
Disclaimer: This document was part of the First
European DSP Education and Research Conference.
It may have been written by someone whose native
language is not English. TI assumes no liability for the
quality of writing and/or the accuracy of the
information contained herein.

Parallelization of a H.263 Encoder for the
TMS320C80 MVP

Authors: H. Mooshofer, A. Hutter, W. Stechele

ESIEE, Paris
September 1996
SPRA339

IMPORTANT NOTICE

Texas Instruments (TI™) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest version of
relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable
at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques
are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of
each device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license,
either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual
property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE (281) 274-2320

US TMS320 FAX (281) 274-2324

US TMS320 BBS (281) 274-2323

US TMS320 email dsph@ti.com

Contents
Abstract ... 7
Product Support on the World Wide Web .. 8
Introduction... 9
Overview Over the MVP and H.263 ... 10

The MVP... 10
H.263 .. 11

Parallelization.. 14
General Aspects ... 14
Grouping of Operations into Tasks ... 15
Data Dependencies Between Adjoining Macroblocks .. 18
Durations of the Tasks.. 20

The Implementation.. 21
Comparison of the Parallelization Strategies.. 21
Description of the Implementation .. 23

Results... 27
Conclusion .. 28
Literature ... 29

Figures
Figure 1. Block Diagram of the MVP ... 10
Figure 2. Block Diagram of a H.263 Encoder .. 12
Figure 3. Sequence of Pictures in the PB-frame Mode ... 13
Figure 4. Data Dependencies Between Adjoining Macroblocks 19
Figure 5. Row-wise Scheduling ... 24
Figure 6. Scheduling Within a Row.. 25

Tables
Table 1. Division into Tasks.. 17
Table 2. Duration of the Tasks ... 20
Table 3. Advantages and Disadvantages of the Four Basic Strategies 23
Table 4. Usage of Internal Memory During the Execution of Task 2 to 6 26
Table 5. Duration of the Tasks ... 27
Table 6. Duration per QCIF Picture .. 27
Table 7. Estimation of Maximal Reachable Speed for a TMN5 H.263 Encoder Running

on a MVP.. 28

Parallelization of a H.263 Encoder for the TMS320C80 MVP 7

Parallelization of a H.263 Encoder for
the TMS320C80 MVP

Abstract

The coding of digital video sequences has been paid increasing
attention over the past few years. Algorithms and standards such
as MPEG1, MPEG2 or H.261 have been developed allowing more
and more compression. A new standard in this field is H.263
which has been recently adopted by the ITU. It is intended for
videoconferencing, videophoning, surveillance and other low bit
rate applications (below 28,8 kbit/s). Compared to its predecessor
H.261 it has additional modes and improved motion estimation
resulting in an improved coding efficiency and allowing to transmit
video sequences over analog telephone lines. H.263 is
computational intensive and needs a powerful hardware for its
implementation.

This paper describes a real-time implementation of a H.263
encoder on a Texas Instruments(TI™) TMS320C80 (MVP)
multiprocessor system. In order to exploit the four DSPs and the
RISC processor of the MVP the encoding algorithm must be
parallelized. The paper discusses the main issues of
parallelization for the MVP: Load balance and appropriate
scheduling taking into account the bandwidth of the memory
interface and the size of internal memory. For real-time
applications of video coders there is another important criterion:
Minimal coding delay.

The key to parallelisation are the data dependencies, which are
analyzed and described. There are two types of data
dependencies: (i) between different operations and (ii) between
adjoining parts of the picture. It is shown how the data
dependencies lead to a partitioning of the algorithm into tasks.
The data dependencies between adjoining macroblocks further
reduce the number of parallelization alternatives and influence the
scheduling.

SPRA339

8 Parallelization of a H.263 Encoder for the TMS320C80 MVP

With these results four basic ways of parallelization are compared
and row-wise parallelization is found to be the best solution. The
resulting concept of the encoder program is described and its
scheduling and memory usage is shown. Experimental results are
given.

The current state of the implementation is an encoder in
compliance with the TMN5 test model. Since there are time
consuming parts of the program written in C there is still potential
for enhancement. It is described what can be done to improve
speed and it is shown that it is necessary to use a faster algorithm
for motion estimation instead of full search.

This document was part of the first European DSP Education and
Research Conference that took place September 26 and 27, 1996
in Paris. For information on how TI encourages students from
around the world to find innovative ways to use DSPs, see TI’s
World Wide Web site at www.ti.com.

Product Support on the World Wide Web

Our World Wide Web site at www.ti.com contains the most up to
date product information, revisions, and additions. Users
registering with TI&ME can build custom information pages and
receive new product updates automatically via email.

SPRA339

Parallelization of a H.263 Encoder for the TMS320C80 MVP 9

Introduction

This paper describes an implementation of a H.263 encoder,
which was done at the Technical University of Munich, Chair of
Integrated Circuits. The focus of the research is on the encoder
because it is more critical than the decoder and it also contains
the essential parts a decoder consists of. The encoder is running
on a MVP contains four signal processors and one RISC-
processor and has the computational power to perform encoding
in real-time. A main aspect of the implementation focused by this
paper is parallelization. The paper discusses this aspect and the
resulting implementation in detail.

In the section, Overview Over the MVP and H.263, the structure of
the MVP is shown and a short overview over H.263 is given. The
section on Parallelization starts with a discussion of parallelization,
next the algorithm is divided into tasks, data dependency and
duration are examined. In the section, The Implementation, the
alternatives for parallelization are discussed and the concept of
the implementation is described. The Results section gives the
results of the current state of the implementation. Further
development and improvements are discussed in the Conclusion.

SPRA339

10 Parallelization of a H.263 Encoder for the TMS320C80 MVP

Overview Over the MVP and H.263

The MVP

The MVP is a MIMD multiprocessor system consisting of five
independently operating processors. Four of the processors are
signal processors, one is a RISC processor. The MVP also
contains on-chip RAM, a crossbar and a transfer controller.
Figure 1 shows the structure of the MVP. All blocks shown, except
the one called ”ext. RAM“ are on-chip.

Figure 1. Block Diagram of the MVP

The MVP contains limited amount of on-chip memory and on-chip
cache. The processors can access only on-chip memory in a
direct way, while all accesses to the external memory are
managed by the transfer controller. Between the RAMs and the
processors the crossbar connects the processors to the
addressed RAMs or caches and is capable of doing simultaneous
connections.

The master processor has a data cache allowing to access
external memory transparent from the programs view. By contrast
the DSPs have no caches, which requires their programs to work
on data loaded in the internal memories for efficiency reasons.

An more detailed overview over the MVP is given in [7].

SPRA339

Parallelization of a H.263 Encoder for the TMS320C80 MVP 11

H.263

H.263 is a blockbased hybrid code. Each picture is partitioned into
macroblocks, rectangles of fixed size containing luminance and
chrominance information for this rectangle. It employs motion
compensated prediction followed by DCT and quantization of the
error signal.

H.263 has optional modes that can be used for coding, if switched
on. There are:

q Syntax based arithmetic coding mode

q Advanced prediction mode

q Unrestricted motion vector mode

q PB-frame-mode

Figure 2 shows a block diagram of a H.263 encoder. The lower
part of the block diagram is active only in the PB-frame-mode.
Incoming pictures are divided into macroblocks. For each
macroblock motion estimation and prediction is done on the basis
of the reconstructed previous picture. The result is a motion vector
on the one hand and the predicted macroblock on the other.
Depending on how good the predicted macroblock matches the
original one either INTRA or INTER mode is used for encoding. In
INTER mode, which is chosen in most cases, the difference
between the block to code and the predicted macroblock is
calculated. This difference is DCT transformed and quantized
using a variable quantization parameter. The resulting quantized
coefficients are entropy coded and transmitted together with the
motion vector and the other parameters. Additionally the result is
fed into an inverse quantifier, is inverse DCT-transformed and the
predicted macroblock is added. This is the same as in the
decoder, since the encoder must use the same data for prediction
as the decoder does. In the INTRA mode no prediction is done,
instead the macroblock to code is DCT-transformed directly. The
remaining is the same as in the INTER mode.

SPRA339

12 Parallelization of a H.263 Encoder for the TMS320C80 MVP

Figure 2. Block Diagram of a H.263 Encoder

If the PB-frame mode is used, two pictures are coded as one unit
called PB-frame. Figure 3 shows the sequence of pictures: Every
second picture (marked with P) is coded in the usual manner (as
described above), but predicted not from its direct predecessor but
from the second previous one. The pictures between (marked with
B) are predicted bidirectional - from their predecessor and their
successor.

The recommendation H.263 does not describe the whole coding
process. It is intended as a standard open for competition and
thus only specifies the bitstream syntax, semantics and the
decoding process. The operation of the encoder is not specified.
The encoder described here is in accordance to the test model
TMN5 [4].

In this section only a broad overview was given, more detailed
information can be found in the references [3].

SPRA339

Parallelization of a H.263 Encoder for the TMS320C80 MVP 13

Figure 3. Sequence of Pictures in the PB-frame Mode

SPRA339

14 Parallelization of a H.263 Encoder for the TMS320C80 MVP

Parallelization

General Aspects

The MVP is a multiprocessor system. This requires to split the
algorithm into separate pieces which can be executed at the same
time.

Generally all operations can be executed in parallel, except when
there is a data dependency between them. A data dependency in
this case means that one operation needs the result of another
one. It requires the operations to be executed consecutively
therefore limiting the ways of parallelization. Other types of data
dependencies, like two operations storing data to the same
variable, can be easily broken up by placing the data into different
variables.

The aim of parallelization is to break the algorithm into appropriate
parts, to ensure that all processors are kept busy all time. This is
not the case, if one processor has to wait for another producing
some data it needs, and therefore calculation power is wasted.
Thus it is the aim to achieve load balance by scheduling the
operations in an appropriate way.

There are two ways of scheduling: the order of operations can be
chosen when developing the program, which is called static
scheduling, or it can be chosen while running the program, called
dynamic scheduling. Generally it is easier to implement and debug
static scheduling, because a running program will always be
executed in the same way. Of course there are situations where it
is more appropriate to use dynamic scheduling. This is the case,
when the duration of the operations is not known when developing
the program or when it may change, for example because of
optimizations. Sometimes the duration of operations depends also
on the data processed. An example is motion estimation: When
full search is done, motion estimation can be done by calculating
the sum of absolute distance (SAD) for all motion vectors within a
specified area. To speed up motion estimation SAD calculation for
a certain motion vector can be terminated when the previously
found minimum (for another motion vector) has been reached.
The result of this is the same as without modification, but in the
second case the point, when SAD calculation can be stopped,
varies within a wide range depending on the video sequence
examined i.e. the duration of the operation ,,motion estimation“ is
data dependent.

SPRA339

Parallelization of a H.263 Encoder for the TMS320C80 MVP 15

The MVP consists of five independent processors with
independent instruction streams. This makes it to be a MIMD
system, which always needs synchronization for scheduling an
operation. To avoid a large synchronization overhead operations
should not be of fine granularity.

As mentioned before the PPs require data to process to be in
internal RAM. Since internal RAM is very small compared to the
amount of data processed by H.263 data has to be loaded into
internal RAM before processing and the results of an operation
have to be written back afterwards. The bandwidth of the external
interface limits the amount of data transfers. When an algorithm is
parallelized it has to be paid attention to the amount of data
transfers. It does not make sense to waste bandwidth by
transferring data to external RAM and immediately back. Avoiding
this can be done by grouping operations working on the same
data as described below.

As mentioned before the size of the internal memory is limited.
The MVP has 6 kbyte of data RAM per parallel processor. The
parameter RAM usually can not taken into account for checking if
there is enough memory for a certain implementation, since the
parameter RAM has to keep the stack, internal parameters, the
command tables for the TC and the global variables of small size.

As a result of real-time requirements the coding delay should be
minimal. This influences the parallelization as well, since a picture
is captured not at once, but as a sequence of pixels.

Grouping of Operations into Tasks

H.263 consists of many operations starting with the raw search of
motion vectors ending with encoding of the coefficients. It is
difficult to keep the overview over all the different possibilities of
parallelization, when having too many operations. Additionally the
MVP is a MIMD system, which implies that the result of
parallelization should not be of too fine granularity. And, of course,
it should be avoided to transfer data without any necessity. Hence
the operations are grouped according to their data dependency.
Operations working on the same data are grouped within one task
while operations working on different data or having only a small
amount of common data are separated into different tasks.

The data dependencies vary also depending on the coding mode.
Decision was made, that the program should be capable of coding
in advanced prediction mode and in PB-frame mode. As a result
the program structure must take the additional data dependencies
into account.

SPRA339

16 Parallelization of a H.263 Encoder for the TMS320C80 MVP

Our implementation of the encoder is in accordance with the
TMN5 test model. In this algorithm motion estimation is done in
two steps: First a full search is done for all integer motion vectors
within the range of +15 to -15 for each component of the motion
vector, the motion vector with the smallest SAD is chosen. In the
second step all half-pixel vectors surrounding the previously found
integer pixel vector are examined. For grouping of the operations
it is important to note, that during raw search the block to code is
compared with the previous original picture and during fine search
with the previous reconstructed picture. Thus both are put into
different tasks. The fine search for p- and b-macroblocks work on
the same part of the previous reconstructed picture, thus they are
put together, but the forward prediction has to be kept separate,
because it needs the motion vectors of the right neighbour p-
macroblock and can not be done sequentially after fine search. A
lot of operations, namely the subtraction of the predicted
macroblock, DCT, quantization, zig-zag-scanning, inverse
quantization, IDCT and the addition of predicted macroblock all
work on just one single block and all on the same. This is ideal for
grouping them within the fourth task. The next two tasks are the
counterparts to the previous two, when coding a b-macroblock in
the PB-frame mode. They work on the data of the b-macroblock
and are only executed in the PB-frame mode. Finally, all the
operations translating the coefficients, motion vectors and coding
information into a bitstream are put into task 7.

SPRA339

Parallelization of a H.263 Encoder for the TMS320C80 MVP 17

Table 1. Division into Tasks

SPRA339

18 Parallelization of a H.263 Encoder for the TMS320C80 MVP

Data Dependencies Between Adjoining Macroblocks

As discussed in the previous section, data dependencies are the
key to parallelization. To evaluate and display data dependencies
between operations a data flow plan is usually sufficient. In the
field of image processing there is another type of data
dependencies, which has to be taken into account as well: The
data dependencies between different regions of the image, in this
case between adjoining macroblocks.

These data dependencies are shown in Figure 4. One box (which
is divided into 4*3 smaller boxes) represents a part of a picture,
where the small boxes represent one macroblock. The boxes in a
row stand for a certain kind of information, for example the
contents of the p-picture or the motion vectors for it. A column
stands for a certain task. Figure 4 shows the data needed for
performing a certain task. The data needed for the task is marked
grey, the result is marked black.

For the operation ,,fine search“/,,forward prediction“of course not
the complete 3*3 macroblock wide part is needed. A smaller part
is needed, which can lie anywhere within this area.

As a consequence of the data dependencies the forward
prediction can not immediately follow the motion estimation,
because the motion vectors of the left, upper and right macroblock
are needed in advanced prediction mode.

SPRA339

Parallelization of a H.263 Encoder for the TMS320C80 MVP 19

Figure 4. Data Dependencies Between Adjoining Macroblocks

SPRA339

20 Parallelization of a H.263 Encoder for the TMS320C80 MVP

Durations of the Tasks

As mentioned before, for parallelization it is necessary to know the
duration of the tasks. An exact evaluation of the duration would
make it necessary to write the program for the MVP and evaluate
it there. Since it was necessary to have this evaluation before
writing the MVP program, the H.263 encoder running on a sparc
workstation was examined. For each task the percentage of time
used is shown depending on the encoder mode. Since the time
needed for data transfers is not taken into account the sum of a
column in Table 2 is less than 100%.

The syntax based arithmetic coding mode has almost no influence
on the duration, hence it is not listed in the table.

Table 2. Duration of the Tasks

P P+A PB PB+A

Task 1 78,39% 78,90% 69,60% 70,39%

Task 2 7,29% 6,99% 13,93% 13,68%

Task 3 0,47% 1,28% 0,79% 1,43%

Task 4 5,86% 5,03% 4,75% 4,14%

Task 5 0,00% 0,00% 0,58% 0,49%

Task 6 0,00% 0,00% 2,22% 1,94%

Task 7 0,27% 0,23% 0,44% 0,37%

P = PB - frame mode off
PB = PB – frame mode on
A = Advanced prediction mode on

SPRA339

Parallelization of a H.263 Encoder for the TMS320C80 MVP 21

The Implementation

Comparison of the Parallelization Strategies

It is evident, that parallelization must be within one picture,
because the coding delay would be excessive otherwise, but apart
from that there are several different ways. The four basic ways of
parallelization shall now be compared.

The first method is picture-wise parallelization: A task is performed
on the macroblocks of the whole picture. The next task is
performed, when completed with the previous one, and so one.
Picture-wise parallelization is easy to implement, because
scheduling is very simple. Since none of the tasks is data
dependent to itself applied on a neighbour block any scheduling
can be used for a certain task. On the other hand it has two main
disadvantages: The coding delay increases by the time needed to
code one picture, since the coded data is produced by the last
task. The coding delay is an important factor for video
communication applications, because it may disturb
communication if it is too excessive. Additionally, because of the
small size of internal memory, which can hold at most 16
macroblocks, data has to be loaded from external to internal
memory before each task and the results have to be written back
afterwards. This results in an increased number of transfers.

The second way is pipelining of the tasks. This means that all
processors are working in parallel, one processor performing the
first task, the second processor performing the second one, and
so on. One macroblock is handled in sequence by processor 1,
processor 2,… This has the advantage that the coding delay is
small, since the picture can be processed in the same sequence
the outgoing data stream is transmitted - exactly like a sequential
program would do. The scheduling is simple, motion estimation is
at least one block ahead of the following task because of the
pipeline. The main disadvantage is that the duration of the
operations is very different. Raw search takes about 3/4 of the
computing time, while all other tasks take only 1/4. To avoid a
poor speedup the processors must be distributed in this ratio to
the seven tasks. This means that at least 3 processors must do
raw search, which would break up the pipelining concept and
would make a more difficult scheduling necessary. But there is
another reason, why this concept is not ideal: The duration of the
operations is not exactly known when developing the program and
it may change due to optimizations. This would make it necessary
to change the scheduling, when the program has been developed
or after optimizations, which is not useful.

SPRA339

22 Parallelization of a H.263 Encoder for the TMS320C80 MVP

The third alternative is macroblock-wise parallelization: Each
processor operates on one single macroblock at a time and does
all tasks for this macroblock. All processors work in parallel on
different macroblocks. When one has completed with a
macroblock it starts processing another macroblock. When having
a closer look on the data dependencies discussed in Data
Dependencies Between Adjoining Macroblocks one will notice,
that this is not possible because of the data dependency of the
prediction: For prediction of a macroblock the motion vectors of
the left, upper and right neighbour macroblock are needed. When
modifying the scheduling in the way of separating motion
estimation (task 1 and 2) from the other tasks, this results in a
possible solution, but is also leads to difficult dynamic scheduling.
Furthermore additional transfers are necessary because of the
separation.

Row-wise parallelization, the fourth alternative, is a compromise
between Picture-wise and macroblock-wise scheduling. All
operations are performed for one row in parallel by the
processors. When completed with the first operation, the next
operation is performed on this row. When one row is completely
processed it is continued with the next row. The properties reflect
this. By contrast to picture-wise parallelization no scheduling
modification is needed, since in both cases no data dependencies
are between operations processed at the same time. By contrast,
the coding delay is much lower, because data output is produced
at the end of each row. This is more than the coding delay when
using macroblock-wise parallelization, but still relatively small.
Only 1 row of macroblocks (plus 1 additional row for the motion
vectors) of external buffer is needed for the currently processed
row. The speedup is not maximal because of the synchronization
needed after each task performed on a row. Because the tasks
are not processed as a sequence additional transfers are needed.

Table 3 shows a summary of the properties of the four different
strategies.

SPRA339

Parallelization of a H.263 Encoder for the TMS320C80 MVP 23

Table 3. Advantages and Disadvantages of the Four Basic Strategies

Criterion Picture
view Pipelining Macroblock

wise Row-wise

Processor load balanced balancing not
possible balanced good, but

not optimal

Speedup good poor good
good, but
not
maximal

Dynamic
scheduling

possible impossible difficult possible

Scheduling
modification

no necessary if
prog. changed

necessary no

Rate control picture
wise

macroblock
wise

depending
on
scheduling

row wise

Transmission
buffer size

big small small relative
small

Coding delay big small small relative
small

External buffer 1 picture no no 2 rows

Additional
transfers

yes no yes yes

Extendability of
the algorithm

good difficult difficult difficult

Description of the Implementation

As discussed in the previous chapter operation-wise
parallelization and pipelining have strong disadvantages.
Macroblock-wise parallelization by contrast can be an alternative.
However, for this implementation row-wise parallelization was
chosen, because it can be done with static scheduling and
because it can be modified in that way, that the number of
transfers to external memory can be reduced significantly.

One row is processed by all four DSPs at a time. Task 2 to 6 are
performed in a sequence, since this reduces the number of
transfers. Internal memory is only capable of containing 6kByte
which is equivalent to 16 macroblocks. Thus it is necessary to
execute task 1 separately from the others. Encoding is done by
the master processor, because it can be easily splitted off and the
master processor shall be utilized as well.

SPRA339

24 Parallelization of a H.263 Encoder for the TMS320C80 MVP

The result is the scheduling strategy displayed in Figure 5.

Figure 5. Row-wise Scheduling

SPRA339

Parallelization of a H.263 Encoder for the TMS320C80 MVP 25

Figure 6 shows the scheduling within a row. The scheduling for
task 1 and task 7 is simple: The macroblocks are processed
sequentially. For task 2 to 6 scheduling is more complicated. At
the beginning fine search is executed for the left, the current and
the right macroblock. Having done this task 3 to 6 follow for the
current macroblock. Afterwards the current position is shifted right
by one macroblock. Then fine search is done for the right
macroblock. For the left macroblock and for the one at the current
position fine search has already be done in the previous step.
Afterwards task 3 to 6 are performed for the macroblock at the
current position. This continues until the right end of the area to
process is reached. During this process task 2 is not executed for
blocks, where it has been executed before, instead the previously
calculated results are used.

Figure 6. Scheduling Within a Row

SPRA339

26 Parallelization of a H.263 Encoder for the TMS320C80 MVP

The usage of internal memory is shown in Table 4. The amount of
internal memory needed of each task is shown in number of
macroblocks. The buffer for the original P- and B-macroblock, for
the P- and B-coefficients and for the reconstructed P-macroblock
are not needed at the same time and therefore can be at the same
place. They must not be counted twice, which is symbolized by
brackets. The buffer for the currently processed macroblock must
be capable of holding 16 bit values and thus its size must be 2.
After prediction has been done the left column of the 4*3 part of
the reconstructed picture is no longer needed and thus it can be
used for another purpose.

When adding the memory required it turns out, that in the worst
case an amount of 14 macroblocks is needed at the same time.
This fits into the internal RAM.

Table 4. Usage of Internal Memory During the Execution of Task 2 to 6

Task 2 Task 3 Task 4 T.5 T.6

N PB N PB N PB PB PB

original P-MB 1 1 1 1

original B-MB (1) 1

4*3 MB part of recon-
structed picture

12 12 12 12 9 9 9 9

predicted P-MB 1 1 1 1

predicted B-MB 1 1 1 1

currently processed
MB

2 2 2

coefficients of P-MB (1) (1)

coefficients of B-MB (1)

reconstructed P-MB (1) (1) 1

Total: 13 14 13 14 13 14 11 13

SPRA339

Parallelization of a H.263 Encoder for the TMS320C80 MVP 27

Results

The current implementation of the encoder is basically written in
,,C“. Motion estimation and some time consuming parts of task 4
have been assembler optimized. A sequential and a parallel
version have been implemented to allow comparing the execution
time. For encoding the pictures 0 to 123 of the QCIF sequence
,,Susie“ have been used. The sequence was encoded on a C80
running with 40MHz clock without using optional coding modes.
Table 5 shows the duration of the tasks for processing one row of
macroblocks, Table 6 shows the total CPU time (which is the sum
of the CPU-time of the processors) and the encoding time (which
is the time it actually took to run the program) per picture. The
encoding time of the parallel version is 29095ms. This equivalent
to a frame rate of 4.26 frames per second.

Table 5. Duration of the Tasks

sequential version parallel version

INTRA INTER INTRA INTER

Task 1 0.34 ms 55.24 ms 1.16 ms 55.96 ms

Task 2..6 20.43 ms 25.32 ms 24.92 ms 30.80 ms

Task 7 6.13 ms 4.99 ms 7.32 ms 5.04 ms

Table 6. Duration per QCIF Picture

sequential parallel

Total CPU-Time 94951 ms 101908 ms

Encoding time 94951 ms 29095 ms

The resulting speedup is 3.26. There are two reasons, why the
speedup is smaller then the number of processors: On the one
hand the CPU-time is prolonged, since loading of the instruction
caches and data transfers are delayed because of collisions, on
the other hand the processors are not utilized all the time.

SPRA339

28 Parallelization of a H.263 Encoder for the TMS320C80 MVP

Conclusion

The coding speed of the current implementation is below real-
time. Since there are time consuming parts of the program written
in ,,C“ there is still room for assembler optimizations.

To answer the question, how fast an encoder according to TMN5
can be, the maximal picture rate was estimated. The part which
needs the most processor time, the raw search was coded in
assembler and optimized. Different assembler versions have been
compared. On the assumption, that the whole program could be
optimized to that degree and that full speedup is reached the
maximum picture rate is displayed in Table 7.

Table 7. Estimation of Maximal Reachable Speed for a TMN5 H.263 Encoder
Running on a MVP

PB-frame mode off PB-frame mode on
Advanced
Prediction

Mode
Ceasing of

SAD-
calculation

Multiple
arithmetic

Ceasing of
SAD-

calculation

Multiple
arithmetic

Off 7,93 5,17 8,83 5,76

On 3,99 5,17 4,446 5,76

For each combination of modes two different assembler versions
turned out to give best results. Both are displayed in the table
above. The version ,,ceasing of SAD-calculation“ operates like
mentioned in the Parallelization chapter, the version ,,multiple
arithmetic“ exploits special features of the DSPs within the MVP,
namely the possibility to split the 32bit wide ALU into four 8bit
wide parallel operating ALUs. A combination of both would be less
efficient. The details of this estimation can be found in [8] .

Though this estimation was done at a time, when the encoder was
completely written in C and compared to the results given in Table
7 it turned out to be too pessimistic, the table shows clearly that
real-time requirements can not be reached when TMN5 is
implemented. The consequence must be algorithmic changes. As
shown in the section, Durations of the Tasks, the raw search
needs most of the computing time, it offers the biggest potential
for time saving. Thus the further work is to substitute full search
and use hierarchical algorithms for motion estimation [5] or other
enhanced algorithms e.g. [6]. A slightly modified ,,C-version“ of
the algorithm proposed in [5] has been implemented and it has
shown to be about 6 times faster than the assembler version of full
search.

SPRA339

Parallelization of a H.263 Encoder for the TMS320C80 MVP 29

Literature
[1] T. Bräunl: ,,Parallele Programmierung“ (in German), Vieweg Verlag,

1993

[2] J. Pitas: ,,Parallel Algorithms for Digital Image Processing and
Neuronal Networks“, John Wiley & Sons, 1993

[3] ITU-T Recommendation H.263: ,,Video coding for low bitrate
communication“, International Telecommunication
Union, 1996

[4] ,,Video codec test model, TMN5“,
http://www.nta.no/brukere/DVC/tmn5/, Telenor
Research, 1995

[5] K. M. Nam, 3-S. Kim, R-H. Park, Y. S. Shim: ,,A Fast Hierarchical
Motion Vector Estimation Algorithm Using Mean
Pyramid“, IEEE Transactions on Circuits and Systems
for Video Technology, Vol.5, No.4, August 1995

[6] B. Liu, A. Zaccarin: ,,New Fast Algorithms for the Estimation of Block
Motion Vectors“, IEEE Transactions on Circuits and
Systems for Video Technology, Vol.3, No.2, April 1993

[7] ,,TMS320C80 Multimedia Video Processor (MVP) - Technical Brief“,
SPRU106, Texas Instruments

[8] H. Mooshofer: ,,Untersuchung und Implementation des H.263
Videokommunikationsstadards auf dem MVP“, TU
München, Lehrstuhl für Integrierte Schaltungen, 1996

