

Determining CPU and Memory Requirements for Real-time Speech Recognition Systems 17
Using the TMS320C3x/4x

Pre-Computed Energy

The results from Table 3 are not good. We can reduce the cycles
used by the VQ by pre-calculating some information. If we
decompose the distance used, we can write

() ∑ ∑ ∑
= = =

−+=
K

k

K

k

K

k
kkkk yxyxyxd

1 1 1

22 2, (8)

∑
−

K

k
kx

1

2 will always be the same if we do not change the codebook

and we can calculate it previously. Doing so this calculus will not
consume any cycle during recognition.

Since we use d(x, y) to compare distances we do not need to

know its exact value and since ∑
−

K

k
kx

1

2 is the same for each

codebook we do not have to calculate it. From what we said,

during recognition we only calculate ∑
=

K

k
kk yx

1
2 , and this can be

done with just K cycles.

Table 4 shows the cycles used by this algorithm using the pre-
calculated values. We wrote the code entirely in C and used the TI
optimizer.

Table 4. Cycles Used by Pre-Calculating the Energy

VQ Parameter Cycles Percentage (%)

LPC cepstrum 16436 30.1

LPC ceps deriv 16436 30.1
Energy deriv 1908 3.5

Total 34780 63.7

The results in Table 4 are close to those in Table 3 and still poor.

If we analyze the code to compute yx k

K

k
k∑

=1

produced by the

optimizer we see

 1di 0, r3
L95:
 mpyf *ar5++, *ar2++, r0
 subf r0, r2
 addi 1, r3
 cmpi rs, r3
 blo L95

SPRA314

18 Determining CPU and Memory Requirements for Real-time Speech Recognition Systems
Using the TMS320C3x/C4x

This code consumes more than K cycles. We can improve this
part by writing it in assembler.

Assembler Version

In the Pre-Computed Energy section, we calculated the theoretical
number of cycles needed by the VQ algorithm and saw that a C
implementation of the code does not reach this limit. Now we can

try with an assembler version of the code that calculates ∑
=

K

k
kk yx

1

rpts r7
mpyf *ar5++, *ar2++, r0
|| subf r0, r2

We can read the cycles consumed by the assembler program in
Table 5.

Table 5. Cycles Used by the Assembler VQ

VQ Parameter Cycles Percentage (%)

LPC cepstrum 5211 16.6

LPC ceps. deriv. 5211 16.6
energy deriv. 1216 3 9

TOTAL 11638 37.1

This supposes a great reduction of the cycles used even if they do
not reach the theoretical limit. This is due to the use of external
memory instead of on-chip RAM. Our calculations are for on-chip
memory, which means that we can do two memory accesses
within a single cycle. Because of the size of the codebooks, we
can not store them in the on-chip memory of the TMS320C3x. We

need VDCS i

NO

i
i∑

=1

 words to store all the codebooks and we have

only 2 Kwords of on-chip RAM. Even if the vector of cepstral
parameters is stored in this fast RAM, the codebooks are in the
external RAM. That leads us to extra cycles.

SPRA314

Determining CPU and Memory Requirements for Real-time Speech Recognition Systems 19
Using the TMS320C3x/4x

The Viterbi Algorithm

The Viterbi algorithm is the last step in our system. This algorithm
determines which word is most likely to be said by the speaker.

Even if it is not the most expensive, it is the most complicated to
program. This is the reason why is hard to calculate the number of
theoretical cycles consumed by the algorithm. Because of that, we
program it in C and use the TI compiler and optimizer. That gives
us an approximated number of cycles. In the Results section, we
can find the cycles consumed by the program for several values of
the parameters.

To store the models we need to allocate 




 +⋅⋅ ∑

=

NC

i
iCSNTNMNS

1

words in memory.

SPRA314

20 Determining CPU and Memory Requirements for Real-time Speech Recognition Systems
Using the TMS320C3x/C4x

Results

In the previous sections we calculated the cycles consumed by
the speech recognition system given a determinate set of values
of the variables.

Now we can experiment to see how the system is affected by a
change in the size of one parameter, i.e., change the order of the
LPC parameters, add codewords, etc.

Our first experiment is done with common values. We can take the
same values as in the Parameter Measurement section.

Table 6 lists the cycles consumed by the first system. We will take
these values as a reference to compare with the next
experiments.

Table 6. Common Values

Section Cycles
Percentage

(%)

Preemphasis & windowing 760 2.4

Autocorrelation 2347 7.6

LPC analysis 959 3.1
LPC to cepstrum 1254 4.0

Parameter weighting 70 0.2
Temporal derivative 403 1.3

Vector quantifier 11638 37.1
Viterbi algorithm 13884 44.3

As we notice, these results are different from those we expected.
If we calculate the theoretical ones we will find a notable
difference.6 This is a result of accessing external memory.

A speech recognition system needs a lot of memory to store
codebooks, hidden Markov models, etc. The ideal situation is to
store all this information in on-chip RAM, but the TMS320C3x has
only 2 Kwords of this type, so we must put all the information in
external RAM. All these facts slow our system down. However, it
is interesting to know both the number of operations involved in
the algorithm (independently of the memory access) and the
hardware-dependent implementation.

With this in mind, we can try another experiment to test how the
system is affected by a change in the size of one of the
codebooks. If we take CS=(256,128,64) we obtain the results
shown in Table 7.

SPRA314

Determining CPU and Memory Requirements for Real-time Speech Recognition Systems 21
Using the TMS320C3x/4x

Table 7. Cycles for a Bigger Codebook

Section Cycles
Percentage

(%)

Preemphasis & windowing 760 2.1

Autocorrelation 2347 6.4

LPC analysis 959 2.6
LPC to cepstrum 1254 3.5

Parameter weighting 70 0.2
Temporal derivative 403 1.1

Vector quantifier 16758 46.0
Viterbi algorithm 13884 38.1

As we expected, the only part affected is the VQ, which increases
the cycles used and also the percentage of the total.

In our following experiment we wish to know the effect of using
more words in the recognizer. If we take an entire Markov model
for each word, and we make NM=22, we notice that the Viterbi
algorithm consumes 27700 cycles, instead of 13884 for NM=11.

In our final experiment we see what happens when we use more
cepstral coefficients, i. e., LP=15 and LC=20. Again the most
affected part is the VQ, as we see in Table 8, even though the
entire system is affected.

Table 8. Cycles for a Longer Cepstral Vector

Section Cycles
Percentage

(%)

Preemphasis & windowing 760 2.1.9

Autocorrelation 4090 10.3
LPC analysis 1960 4.9

LPC to cepstrum 2455 6.2

Parameter weighting 94 0.2
Temporal derivative 627 1.6

Vector quantifier 15773 39.9
Viterbi algorithm 13884 35.0

SPRA314

22 Determining CPU and Memory Requirements for Real-time Speech Recognition Systems
Using the TMS320C3x/C4x

References
1 G. Brassard, et al., "Algorithmique. Conception et analyse",
Masson 1987

2 E. Horowitz, et al., Fundamentals of Computer Algorithms,
Computer Science Press 1989

3 L. Rabiner, et al., Fundamentals of Speech Recognition, Prentice
Hall 1993.

4 TMS320C3x User’s Guide, Digital Signal Processing Products,
Texas Instruments, 1992

5 “TMS32OC3x C Source Debugger", Microprocessor
Development Systems, Texas Instruments 1991

6 E. Batlle, et. al., "Computational Cost and Memory Requirements
for Real-Time Speech Recognition Systems", to be published in
JCSPAT 1996.

